文档库 最新最全的文档下载
当前位置:文档库 › 计算机图形学直线DDA算法和Bresenham算法

计算机图形学直线DDA算法和Bresenham算法

计算机图形学直线DDA算法和Bresenham算法
计算机图形学直线DDA算法和Bresenham算法

实验报告

课程名称:计算机图形学

院系名称:

专业班级:

学生姓名:

学号:

指导教师:张玉娟

黑龙江工程学院教务处制

计算机图形学输出直线实验报告

六盘水师范学院计科系本科班计算机图形学实验报告 系别:计科系 课程名称:计算机图形学 班级:本科 学号:114077031057 学生姓名:郑月儒 一、实验目的 1、了解和使用开发环境; 2、熟悉MFC上机操作步骤; 3、熟悉基本图形函数的使用。 二、实验环境 1、操作系统Windows7旗舰版 2、Microsoft Visual C++6.0 3、PC 三、实验人数 5人 四、实验内容 在屏幕上绘制一条直线。 五、实验步骤 (1)进入Microsoft Visual C++6.0集成开发环境后,选择“文件-新建”菜单,弹出“新建”对话框。单击“工程”标签,打开其选项卡,在其左边的列表框中选择MFC AppWizard(EXE)工程类型,在

“工程名称”文本框输入工程名,在“位置”中选择工程路径。如果是第一个工程文件,则必须创建一个新的工作区,选择“创建新的工作空间”,在“平台”编辑框中选择“Win32”。 (2)单击“确定”按钮,现实“MFC应用程序向导-步骤1”对话框,选择“单文档”选项。 (3)单击“完成”按钮,系统弹出“新建工程信息”对话框。(4)单击“确定”按钮,就完成了应用程序的自动生成,在指定的目录下生成了应用程序框架所必需的全部文件,并且可以以直接运行。 (5)选择“组建-执行”。因为是第一次执行,没有生成可执行文件.EXE,提示是否生成,选择“是”,则系统进行编译及连接,生成可执行文件,并运行。、 (6)在窗口左边工作区“FileView”标签中,选择graphicView.cpp 文件,在voidCGraphicView::OnDraw(CDC*pDC)函数中添加如下代码:pDC->SetPixel(100,100,RGB(0,0,0)); pDC->MoveTo(0,0); pDC->LineTo(1000,415); (7)运行程序,得到实验结果。 六、实验效果(含程序运行主要截图)

计算机图形学裁剪算法详解

裁剪算法详解 在使用计算机处理图形信息时,计算机部存储的图形往往比较大,而屏幕显示的只是图的一部分。因此需要确定图形中哪些部分落在显示区之,哪些落在显示区之外,以便只显示落在显示区的那部分图形。这个选择过程称为裁剪。最简单的裁剪方法是把各种图形扫描转换为点之后,再判断各点是否在窗。但那样太费时,一般不可取。这是因为有些图形组成部分全部在窗口外,可以完全排除,不必进行扫描转换。所以一般采用先裁剪再扫描转换的方法。 (a)裁剪前 (b) 裁剪后 图1.1 多边形裁剪 1直线段裁剪 直线段裁剪算法比较简单,但非常重要,是复杂图元裁剪的基础。因为复杂的曲线可以通过折线段来近似,从而裁剪问题也可以化为直线段的裁剪问题。常

用的线段裁剪方法有三种:Cohen-Sutherland,中点分割算法和梁友栋-barskey 算法。 1.1 Cohen-Sutherland裁剪 该算法的思想是:对于每条线段P1P2分为三种情况处理。(1)若P1P2完全在窗口,则显示该线段P1P2简称“取”之。(2)若P1P2明显在窗口外,则丢弃该线段,简称“弃”之。(3)若线段既不满足“取”的条件,也不满足“弃”的条件,则在交点处把线段分为两段。其中一段完全在窗口外,可弃之。然后对另一段重复上述处理。 为使计算机能够快速判断一条直线段与窗口属何种关系,采用如下编码方法。延长窗口的边,将二维平面分成九个区域。每个区域赋予4位编码CtCbCrCl.其中各位编码的定义如下:

图1.2 多边形裁剪区域编码图5.3线段裁剪 裁剪一条线段时,先求出P1P2所在的区号code1,code2。若code1=0,且code2=0,则线段P1P2在窗口,应取之。若按位与运算code1&code2≠0,则说明两个端点同在窗口的上方、下方、左方或右方。可判断线段完全在窗口外,可弃之。否则,按第三种情况处理。求出线段与窗口某边的交点,在交点处把线段一分为二,其中必有一段在窗口外,可弃之。在对另一段重复上述处理。在实现本算法时,不必把线段与每条窗口边界依次求交,只要按顺序检测到端点的编码不为0,才把线段与对应的窗口边界求交。 Cohen-Sutherland裁减算法 #define LEFT 1 #define RIGHT 2 #define BOTTOM 4

DDA直线生成算法

实验报告 课程名称计算机图形学 实验名称DDA直线生成算法编程的实现实验类型验证型 实验地点计通学院304实验日期2010-03-29指导教师 专业 班级 学号 姓名 成绩 辽宁石油化工大学计算机与通信工程学院

实验报告说明 1、封面内容 (1)课程名称:实验所属的课程的名称。 (2)实验名称:要用最简练的语言反映实验的内容。要求与实验指导书中相一致。 (3)实验类型:说明是验证型实验、设计型实验、创新型实验还是综合型实验。 2、正文内容 实验报告的正文内容须包括以下内容: (1)实验目的:目的要明确,要抓住重点,符合实验指导书中的要求。 (2)实验内容:说明本实验的主要内容。 (3)实验原理:简要说明本实验项目所涉及的理论知识。 (4)实验环境:实验用的软硬件环境(配置)。 (5)实验方案:对于验证性型实验,写明依据何种原理、操作方法进行实验;对于设计型和综合型实验,写明依据何种原理、操作方法进行实验,并画出硬件组成图、软件流程图、设计思路和设计方法,再配以相应的文字说明;对于创新型实验,除符合设计型和综合型实验要求外,还应注明其创新点、特色。(6)实验步骤:写明实验的实施步骤,包括实验过程中的记录、数据。 (7)实验结果与分析:写明实验的最终结果,并对结果进行分析,做出结论。(8)实验中遇到的问题及解决方法:写明实验过程中遇到的问题及所采取的解决方法。 (9)实验总结(在封底上):写出对本次实验的心得体会、思考和建议。

实验原理:已知线段的起点坐标()11x y ,终点坐标()22x y ,直线的点斜 式方程为:y m x b =?+,斜率和截距分别为:2121y y m x x -= - , 11b y m x =-? 。沿x 的增量为x ?,沿y 的增量为y ?,即: 1x y m ?= ??,y m x ?=??。当1m ≤时,取x 为一个像素单位长,即x 每次增加一个像素,然后利用公式计算相应的y 值:1k k k y y y y m x -=+?=+??,相反1m >时,可以通过质量y ?来计算相应的x 值:1k k k x x x x m y -=+?=+??。 实验内容:新建一个Win32 Application 的典型“Hello World ”程序,工程 命名为:DDA 直线生成算法,打开DDA 直线生成算法.cpp 文件, 在里面加入代码: void DDA_line(HDC hdc) { double x,y,dx,dy,L,x1=100,x2=400,y1=100,y2=400; if(abs(x2-x1)>=abs(y2-y1)) L=abs(x2-x1); else L=abs(y2-y1); dx=(x2-x1)/L; dy=(y2-y1)/L; x=x1,y=y1; for(int k=1;k<=L;k++) { SetPixel(hdc,x,y,RGB(255,0,255)); x=x+dx; y=y+dy; Sleep(10); } } 实验结果:调用程序运行得出一下结果:

计算机图形学作业-Display-答案分析

计算机图形学作业I 一.判断题 1.齐次坐标提供了坐标系变换的有效方法,但仍然无法表示无穷远的点;(×) 2.若要对某点进行比例、旋转变换,首先需要将坐标原点平移至该点,在新的坐标系下做比例或旋转变换,然后在将原点平移回去;(√) 3. 相似变换是刚体变换加上等比缩放变换;(√) 4. 保距变换是刚体变换加上镜面反射;(√) 5. 射影变换保持直线性,但不保持平行性。(√) 二、填空题 1.透视投影的视见体为截头四棱锥形状;平行投影的视见体为长方体形状。 2.字符的图形表示可以分为矢量表示和点阵表示两种形式。 3.仿射变换保持直线的平行性 4.刚体变换保持长度 5.保角变换保持向量的角度 三、单项选择题 1. 分辨率为1024×1024的显示器各需要多少字节位平面数为24的帧缓存?( D) A. 512KB; B. 1MB; C. 2MB; D. 3MB ; 2. 在透视投影中,主灭点的最多个数是( C ) A 1; B 2; C 3; D 4 3. 以下关于图形变换的论述不正确的是( B ) A. 平移变换不改变图形大小和形状,只改变图形位置; B. 拓扑关系不变的几何变换不改变图形的连接关系和平行关系; C.旋转变换后各图形部分间的线性关系和角度关系不变,变换后直线的长度不变 D.错切变换虽然可引起图形角度的改变,但不会发生图形畸变; 4. 使用下列二维图形变换矩阵:将产生变换的结果为( D ) A. 图形放大2倍; B. 图形放大2倍,同时沿X、Y1个绘图单位; C.沿X坐标轴方向各移动2个绘图单位; D.沿X坐标轴方向放大2倍,同时沿X、Y坐标轴方向各平移1个绘图单位。 5. 下列有关投影的叙述语句中,正确的论述为(B ) A. 透视投影具有近小远大的特点; B. 平行投影的投影中心到投影面距离是无限的; C. 透视投影变换中,一组平行于投影面的线的投影产生一个灭点; T =

计算机图形学实验一_画直线

大学实验报告 学院:计算机科学与技术专业:计算机科学与技术班级:计科131

如果 d<0,则M在理想直线下方,选右上方P1点; 如果 d=0,则M在理想直线上,选P1/ P2点。 由于d是xi和yi的线性函数,可采用增量计算提高运算效率。 1.如由pi点确定在是正右方P2点(d>0).,则新的中点M仅在x方向加1,新的d值为: d new=F(xi+2,yi+0.5)=a(xi+2)+b(yi+0.5)+c 而 d old=F(xi+1,yi+0.5)=a(xi+1)+b(yi+0.5)+c d new=d old+a= d old-dy 2.如由pi点确定是右上方P1点(d<0),则新的中点M在x和y方向都增加1,新的d值为 d new=F(xi+2,yi+1.5)=a(xi+2)+b(yi+1.5)+c 而 d old=F(xi+1,yi+0.5)=a(xi+1)+b(yi+0.5)+c d new=d old+a+b= d old-dy+dx 在每一步中,根据前一次第二迭中计算出的d值的符号,在正右方和右上方的两个点中进行选择。d的初始值: d0=F(x0+1,y0+0.5)=F(x0,y0)+a+b/2=a+b/2=-dy+dx/2 F(x0,y0)=0,(x0,y0)在直线上。 为了消除d的分数,重新定义 F(x,y)=2(ax+by+c) 则每一步需要计算的d new 是简单的整数加法 dy=y1-y0,dx=x1-x0 d0=-2dy+dx d new=d old-2*dy,当 d old>=0 d new=d old-2(dy-dx),当d old<0 Bresenham画线算法 算法原理: 与DDA算法 相似,Bresenham 画线算法也要在 每列象素中找到 与理想直线最逼 近的象素点。 根据直线的 斜率来确定变量 在x或y方向递 增一个单位。另 一个方向y或x

计算机图形学 直线的生成算法的实现

实验二 直线的生成算法的实现 班级 08信计2班 学号 59 姓名 分数 一、实验目的和要求 1.理解直线生成的基本原理。 2.掌握几种常用的直线生成算法。 3.利用Visual C++实现直线生成的DDA 算法。 二、实验内容 1.了解直线的生成原理,尤其是Bresenham 画线法原理。 2.掌握几种基本的直线生成算法:DDA 画线法、Bresenham 画线法、中点画线法。 3.利用Visual C++实现直线生成的DDA 算法,在屏幕上任意生成一条直线。 三、实验步骤 1.直线的生成原理: (1)DDA 画线法也称数值微分法,是一种增量算法。是一种基于直线的微分方程来生成直线的方法。 (2)中点画线法原理 以下均假定所画直线的斜率[0,1]k ∈,如果在x 方向上的增量为1,则y 方向上的增量只能在01 之间。中点画线法的基本原理是:假设在x 坐标为p x 的各像素点中,与直线最近者已经确定为(,)p p P x y ,用小实心圆表示。那么,下一个与直线最近的像素只能是正右方的1(1,)p p P x y +,或右上方的2(1,1)p p P x y ++,用小空心圆表示。以M 为1P 和2P 的中点,则M 的坐标为(1,0.5)p p x y ++。又假设Q 是理想直线与垂直线1p x x =+的交点。显然,若M 在Q 的下方,则2P 离直线近,应取2P 为下一像素点;若M 在Q 的上方,则1P 离直线近,应取1P 为下一像素点。 (3)B resenham 画线法原理 直线的中点Bresenham 算法的原理:每次在主位移方向上走一步,另一个方向上走不走步取决于中点偏差判别式的值。 给定理想直线的起点坐标为P0(x0,y0),终点坐标为P1(x1,y1),则直线的隐函数方程为: 0b kx y y)F(x,=--= (3-1) 构造中点偏差判别式d 。 b x k y y x F y x F d i i i i M M -+-+=++==)1(5.0)5.0,1(),(

案例2-直线中点Bresenham算法

课程实验报告

步骤 为了规范颜色的处事,定义了CRGB类,重载了“+”,“-”、“*”、“\”、“+=”、“-=”、“*=”、“/=”运算符。成员函数Normalize()将颜色分量red,green,blue规范到[0,1]闭区间内。 RGB.h #pragma once class CRGB { public: CRGB(); CRGB(double, double, double); ~CRGB(); friend CRGB operator + (const CRGB&, const CRGB&); friend CRGB operator - (const CRGB&, const CRGB&); friend CRGB operator * (const CRGB&, const CRGB&); friend CRGB operator * (const CRGB&, double); friend CRGB operator * (double, const CRGB&); friend CRGB operator / (const CRGB&, double); friend CRGB operator += (const CRGB&, const CRGB&); friend CRGB operator -= (const CRGB&, const CRGB&); friend CRGB operator *= (const CRGB&, const CRGB&); friend CRGB operator /= (const CRGB&, double); void Normalize(); public: double red; double green; double blue; }; RGB.cpp #include"stdafx.h" #include"RGB.h" CRGB::CRGB() { red = 1.0; green = 1.0; blue = 1.0;

计算机图形学实验—中点算法画直线

计算机图形学实验报告 班级:软件1102 姓名:夏明轩 学号:201109020221

中点算法的线段光栅化 一、设计思想和算法流程 1.假定直线斜率0 P 2离直线更近更近->取P 2 。 M 在Q 的上方-> P 1离直线更近更近->取P 1 M 与Q 重合, P 1、P 2任取一点。 问题:如何判断M 与Q 点的关系? 由常识知:若y=kx+b; F(x,y)=y-kx-b;则有 ()()()?????<>=点在直线下方 0,点在直线上方0,点在直线上面0,y x F y x F y x F 假设直线方程为:ax +by +c=0 (y=(-a/b)x-c/b) 通过两点不能唯一确定a,b,c, 取 a=y 0-y 1, b=x 1-x 0, c=x 0y 1-x 1y 0 F(x,y)=ax +by +c=b(y-(-a/b)x-c/b); ()()()?????<>=点在直线下方0,点在直线上方0 ,点在直线上面0,y x F y x F y x F 则有 ∴欲判断M 点是在Q 点上方还是在Q 点下方,只需把M 代入F (x ,y ),并检查它的符号。构造判别式:d=F(M)=F(x p +1,y p +0.5)=a(x p +1)+b(y p +0.5)+c 当d<0,M 在直线(Q 点)下方,取右上方P 2; 当d>0,M 在直线(Q 点)上方,取右方P 1; 当d=0,选P 1或P 2均可,约定取P 1; 能否采用增量算法呢?若d ≥0 ---->M 在直线上方->取P1;此时再下一个象素的判别式为 d 1=F(x p +2, y p +0.5) =a(x p +2)+b(y p +0.5)+c = a(x p +1)+b(y p +0.5)+c +a =d+a ; 增量为a 若d<0 ------>M 在直线下方->取P2;此时再下一个象素的判别式为 d 2= F(x p +2, y p +1.5) =a(x p +2)+b(y p +1.5)+c = a(x p +1)+b(y p +0.5)+c +a +b =d+a+b ;

计算机图形学图形的几何变换的实现算法

实验二图形的几何变换的实现算法 班级 08 信计 学号 59 姓名 _____ 分数 _____ 一、 实验目的和要求: 1、 掌握而为图形的基本几何变换,如平移,旋转,缩放,对称,错切变换;< 2、 掌握OpenG 冲模型变换函数,实现简单的动画技术。 3、 学习使用OpenGL 生成基本图形。 4、 巩固所学理论知识,加深对二维变换的理解,加深理解利用变换矩阵可 由简单图形得到复杂图形。加深对变换矩阵算法的理解。 编制利用旋转变换绘制齿轮的程序。编程实现变换矩阵算法,绘制给出形体 的三视图。调试程序及分析运行结果。要求每位学生独立完成该实验,并上传实 验报告。 二、 实验原理和内容: .原理: 图像的几何变换包括:图像的空间平移、比例缩放、旋转、仿射变换和图像插值。 图像几何变换的实质:改变像素的空间位置,估算新空间位置上的像素值。 图像几何变换的一般表达式:[u,v ]=[X (x, y ),Y (x, y )],其中,[u,v ]为变换后图像 像素的笛卡尔坐标, [x, y ]为原始图像中像素的笛卡尔坐标。这样就得到了原始图像与变 换后图像的像素的对应关系。 平移变换:若图像像素点(x, y )平移到(x x 。,y ■ y 。),则变换函数为 u = X (x, y ) =x 沟, v 二丫(x, y ) = y ■ y 。,写成矩阵表达式为: 比例缩放:若图像坐标 (x,y )缩放到(S x ,s y )倍,则变换函数为: S x ,S y 分别为x 和y 坐标的缩放因子,其大于1表示放大, 小于1表示缩小。 旋转变换:将输入图像绕笛卡尔坐标系的原点逆时针旋转 v 角度,则变换后图像坐标为: u COST 内容: :u l :Sx k ;0 其中,x 0和y 0分别为x 和y 的坐标平移量。 其中,

(1)直线生成算法.doc

课程名称:计算机图形学指导教师:罗晓辉 上机实践名称:基本图形(直线)生成算法 年级:2008 姓名:孔广波 学号:312008********* 上机实践成绩: 上机实践日期:2011-4-10 实验一: 直线生成算法 上机实践报告 一、实验目的 理解直线生成的基本原理,掌握儿种常见的直线生成算法,利用Microsoft Visual C++6.0实现直线生成的DDA算法。 二、实验内容: 1)了解直线的生成原理。 2)掌握儿种基本的直线生成算法:DDA画线法、Bresenham画线法、中点画线法。 3)利用Microsoft Visual C++6.0实现直线生成的DDA算法,在屏幕上任意生成一条直线。 三、实验步骤: 1)预习教材关于直线的生成原理。 2)仿照教材关于直线生成的DDA算法,使用Microsoft Visual C++6.0实现该算法。 3)调试、编译、运行程序。 四、实验分析、源程序和结果: (1.1)中点算法分析: 中点画线算法原理示意图

直线斜率:k属于[0, 1] 线段的隐式方程:F(x,y) = ax + by + c = 0 ((x0 , y0), ( xl , yl )为两端点,式中a = yO - yl , b = xl - xO , c = xO * yl - xl * yO) 直线上方的点:F(x , y) > 0 直线下方的点:F ( x , y ) < 0 构造判别式:d = F(M) = F(Xp+l,Yp + 0.5) 由d>0, V0 可判定下一个象素,d 的初始值:d0 = F( X0 + 1 , Y0 + 0.5 ) = F( X0 , Y0 ) + a + 0.5b 因(X0, YO)在直线上,F(X0 , YO ) = 0,所以,dO = a + 0.5b (1.2)具体实现代码: void CGView::Line_DDA(long plxjong ply,long p2x,long p2y,CDC *pDC)〃画直线算法实现 ( int a,b,del 1 ,del2,d,x,y; b=p2x-plx; a=ply-p2y; d=2*a+b; dell=2*a; del2=2*(a+b); x=plx; y=piy; pDC->SetFixel(x,y,mJPenColor); while(xSetPixel(x,y-2,m_lPenColor); pDC->SetPixel(x,y-1 ,m_lPenColor); pDC->SetPixeI(x,y,m_lPenColor); pDC->SetPixel(x,y+1 ,m_IPenColor); pDC->SetPixel(x,y,m_lPenColor);

计算机图形学用VC++画直线

实验一基本图形生成算法 实验目的: 掌握中点Bresenham绘制直线的原理 设计中点Bresenham算法 编程实现中点Bresenham算法 实验描述: 使用中点Bresenham算法绘制斜率为0≤k≤1的直线。 算法设计: 直线中点Bresenham算法 1. 输入直线的起点坐标P0(x0,y0)和终点坐标P1(x1,y1)。 2. 定义直线当前点坐标x,y、定义中点偏差判别式d、定义直线斜率k、定义像素点颜色 rgb。 3. x=x0,y=y0,计算d=0.5-k,k=(y1-y0)/(x1-x0),rgb=RGB(0,0,255)。 4. 绘制点(x,y),判断d的符号。若d<0,则(x,y)更新为(x+1,y+1),d 更新为 d+1-k;否则(x,y)更新为(x+1,y),d更新为d-k。 5. 如果当前点x 小于x1,重复步骤4,否则结束。 源程序: 1)// TestView.h #include "InputDlg.h"//对话框头文件 class CTestView : public CView { ….. } 2)//TestView.cpp #define ROUND(a) int(a+0.5) //四舍五入 ….. void CTestView::OnMbline()//菜单响应函数 { InputDlg dlg; if(dlg.DoModal()==IDOK) { AfxGetMainWnd()->SetWindowText(":直线中点Bresenham算法"); RedrawWindow(); Mbline(dlg.m_x0, dlg.m_y0, dlg.m_x1, dlg.m_y1); } } void CTestView::Mbline(double x0, double y0,double x1,double y1) //直线中点Bresenham函数{ CClientDC dc(this); COLORREF rgb=RGB(0,0,255); //定义直线颜色为蓝色 double x,y,d,k; x=x0;y=y0;k=(y1-y0)/(x1-x0);d=0.5-k;

Bresenham算法

Course Page
Page 1 of 6
课程首页 > 第二章 二维图形的生成 > 2.1 直线的生成 > 2.1.2 生成直线的Bresenham算法
全部隐藏
2.1.2 生成直线的Bresenham算法
从上面介绍的DDA算法可以看到,由于在循环中涉及实型数据的加减运算,因此直线的生成速度较慢。 在生成直线的算法中,Bresenham算法是最有效的算法之一。Bresenham算法是一种基于误差判别式来生成直线的方法。 一、直线Bresenham算法描述: 它也是采用递推步进的办法,令每次最大变化方向的坐标步进一个象素,同时另一个方向的坐标依据误差判别式的符号来决定是否也要步进一 个象素。 我们首先讨论m=△ y/△x,当0≤m≤1且x1有两种Bresenham算法思想,它们各自从不同角度介绍了Bresenham算法思想,得出的误差判别式都是一样的。 二、直线Bresenham算法思想之一: 由于显示直线的象素点只能取整数值坐标,可以假设直线上第i个象素点坐标为(xi,yi),它是直线上点(xi,yi)的最佳近似,并且xi=xi(假设 m<1),如下图所示。那么,直线上下一个象素点的可能位置是(xi+1,yi)或(xi+1,yi+1)。
由图中可以知道,在x=xi+1处,直线上点的y值是y=m(xi+1)+b,该点离象素点(xi+1,yi)和象素点(xi+1,yi+1)的距离分别是d1和d2:
d1=y-yi=m(xi+1)+b-yi d2=(yi+1)-y=(yi+1)-m(xi+1)-b 这两个距离差是 d1-d2=2m(xi+1)-2yi+2b-1
(2-8) (2-9)
(2-10)
我们来分析公式(2-10): (1)当此值为正时,d1>d2,说明直线上理论点离(xi+1,yi+1)象素较近,下一个象素点应取(xi+1,yi+1)。 (2)当此值为负时,d1mhtml:file://C:\Documents and Settings\Administrator\桌面\Course Page.mht
2011-7-12

OpenGL-实验2直线生成算法实现教学文案

实验2 直线生成算法实现 1.实验目的 理解基本图形元素光栅化的基本原理, 掌握一种基本图形元素光栅化算法, 利用0penGL 实现直线光栅化的DDA算法。 2.实验内容 (1)根据所给的直线光栅化的示范源程序, 在计算机上编译运行, 输出正确结果。 (2)指出示范程序采用的算法, 以此为基础将其改造为中点线算法或Bresenham算法,写 入实验报告。 (3)根据示范代码,将其改造为圆的光栅化算法,写入实验报告。 (4)了解和使用OpenGL的生成直线的命令,来验证程序运行结果。 3.实验原理 示范代码原理DDA算法。下面介绍OpenGL画线的一些基础知识和glutReshapeFunc()函数。 (1)数学上的直线没有宽度,但0penGL的直线则是有宽度的。同时, OpenGL的直线必须是有限长度,而不是像数学概念那样是无限的。可以认为, OpenGL的“直线”概念与数学上的“线段”接近,它可以由两个端点来确定。这里的线由一系列顶点顺次连接而成, 有闭合和不闭合两种。 前面的实验已经知道如何绘“点”,那么OpenGL是如何知道拿这些顶点来做什么呢? 是依次画出来,还是连成线? 或者构成一个多边形? 或是做其他事情? 为了解决这一问题, OpenGL要求:指定顶点的命令必须包含在glBegin函数之后, glEnd函数之前(否则指定的顶点将被忽略),并由glBegin来指明如何使用这些点。 例如: glBegin(GL P0INTS) , glVertex2f(0.0f, 0.0f); glVertex2f(0.5f, 0.0f); glEnd(); 则这两个点将分别被画出来。如果将GL_POINTS替换成GL_LINES,则两个点将被认为是直线的两个端点, OpenGL将会画出一条直线。还可以指定更多的顶点, 然后画出更复杂的图形。另一方面, glBegin支持的方式除了GL_POINTS和GL_LINES,还有GL LINE STRIP、GL LINE L0〇P、GL TRIANGLES、GL TRIANGLE STRIP、GL TRIANGLE_FAN等几何图元。 (2) 首次打开窗口、移动窗口和改变窗口大小时, 窗口系统都将发送一个事件, 以通知程序员。如果使用的是GLUT,通知将自动完成,并调用向glutReshapeFunc注册的函数。该函数必须完成下列工作: ①重新建立用作新渲染画布的矩形区域。 ②定义绘制物体时使用的坐标系。 如: void Reshape(int w, int h) { glViewport(0, 0, (GLsizei) w, (GLsizei) h);

CG_实验2_基本图形元素(直线)生成算法的实现

实验二基本图形元素(直线)生成算法的实现 1.实验目的: 理解基本图形元素光栅化的基本原理,掌握一种基本图形元素光栅化算法,利用OpenGL实现直线光栅化的DDA算法。 2.实验内容: (1)根据所给的直线光栅化的示范源程序,在计算机上编译运行,输出正确结果; (2)指出示范程序采用的算法,以此为基础将其改造为中点线算法或Bresenham算法,写入实验报告; (3)根据示范代码,将其改造为圆的光栅化算法,写入实验报告; (4)了解和使用OpenGL的生成直线的命令,来验证程序运行结果。 3.实验原理: 示范代码原理参见教材直线光栅化一节中的DDA算法。下面介绍下OpenGL画线的一些基础知识和glutReshapeFunc()函数。

(1)数学上的直线没有宽度,但OpenGL的直线则是有宽度的。同时,OpenGL的直线必须是有限长度,而不是像数学概念那样是无限的。可以认为,OpenGL的“直线”概念与数学上的“线段”接近,它可以由两个端点来确定。这里的线由一系列顶点顺次连结而成,有闭合和不闭合两种。 前面的实验已经知道如何绘“点”,那么OpenGL是如何知道拿这些顶点来做什么呢?是一个一个的画出来,还是连成线?或者构成一个多边形?或是做其它事情呢?为了解决这一问题,OpenGL要求:指定顶点的命令必须包含在glBegin函数之后,glEnd函数之前(否则指定的顶点将被忽略),并由glBegin来指明如何使用这些点。 例如: glBegin(GL_POINTS); glVertex2f(0.0f, 0.0f); glVertex2f(0.5f, 0.0f); glEnd(); 则这两个点将分别被画出来。如果将GL_POINTS替换成GL_LINES,则两个点将被认为是直线的两个端点,OpenGL将会画出一条直线。还可以指定更多的顶点,然后画出更复杂的图形。另一方面,glBegin 支持的方式除了GL_POINTS和GL_LINES,还有GL_LINE_STRIP,GL_LINE_LOOP,GL_TRIANGLES,GL_TRIANGLE_STRIP,

计算机图形学-设计算法绘制直线与圆

信息与计算科学专业基础课 Computer Report Of course 计算机图形学课程实验 报告 实验题目设计算法绘制直线与圆 班级 姓名 学号 指导教师 日期

实验说明 试验目的: 掌握直线和圆的基本生成算法思想,并上机编程实现相应的算法。 试验地点: 教九楼401 数学系机房 实验要求(Direction): 1. 每个学生单独完成;2.开发语言为TurboC 或C++,也可使用其它语言;3.请在自己的实验报告上写明姓名、学号、班级;4.每次交的实验报告内容包括:题目、试验目的和意义、程序制作步骤、主程序、运行结果图以及参考文件;5. 自己保留一份可执行程序,考试前统一检查和上交。 实验内容 实验题一 实验题目 1).用DDA 法在屏幕上画一条具有三个像素宽的直线段L1。要求:(1)直线段L1的两个端点坐标和画线颜色都要求可以随机输入;(2)要求输出直线段L1上的各点坐标;(3)画出直线的同时要求标明两端点坐标。 2).将课堂所讲的斜率01、-1

直线和圆弧的生成算法

第3章直线和圆弧的生成算法 3.1直线图形的生成算法 数学上的直线是没有宽度、由无数个点构成的集合,显然,光栅显示器只能近地似显示直线。当我们对直线进行光栅化时,需要在显示器有限个像素中,确定最佳逼近该直线的一组像素,并且按扫描线顺序,对这些像素进行写 操作,这个过程称为用显示器绘制直线或直线的扫描转换。 由于在一个图形中,可能包含成千上万条直线,所以要求绘制算法应尽可能地快。本节我们介绍一个像素宽直线绘制的三个常用算法:数值微分法 (DDA、中点画线法和Bresenham算法。 3.1.1逐点比较法 3.1.2数值微分(DDA)法 设过端点P o(x o , y°)、R(X1 , y1)的直线段为L( P0 , R),则直线段L的斜率为—沁生要在显示器显示厶必须确定最佳逼近Z的掃素集合。我们从 L的起点P0的横坐标X o向L的终点R的横坐标X1步进,取步长=1(个像素),用L 的直线方程y=kx+b计算相应的y坐标,并取像素点(x,round( y))作为当前点的坐标。因为: y i+1 = kX i+1+b = k1X i +b+k x = y i+k x 所以,当x =1; y i+1 = y i+k。也就是说,当x每递增1,y递增k(即直线斜率)。根据这个原理,我们可以写出DDA( Digital Differential Analyzer) 画线算法程序。

DDA画线算法程序: void DDALi ne(int xO,i nt yO,i nt x1,i nt y1,i nt color) { int x ; float dx, dy, y, k ; dx = x1-x0 ;dy=y1-y0 ; k=dy/dx, ;y=yO; for (x=xO ;x< x1 ;x++) { drawpixel (x, i nt(y+0.5), color); y=y+k; } } 注意:我们这里用整型变量color表示像素的颜色和灰度。 举例:用DDA方法扫描转换连接两点P0( 0,0 )和P1( 5,2 )的直线段 图3.1.1直线段的扫描转换 注意:上述分析的算法仅适用于|k| <1的情形。在这种情况下,x每 增加1,y最多增加1。当|k| 1时,必须把x, y地位互换,y每增加1, x相应增加1/k。在这个算法中,y与k必须用浮点数表示,而且每一步都要对y 进行四舍五入后取整,这使得它不利于硬件实现。

bresenham画线算法详解

给定两个点起点P1(x1, y1), P2(x2, y2),如何画它们直连的直线呢,即是如何得到上图所示的蓝色的点。假设直线的斜率00,直线在第一象限,Bresenham算法的过程如下: 1.画起点(x1, y1). 2.准备画下一个点,X坐标加1,判断如果达到终点,则完成。否则找下一个点,由图可知要画的点要么为当前点的右邻接点,要么是当前点的右上邻接点。 2.1.如果线段ax+by+c=0与x=x1+1的交点y坐标大于(y+*y+1))/2则选右上那个点 2.2.否则选右下那个点。 3.画点 4.跳回第2步 5.结束 具体的算法如下,原理就是比较目标直线与x+1直线交点的纵坐标,哪个离交点近就去哪个void Bresenhamline(int x0, int y0, int x1, int y1, int color) { int x, y, dx, dy; float k, e; dx = x1 - x0; dy = y1 - y0; k = dy / dx; e = -0.5; x = x0; y = y0; for (x= x0;x < x1; x++) { drawpixel(x, y, color);//这个是画点子函数

e = e + k; if (e > 0) { y++; e = e - 1; } } } 上述Bresenham算法在计算直线斜率与误差项时用到小数与除法。可以改用整数以避免除法。等式两边同时乘以2*dx,得到2*e*dx = 2*e*dx + 2dy, 2*e*dx = 2*e*dx - 2*dx.由于算法中只用到误差项的符号,因此可作如下替换:2*e*dx.改进的Bresenham画线算法程序:将e统一乘以2*dx即变成了整数的Bresenhan算法了,^_^ void InterBresenhamline (int x0, int y0, int x1, int y1, int color) { int dx = x1 - x0; int dy = y1 - y0; int dx2 = dx << 1;//乘2 int dy2 = dy<< 1;//乘2 int e = -dx; int x = x0; int y = y0; for (x = x0; x < x1; x++) { drawpixel (x, y, color); e=e + dy2; if (e > 0) { y++; e = e - dx2; } } }

计算机图形学 圆周算法的实现

《计算机图形学实验报告》样例 实验名称:圆周画法的实现 1.实验内容 1.画出圆心坐标为(75,90)和半径为50的红色圆周 2.画出圆心坐标为(‐40,‐80)和半径为60的蓝色圆周 2.程序的基本思路和功能 先用MFC构建界面外观,然后在相应位置分别用Bresenham和DDA编辑画圆的程序然后编译运行。 3.关键代码及说明 void Circle::circleMinPoint(CDC* pDC) { xCenter = (float)(400 + x); yCenter = (float)(300 - y); //绘制圆心 drawCenter(pDC); //r = 50; //设置颜色 color = RGB(red,green,blue); float m_x = 0; float m_y = r; float d = 1.25 - r; circlePoint(m_x,m_y,pDC);

while(m_x <= m_y){ if(d<=0){ d = d + 2 * m_x + 3; }else{ d = d + 2 * ( m_x - m_y ) + 5; m_y = m_y - 1; } m_x = m_x + 1; circlePoint(m_x,m_y,pDC); } } void Circle::circleBresenham(CDC* pDC) { //确认圆心坐标 xCenter = (float)(400 + x); yCenter = (float)(300 - y); //绘制圆心 drawCenter(pDC); //r = 50; //设置颜色 color = RGB(red,green,blue); float m_x = 0; float m_y = r;

直线生成算法的实现

实验二:直线生成算法 班级 13软件+道铁1班学号 20132110050115姓名丁益 1.实验目的 a)通过实验,进一步理解直线段扫描转换的DDA算法、中点画线自算法 及bresenham算法的基本原理,掌握以上算法生成直线段的基本过程。 b)通过编程,掌握在C/C++环境下完成用DDA算法、中点画线算法及 bresenham算法对任意直线段的扫描转换,以及在C/C++环境下完成用中 点画圆及椭圆的绘制方法。 2.实验内容 c)阅读《openGL三维程序设计》(电子书)第二部分第四章,掌握OpenGL 基本建模方法,并调试其中程序。 d)参考教材第6章,编程实现整数DDA算法、中点画线法和Bresenham 画线法,绘制直线(直线宽度和线型可自定)。 2.1 DDA直线生成 2.1.1算法原理 已知过端点P0(x0,y0),P1(x1,y1)的直线段L(P0,P1),斜率为k=(y1-y0)/(x1-x0),画线过程从x的左端点x0开始,向x右端点步进,步长为1个像素,计算相应的y坐标为y=kx+B。计算y i+1 = kx i+B =kx i +B+kx =y i +kx 当x=1,y i+1=y i+k,即当x每递增1,y递增k。由计算过程可知,y与k可能为浮点数,需要取y整数,源程序中round(y)=(int)(y+0.5)表示y四舍五入所得的整数值。 2.1.2 算法流程

2.1.3 算法实现关键代码 #include #include void Init() { glClearColor(1.0,1.0,1.0,0.0); glMatrixMode(GL_PROJECTION); gluOrtho2D(0.0,200.0,0.0,150.0); } void lineDDA(int x0,int y0,int xEnd,int yEnd) { int dx=xEnd-x0,dy=yEnd-y0,steps,k; float xIncrement, yIncrement, x=x0, y=y0; if(fabs(dx)>fabs(dy)) steps=fabs(dx); else steps=fabs(dy); xIncrement=float(dx)/float(steps); yIncrement=float(dy)/float(steps); for(k=0;k

相关文档
相关文档 最新文档