文档库 最新最全的文档下载
当前位置:文档库 › 膏霜乳化剂,乳液乳化剂,面霜乳化剂,乳化增稠剂

膏霜乳化剂,乳液乳化剂,面霜乳化剂,乳化增稠剂

膏霜乳化剂,乳液乳化剂,面霜乳化剂,乳化增稠剂
膏霜乳化剂,乳液乳化剂,面霜乳化剂,乳化增稠剂

高分子万能膏霜乳化剂

——SM-617

一、中文名称:聚丙烯酰胺/C12~24异构烷烃/脂肪醇聚醚-25

二、质量指标

外观乳白至微黄色膏体

气味微弱原料气味

固含量≥60%

PH值(1%水溶液) 6.0~8.0

保质期12个月

三、产品特性

SM-617万能乳化剂属于高分子阴离子聚合物乳化剂,,可轻易乳化各种油脂,不受HLB值限制,乳化能力极佳,复配性良好。制作的产品具有极高的光亮度,优良的弹性,高度的稳定性。

四、超强的乳化能力

1.采用1.5%万能乳化剂SM-617可任意乳化10%以内的任何油脂并长期稳定。

2.采用

3.0%万能乳化剂SM-617可任意乳化25%以内的任何油脂并长期稳定。

3.采用3.5%万能乳化剂SM-617可任意乳化30%以内的任何油脂并长期稳定。

五、配伍禁忌

1.乳化剂类:不能与阳离子或两性乳化剂配伍;

2.防腐剂类:不能与卡松配伍(卡松含有电解质镁、铜离子)

3.电解质类:不能与含电解质(包括EDTA-2Na)的任何体系配伍

六、基本用量

膏霜产品:3~4%护手霜:2~3%眼霜:2~3%

七、使用范围

适用于各类水包油膏霜、乳液产品。

八、品牌

诗茗

九、包装规格

50KG/塑料桶

高分子万能乳液乳化剂

——SM-618

一、化学名称和结构式

商品名称:SM-618

中文名称:聚丙烯酰胺/C12~24异构烷烃/脂肪醇聚醚-30

英文名称:Ammonium polyacrylate/C12~24 Isoparaffin/Steareth-30

二、质量指标

名称参数

外观乳白至微黄色膏体

气味微弱原料气味

固含量≥60%

PH值(1%水溶液) 6.0~8.0

保质期12个月

三、作用机理

1、增稠机理:聚合物在溶剂水中,先与水分子结合形成水合分子,

再与羟基给予体结合,使其卷曲的分子在水系统中伸展开形成

网状结构,而达到增稠效果。

2、稳定机理:聚合物在水系统中形成稳定的氢键,再加上部分的

交联效果,可在水溶液中形成稳定的立体空间网格,可使整个

体系形成假塑性的凝胶体,高效阻止乳滴的迁移,避免乳液团

聚、分层、破乳、变粗等现象的发生。

3、乳化机理:与市售的各类聚合物不同,该聚合物除增稠及稳定

作用外,在结构上引入一定比例嵌段型的长侧链疏水基团,这

些基团能有效作用于油滴内部,发生乳化作用。大量的亲水性

基团和少量的亲油性基团的相互配合,达到整个体系的乳化效

果。

四、使用范围

适用于各类水包油膏霜、乳液产品,该产品不适用于无机粉体的粉底霜、粉底蜜。

五、基本用量

1、乳液产品用量约1.0-2.5%,在使用SM-618时,应和低HLB

值的非离子乳化剂复配,如硬脂酸单甘脂等;

2、当高分子乳化剂SM-618的用量在1.0-2.0%时,硬脂酸单甘脂用量为0.5%左右;

3、当高分子乳化剂SM-618的用量在2.0-3.0%时,硬脂酸单甘脂用量为1.0%左右

六、包装规格

50KG/塑料桶

高分子乳化增稠剂

——SM-619

一、化学名称

中文名字:高分子乳化增稠剂SM-619

二、质量指标

名称参数

外观淡黄色至黄色膏体

固含量≥50%

PH值(1%水溶液)6-8

保质期12个月

三、产品特性

高分子乳化增稠剂SM-619是新型两性高分子聚合物增稠剂,具有高效的助乳化能力,明显改善膏体的肤感,赋予皮肤柔滑的感觉。配制的珠光型产品,外观亮丽、肤感轻盈。轻易增稠任何水包油体系,上手性好,不易打滑,提供优异的长期稳定性。生产时须与水包油非离子乳化剂复配使用。

四、用途

适用低成本的膏霜、润肤乳液、护手霜等产品

五、建议添加量

0.5—2.5%

六、包装规格

50KG/桶

第8章--增稠剂与乳化剂

第八章增稠剂与乳化剂 增稠剂和乳化剂都是改善或稳定食品物理性质或组织状态的添加剂。 传统使用的增稠剂有淀粉、琼脂、明胶等,乳化剂有蛋黄和磷脂等。近年来出现了很多利用农副产品制取的新型增稠剂和乳化剂。我国资源丰富,利用某些天然存在的多糖物质以及蛋白质等粘稠物质,可以制取性能良好的增调剂。上海、辽宁、广东、河北、湖南、天津等地,先后试制成功了羧甲基纤维素、海藻酸钠、果胶、酪朊酸钠等增稠剂,以及单硬脂酸甘油酯、脂肪酸蔗糖酯、木糖醇硬脂酸酯等乳化剂。为我国食品添加剂填补了某些空白。 乳化剂 乳化剂是一种分子中具有亲水基和亲油基的物质。它可介于油和水的中间,使一方很好地分散于另一方的中间而形成稳定的乳浊液。 根据油在水中分散或水在油中分散的不同性质,乳化剂大体上可分为造成水包油(油/水) 型乳浊液的亲水性强的水溶性乳化剂,和造成

油包水(水/油)型乳浊液的亲油性强的油溶性乳化剂两大类。 乳化剂在食品加工中的作用 ⑴分散体系- 不析出油脂和水珠使体系均匀、消除液面脂圈 ⑵发泡和充气-饱和脂肪酸亲水性的乳化剂形成气溶胶,稳定气泡。 ⑶破乳和消泡-疏水型乳化剂可降低液面表面张力 ⑷抑制结晶-乳化剂影响结晶形成过程,使晶粒细小,避免返砂现象 ⑸抗淀粉老化-与淀粉缔合,抑制糊化淀粉集聚和返生现象,延长食品存放期 ⑹提高韧性与强度- 连接蛋白质中亲水基及亲油基,增加网络或空间结构,使面筋的抗拉力增强

⑺抗菌保鲜- 亲水基朝里,疏水基朝外形成保护膜,在果蔬表面形成一层连续保护膜抑制呼吸与微生物渗透 甘油酯 monosterin 、双、叁 ; 聚甘酯polyglycerol monostearate 单甘酯:X1= X2 = OH 双甘酯:X1=OH ;X2= R 叁甘酯:X1= X2 = R R=硬脂酸、软脂酸、油酸、亚油酸(2) 12碳酸、磷酸及衍生物等 单硬脂酸甘油 C 17H 35C H 2C H C H 2O X 1X 2O C H 2C H C H O O O C 17H 35O n

乳化剂介绍

饲料营养—饲用乳化剂在畜禽饲料中的使用 乳化剂能够将饲料中的油脂乳化,从而提高其消化吸收率。本文就市场上出现的乳化剂种类和其优缺点进行了比较,认为卵磷脂类和糖苷酯类乳化剂优于其它类型的乳化剂。 随着畜牧业的发展,在追求养殖高效应的过程中,为了加快畜禽的生长速度,降低料肉比,饲料中使用油脂的情况越来越普遍。畜禽饲料中添加油脂一般以豆油、玉米油、棉籽油和米糠油为主,也有使用动物油和餐桌剩余油脂的情况。通过合理的使用油脂,畜禽的生产性能大大提高,生长速度加快,料肉比降低。但是在使用油脂的过程中也有一些必需克服的缺点:在幼龄畜禽中使用油脂的效果不明显,许多研究表明仔猪日粮中添加油脂对于仔猪的生长性能影响不显著(Cera等,1988; Li等,1990)。其主要原因就是因为幼龄动物消化道发育不完全,胆汁酸盐和脂肪酶分泌不足以消化吸收饲料中的油脂,造成饲料中油脂的浪费,被幼龄畜禽排出体外。另一方面,仔猪断奶阶段对能量的要求要显著高于生长猪,所以仔猪日粮中的油脂如果能够被充分吸收,仔猪断奶期间的增重将大大提高。现阶段生产实践中,为了提高畜禽的生长速度和生产性能,常常大量添加油脂。肉鸡料后期的日粮中油脂的添加比例常常超过3%,哺乳母猪日粮中的油脂也能够达到3%以上,在这样的添加比例情况下,饲料中添加的油脂常常不能达到我们的期望值,这主要是因为日粮中高比例的油脂所需要的胆汁酸盐量大大超过了畜禽体内能够分泌的量,所以油脂的乳化不彻底,没有乳化的油脂常常导致畜禽的腹泻,从而造成畜禽生产的损失。 1、饲料中乳化剂的使用 解决油脂使用上的这些问题,增加油脂的消化吸收率,扩大油脂的使用范围和使用比例是提高畜禽生产的重要手段。提高油脂的消化率,添加乳化剂是一个重要的手段。乳化剂是一种能够溶解于水,又能够溶解于油的两性物质。乳化是把一种液体置于与它互不相混合的液体中,在外力作用下将此液体呈微粒分散的过程,新生成的均匀混合物称为乳浊液.使这两种液体分散,并使乳浊液保持稳定的物质称为乳化剂.乳化剂实质上是一种表面活性剂,在饲料中添加乳化剂后,饲料中的油脂能够溶解在水中,大大加强了油脂的消化吸收性能。 饲料中添加乳化剂对畜禽生长性能的影响,许多研究表明当在仔猪含牛油日粮中添加卵磷脂和脑磷脂(添加量为牛油量的10%)时,日粮中脂肪的消化率由80.9%分别提高到88.4%和83.9%。肉鸡饲料中添加卵磷脂作为乳化剂能够减低肉鸡腹脂厚度,提高胴体重。 2、乳化剂的种类 现有阶段使用的乳化剂有数十种,但是用于食品和饲料工业上的主要有:磷脂类、脂肪酸酯和糖苷酯类,饲料上也使用胆汁酸盐类乳化剂。通常商品化的乳化剂产品并不是由单一的乳化剂组成,为了更好的乳化性能,几种乳化剂按照合适的比率组成商品乳化剂。复合乳化剂是由两种以上表面活性剂组成的乳化剂。不同乳化剂之间互相配合,加强了乳化剂对油脂的溶水能力。 3、不同乳化剂的优缺点 磷酯产品主要用于医药、食品、化妆品工业及饲料中,有精制卵磷酯、改性磷酯、氢化磷酯、复配磷酯、脱色磷酯及粗制磷酯等,品种多达几十种。进一步

第十章 注射剂

第十章注射剂 一、名词解释 1. 热原 2. 等渗溶液 3. 等张溶液 4. 中药注射剂 5. 注射用水 6. 粉针剂 7.混悬液型注射剂 8. 乳状液注射剂 9. 眼用溶液剂 10. 输液剂 11.水醇法 12. 超滤法 13.氯化钠等渗当量 14. 反渗透 二、填空 1.注射剂由、、及组成。 2.按分散体系注射剂可分为、、、。 3.注射剂的质量要求包括、、、、、、。4.热原的基本性质包括、、、。 5.除去药液或溶剂中热原的方法有、、、、。 6.热原的检查方法有、。 7.注射剂的pH值一般应控制在范围内 8.静脉注射用混悬液中99%以上的微粒粒度应在以下。 9.乳浊液型注射剂的分散相粒径大小一般为范围内。 10.皮内注射剂注射于表皮和真皮之间,依次注射剂量在以下。 11.离子交换法净化处理原水是通过完成。 12.渗透压的调整方法有冰点降低数据法和。 13.超滤法是用于分离的膜滤过方法。 14.注射液的初滤常以滤纸或绸布为滤材,精滤通常用垂熔玻璃滤器G4和。 15.为保证注射剂的封口质量,玻璃安瓿的封口方法一般采用。 16.一般1-5ml的安瓿注射剂,可用通蒸汽100℃灭菌分钟。 17.由静脉滴注入体内的大剂量注射液称为。 18.输液剂灌封后,一般灭菌过程应在小时内完成。 19.血浆代用液又称血浆扩张剂,一般是指与血浆等渗而无毒的。 20.粉针剂的制备方法有无菌粉末直接分装法和。 三单选题 1.注射用抗生素粉末分装操作区域洁净度要求为()。 A.100级 B.10000级

C.100000级 D.300000级 E.B、C均可 2.注射剂的pH一般可允许在()。 A.pH=5 B.pH=5~6 C.pH=6 D.pH=4~9 E.pH=8~10 3.静脉注射某一药物,X0=75mg,若其初始血药浓度为15μg/ml,其表观分布容积V为()。A.4L B.5L C.15L D.5mg E.75L 4.作为一级吸收过程输入的给药途径,下列哪项是正确的()。 A.静脉注射 B.肌内注射 C.多次静脉滴注 D.以上几项都不是 E.以上几项都是 5.输液剂应该用以下哪种方法灭菌()。 A.煮沸灭菌 B.流通蒸汽灭菌 C.低温间歇灭菌 D.微波灭菌 E.热压灭菌 6.下列有关热原的描述中不正确的是()。 A.热原可溶于水且耐热 B.热原具有滤过性 C.热原可以被活性炭吸附 D.热原具有挥发性 E.超声波可以破坏热原 7.以下可作为静脉注射用乳剂的乳化剂的是()。 A.吐温-80 B.司盘-80 C.月桂醇硫酸钠 D.卖泽 E.普流罗尼克F-68 8混悬型注射剂,若供静脉注射,必须严格控制微粒的粒度,其粒度要求为()。 A.95%以上的微粒粒度在2μm以下 B.99%以上的微粒粒度在2μm以下 C.95%以上的微粒粒度在5μm以下 D.99%以上的微粒粒度在5μm以下 E.99%以上的微粒粒度在10μm以下 9.我国药典规定制备注射用水的方法为()。 A、重蒸馏法 B、离子交换树脂法 C、电渗析法 D、反渗透法 E、凝胶滤过法 10.脂肪乳剂输液中含有甘油2.5%(g/ml),它的作用是()。 A.保湿剂 B.粘剂 C.溶媒 D.等渗调节剂 E.药物 11.下列注射剂不能添加抑菌剂的是()。 A.肌内注射剂 B.皮下注射剂 C.皮内注射剂 D.静脉注射剂 E.混悬型注射剂 12.用于注射用灭菌粉末的溶剂或注射液的稀释剂()。 A.纯化水 B.注射用水 C.灭菌蒸馏水 D.灭菌注射用水 E.制药用水 13.注射用水和纯化水的检查项目的主要区别是()。 A.酸碱度 B.热原 C.氯化物 D.氨 E.硫酸盐 14.注射用青霉素粉针,临用前应加入()。 A.注射用水 B.灭菌蒸馏水 C.去离子水 D.灭菌注射用水 E.蒸馏水 15.说明注射用油中不饱和键的多少的是()。 A.酸值 B.碘值 C.皂化值 D.水值 E.碱值 16.具有特别强的热原活性的是()。 A、核糖核酸 B、胆固醇 C、脂多糖 D、蛋白质 E、磷脂 17.下列等式成立的是()。 A.内毒素=热原=磷脂 B.蛋白质=热原=脂多糖 C.内毒素=磷脂=脂多糖 D.内毒素=热原=蛋白质 E.内毒素=热原=脂多糖 18.对热原性质的正确描述为()。 A.相对耐热、不挥发 B.耐热、不溶于水 C.挥发性,但可被吸附

乳化剂标号汇总

乳化剂的标号 1、农乳300# (农药乳化剂300号) 化学名称及组成二苄基联苯基聚氧乙烯醚非离子乳化剂。与其他乳化剂复配成混合塑乳化剂。用于各种有机氯,有机磷杀虫剂及除草剂 2、农乳500#(农药乳化剂500号) 十二烷基苯磺酸钙阴离子乳化剂和分散剂,与其他乳化剂复配成混合型乳化剂,用于有机氯、有机磷农药及除草剂 3、农乳600#1(农药乳化剂600号) 苯乙烯基苯基聚氧乙烯醚与农乳500#、700#复配制成混合型乳化剂,可大大降低乳化剂用量和农药成本 4、农乳700#(农药乳化剂700号) 烷基酚甲醛树脂聚氧乙烯醚非离子乳化剂和润湿剂,适用于有机氯、有机磷农药作为乳化性能调整剂,是除草剂用乳化剂的特效单体 5、农乳1600#(农药乳化荆1600号 苯乙基苯基聚氧乙烯一聚氧丙烯醚有机氯、有机磷农药乳化剂单体 6、宁乳700# 苯乙樟(或α-甲基苯乙烯)苯酚甲醛树脂聚氧乙烯醚非离子农药乳化剂,适用于各种杀虫剂,杀菌荆和除草剂制造 7、宁乳33# 苯乙烯基苯酚甲醛树脂聚氧乙烯-聚氧丙烯嵌段型聚醚非离子乳化剂,适用于杀虫剂,杀菌剂和除草剂等农药配制 8、宁乳34# 苯乙烯苯酚甲醛树脂聚氧乙烯聚氧丙烯醚非离子乳化剂,用于各种农药生产9、宁乳37# 苯乙烯基苯酚甲醛树脂聚氧乙烯醚非离子乳化剂,用于生产杀虫剂,杀菌剂和除草剂 10、农药乳化剂0201 阴离子与非离子表面活性剂的复配物用于配制对硫磷乳剂,用量为10%,也适用于配制辛硫磷乳剂;与农乳0203-B复配用于配制杀螟威乳剂

11、农药乳化剂0201B 阴离子与非离子表面活性剂的复配物用于配制对硫磷乳剂,用量为8%;也适用于配制50%辛硫磷乳剂;与农乳0203—B复配用于配制杀螟威乳剂;也可配调50%乙基1605,50%倍硫磷 12、农药乳化剂0202 非离子和阴离子表面活性剂与溶剂的复配物 13、农药乳化剂0202C 特殊非离子和阴离子表面活性剂的复配物配制粮食防护荆防虫磷(高浓度马拉硫磷乳油)的专用乳化剂 14、农药乳化剂0203A 阴离子与非离子表面活性剂的复配物以6%用量调配敌敌畏乳剂.呈有色透明溶液;用于配制抗菌素402乳剂.用量为5%~10% 15、农药乳化剂0203B 阴离子、非离子表面活性剂与溶剂的复配物以3%~6%的用量可调配80%DDVP,40%~50%甲胺磷、40%氧化乐果等农药乳油 16、乳农药化剂0204 十二烷基苯磺酸钙和烷基酚聚氧乙烯醚的复配物以3%用量调配乙酰甲胺磷农药;以6%用量调配乐果 17、农药乳化剂0204C 非离子和阴离子表面活性剂的复配物以3%~6%的甩量配制40%乐果,50%久效磷l以10%的用量调配20%叶蝉散等农药乳油 18、农药乳化剂0205 非离子、阴离子表面活性剂及溶剂的复配物以10%的用量可调配50%治螟磷(治螟灵) 19、农药乳化剂0206 阴离子和非离子表面活性剂的复配物以10%的用量可配制50%甲基硫磷乳剂 20、农药乳化剂0206B 非离子和阴离子表面活性剂与溶剂的复配物以10%的用量可调配50%甲基

。。。乳液聚合的复习题(含详尽答案)

1 什么是乳液聚合?乳液聚合的特点? 乳液聚合是在水或者其它液体做介质的乳液中, 按胶束机理或低聚物机理生成彼此孤立的乳胶粒,并在其中进行自由基聚合或者离子加成聚合来生产高聚物的一种聚合方法.优点:1 反应热易排出2 具有高的反应速率和高的分子量3 水作介质,安全、价廉、环保缺点:1 需经一系列后处理工序,才能得到聚合物2 具有多变性3 设备利用率低 2乳液聚合技术发展简史 1929 年Dinsmore专利“合成橡胶及其制备方法”:烯类单体可用油酸钾和蛋清混合物作乳化剂,在50~70℃下反应6个月,得到坚韧、有弹性,可硫化的合成橡胶——第一篇真正的乳液聚合的文献。40年代,乳液聚合研究中代表性有Harkins、Smith及Ewart的工作。Harkins定性阐明了在水中溶解度很低的单体的乳液聚合反应机理及物理概念。后二者在其理论基础上发展了定量的理论:确定乳胶粒数目与乳化剂浓度及引发剂浓度之间的定量关系,并提出三个阶段乳胶粒生成阶段,即成核阶段;乳胶粒长大阶段;乳液聚合完成阶段。 第二章乳液聚合原理 3什么是增溶现象?乳化作用及搀合作用分别是什么? 许多油类和烃类在水中溶解度很小但是向水中加入少量乳化剂后其溶解度显著增大这种现象称为增容现象。乳化作用:使两种互不相溶的的液体借助于表面活性剂(又称界面活性剂)的作用,降低它们之间的张力,使一种液体以极微小的状态均匀分散在另一种液体中,这种作用叫乳化作用。掺合作用即分散作用,固体以极细小的颗粒形式均匀悬浮在液体介质中叫做分散,在合成聚合物乳液中乳胶粒之所以能稳定的悬浮在水中而不凝聚,就是因为乳化剂的分散作用所致。 4 什么是临界胶束浓度(CMC)? 乳化剂能形成胶束的最低浓度或表面活性剂分子形成胶束时的最低浓度叫临界胶束浓度,CMC越小,越易形成胶束,乳化能力越强。 5 解释乳液聚合体系的物理模型? 分散阶段(加引发剂前) 乳化剂(三种形式):单分子(水相)、胶束、被吸附在单体珠滴表面。单体(三个去向):单体珠滴、单分子(水相)、被增溶在胶束中 阶段Ⅰ(乳胶粒生成阶段)诱导期结束到胶束耗尽 乳化剂(四个去处/形式):单分子(水相)、胶束、被吸附在单体珠滴表面、吸附在乳胶粒表面上;单体(三个去向):单体珠滴、单分子(水相)、被增溶在胶束和乳胶粒 阶段Ⅱ(乳胶粒长大阶段)胶束耗尽到单体珠滴消失;乳化剂(三种位置):单分子(水相)、被吸附在单体珠滴表面、吸附在乳胶粒表面上;动态平衡;单体(三个去向):单体珠滴、单分子(水相)、被增溶在乳胶粒中 阶段Ⅲ(聚合完成阶段)胶束和单体珠滴消失,仅存在两相:乳胶粒相和水相 6 乳液聚合三个阶段的特征? 阶段Ⅰ(乳胶粒生成阶段)诱导期结束到胶束耗尽阶段Ⅱ(乳胶粒长大阶段)胶束耗尽到单体珠滴消失阶段Ⅲ(聚合完成阶段)两相:乳胶粒相和水相 7什么是凝胶效应?玻璃化效应?产生原因? 凝胶效应:随着反应转化率提高反应区乳胶粒中单体浓度越来越低但是反应速率不仅不下降反而随转化率增加而大大增加这种现象叫凝胶效应。原因:随转化率增大,体系粘度增加,链自由基卷曲,活性端基受包埋,双基扩散终止困难,导致链终止速率常数降低而形成的。 玻璃化效应:某些单体的乳液聚合过程在阶段3后期当转化率曾至某一值时转化速率突然降低至0 这种现象叫做玻璃化效应。原因:阶段Ⅲ乳胶粒中聚合物浓度随转化率增大而增大,单体-聚合物体系的玻璃化温度T g也随之提高。当转化率增大到某一定值时,就使得T g刚好等于反应温度。此时在乳胶粒中,不仅活性分子链被固结,而且单体也被固结。是链增长速率常数K p急剧降低至零,故链增长速率也急剧降低至零。 8 Smith-Ewart关于阶段Ⅰ动力学理论的假定? ⑴阶段Ⅰ开始时,向体系中投入的乳化剂全部形成胶束,忽略在单体珠滴表面上吸附的以及在水中溶解的乳化剂;⑵进入阶段Ⅰ以后,乳化剂完全在胶束和乳胶粒之间进行分配⑶不管在胶束中还是在乳胶粒上,单位质量同种乳化剂的覆盖面积相等;⑷在阶段Ⅰ,乳胶粒中聚合物与单体的比例不变;⑸在阶段Ⅰ,每一个乳胶粒中聚合反应速率相等。 9 Smith-Ewart关于阶段Ⅰ动力学理论的两种极端情况?(推导过程见课本30—33) 假定所有的自由基全被胶束捕获而不进入乳胶粒,即所生成的自由基全部用于形成新的乳胶粒。这样,自由基生成速率将刚好等于新乳胶粒生成速率。乳胶粒数的上限方程。(2)不管粒子大小如何,单位表面积上单位时间内捕获自由基的能力都是一样的。乳胶粒数的下限方程 10 Smith-Ewart关于阶段Ⅰ反应速率的理论? 在阶段Ⅰ的起点处,S p=0,S m=S,即全部乳化剂形成胶束。进入阶段Ⅰ以后,乳胶粒不断生成,且不断长大,所以S p 不断增大,这需要通过消耗胶束乳化剂来实现,致使S m不断降低。当胶束耗尽时,S m=0,而S p=S,此时全部乳化剂被吸附在乳胶粒表面上。这是,新乳胶粒生成过程停止,阶段Ⅰ结束。 11 Gardon对阶段Ⅰ动力学理论研究的假定?

乳化剂在各种乳饮料的稳定性中作用及使用情况分析

乳化剂在各种乳饮料的稳定性中作用及使用情况分析 摘要:阐述了乳饮料中影响稳定性最重要的两个因素,以及这两个因素造成乳饮料体系不稳定的机理。乳化剂是乳饮料中常用的稳定剂,用于乳饮料体系的稳定。介绍了乳化剂的基本概念和性质,比如HLB值、W一0或0一W乳状液、乳化剂与碳水化合物的相互作用、乳化剂与蛋白质的相互作用、乳化剂与脂类化合物的相互作用等,通过介绍乳化剂的选择和使用原则引出了乳化剂在乳饮料中的作用机理,并列举了几种复合乳饮料或发酵乳饮料中乳化剂的应用情况,进一步说明了乳化剂在乳饮料中的作用。 关键字:乳化剂、作用机理、HLB值、乳饮料、稳定性 正文: 1.前言 添加剂是食品生产中的重要原料。食品添加剂是指为改善食品品质和色、香、味以及根据防腐和加工工艺的需要而加入食品中的化学合成品或天然物质。我国按食品添加剂的主要功能分类。如:防腐剂、乳化剂、发色剂、漂白剂、酸味剂、膨松剂、营养强化剂、甜味剂等23类。 食品添加剂在食品加工过程中必须按《食品添加剂使用卫生标准》中规定的使用量及范围添加才能对人体无害。但是近些年发生的食品安全问题令大多数人都对食品添加剂产生了或多或少的心理阴影,像在果脯、蜜饯、酱菜中超限量使用甜味素,有的甚至在蜜饯类食品中糖精钠最高含量超出允许限量12倍之多;超量使用护色剂亚硝酸盐加工肉制品;在馒头制作过程中滥用硫磺熏蒸馒头,致使馒头中维生素B2受到破坏;在干豆腐、香肠、冰棒中加人柠檬黄、胭脂红等合成色素;甚至在婴儿食品或奶制品中添加糖精、香精等食品添加剂。这些行为都是随意使用并添加食品添加剂的现象。较为严重的有:比如山西假酒事件,三聚氰胺事件,苏丹红事件以及今年所爆发的双汇瘦肉精事件和上海染色毒馒头事件。其中,与乳及乳制品相关的违禁添加物有4种:三聚氰胺(蛋白精)、硫氰酸钠、皮革水解物及13一内酰胺酶(金玉兰酶制剂,即解抗剂)。皮革水解物,添加到牛奶里可以增加蛋白质含量;三聚氰胺用来冒充蛋白质;解抗剂可以用来掩

3.乳剂的制备

实验目的: 1. 掌握采用不同乳化剂制备乳剂的一般制备方法。 2. 掌握常见乳剂类型的鉴别方法。 实验原理: 乳浊液型液体药剂也称乳剂,系指两种互不相溶的液体混合,其中一种液体以液滴状态分散于另一种液体中形成的非均相分散体系。形成液滴的一相称为内相、不连续相或分散相;而包在液滴外面的一相则称为外相、连续相或分散介质。分散相的直径一般在0.1~10μm之间。乳剂属热力学不稳定体系,须加入乳化剂使其稳定。乳剂可供内服、外用,经灭菌或无菌操作法制备的乳剂,也可供注射用。 乳剂因内、外相不同,分为O/W型和W/O型等类型,可用稀释法(水)和染色镜检(水/油性染料)等方法进行鉴别。 乳剂是一种动力学及热力学不稳定的分散体系,为提高稳定性,其处方中除分散相和连续相外,还加入乳化剂,并且需在一定的机械力作用下进行分散。乳化剂的稳定机理是通过在分散液滴表面形成单分子膜、多分子膜、固体粉末膜等界面膜,降低了界面张力,防止液滴相遇时发生合并。常用的乳化剂有表面活性剂、阿拉伯胶、西黄蓍胶等。乳化剂类型有表面活性剂(阴离子型乳化剂、非离子型乳化剂、两性离子型乳化剂)、天然乳化剂(如阿拉伯胶、西黄耆胶、明胶 等)、固体粉末乳化剂(如Mg(OH) 2、Al(OH) 3 、Ca(OH) 2 等)和辅助乳化剂 (如十八醇、单硬脂酸甘油酯、硬脂酸等)。乳化剂的选择根据乳剂的类型、乳化剂性能及给药途径。通常将乳化剂组成混合乳化剂来使用,以防止单独使用乳化剂所产生的不稳定性。 乳剂的制备方法有油中乳化剂法(干胶法)、水中乳化剂法(湿胶法)及新生皂法(nascent soap method)等。小量制备时可用乳钵研磨制得或在瓶中振摇制得,大量生产可用搅拌机、乳匀机、胶体磨完成。

乳液聚合

一、判断 1、乳液聚合是单体和水在乳化剂的作用下配制成的乳状液中进行的聚合。(√) 2、乳液聚合体系主要由单体、水、乳化剂及油溶性引发剂四种成分组成。(×) 3、乳液聚合使用乳化剂使分散相和分散介质的表面张力降低。(√) 4、乳液聚合产品,丁苯橡胶、氯丁橡胶等用量较大的聚合物品种采用间歇操作。(×) 5、糊状聚氯乙烯的生产为典型的乳液聚合。(√) 6、利用种子乳液聚合法制造聚氯乙烯糊状树脂常常利用二种规格的乳液作为种子,即第四代种子和第五代种子。所制成的聚合物乳液直径呈双峰分布,这样即可以降低增塑剂的吸收量,又可改善树脂的加工性能。(×) 7、自由基乳液聚合中的乳化剂的不同类型影响反应速率和胶乳粒子的大小及形态,也对胶乳液的稳定性影响。(√) 二、填空 1、丁腈橡胶乳液聚合,乳化剂的不同类型影响反应速率和胶乳粒子的大小及形态,也对胶乳液的稳定性影响。 2、乳液聚合是单体和水在乳化剂的作用下配制成的乳状液中进行的聚合,体系主要由单体、水、乳化剂及水溶性引发剂四种成分组成。 3、如果在水相中加入超过一定数量(临界胶束浓度)的乳化剂,经搅拌后形成乳化液体,停止搅拌后不再分层,此种现象称为乳化现象现象,此种稳定的非均相液体即是乳状液。 4、乳液聚合中,当乳状液中加入一定量的电解质后,液相中离子浓度增加,在吸附层中异性离子增多,电中和的结果是使动电位下降,双电层被压缩。 5、乳液聚合的物料组成包括:单体、引发剂、乳化剂、分散介质(水)、其他(包括各种调节剂、电解质、螯合剂和终止剂等)。 6、乳化剂按照亲水基团的性质分为:阴离子型乳化剂、阳离子型乳化剂、非离子型乳化剂、两性离子型乳化剂。 三、选择题 1、聚合的丁腈,分子量大,结构规整性高,含反-1,4结构多,加工性能 好。聚合丁腈胶支化度大,易产生结构化反应,交联结构增加,凝胶量多,生胶性能差。(A) A.低温,高温 B.低温,低温 C.高温,低温; D.高温,高温 2、HLB值是衡量乳化剂分子中亲水部分和亲油部分对其性质所作贡献大小物理量。HLB 值,其亲水性。对大多数乳化剂来说,其HLB值处于1-40之间。(A) A越大,越大 B.越大,越小 C.越大,不变 D.越小,不变 3、简单的乳状液通常分为两大类。习惯上将不溶于水的有机物称油,将不连续以液珠形式存在的相称为相,将连续存在的液相称为相:(D) A. 内,内 B. 外,外 C.外,内 D.内,外

分散剂的作用原理和作用过程

分散剂的作用原理和作用过程 轻化0802 12号黄卓英 能使固液悬浮体中的固体粒子稳定分散于介质中的表面活性剂称为分散剂。分散就是将固体颗粒均匀分布于分散液的过程,分散液具有一定的稳定性。 作用原理: 机理:1.吸附于固体颗粒的表面,使凝聚的固体颗粒表面易于湿润。 2.高分子型的分散剂,在固体颗粒的表面形成吸附层,使固体颗粒表面的电荷增加,提高形成立体阻碍的颗粒间的反作用力。 3.使固体粒子表面形成双分子层结构,外层分散剂极性端与水有较强亲合力,增加了固体粒子被水润湿的程度.固体颗粒之间因静电斥力而远离 4.使体系均匀,悬浮性能增加,不沉淀,使整个体系物化性质一样 以上所述,使用分散剂能安定地分散液体中的固体颗粒。 选择分散剂 在我们涂料生产过程中,颜料分散是一个很主要的生产环节,它直接关系到涂料的储存,施工,外观以及漆膜的性能等,所以合理地选择分散剂就是一个很重要的生产环节。但涂料浆体分散的好坏不光和分散剂有关系,和涂料配方的制定以及原料的选择都有关系。分散剂顾名思议,就是把各种粉体合理地分散在溶剂中,通过一定的电荷排斥原理或高分子位阻效应,使各种固体很稳定地悬浮在溶剂(或分散液)中。 双电层原理 水性涂料使用的分散剂必须水溶,它们被选择地吸附到粉体与水的界面上。目前常用的是阴离子型,它们在水中电离形成阴离子,并具有一定的表面活性,被粉体表面吸附。粉状粒子表面吸附分散剂后形成双电层,阴离子被粒子表面紧密吸附,被称为表面离子。在介质中带相反电荷的离子称为反离子。它们被表面离子通过静电吸附,反离子中的一部分与粒子及表面离子结合的比较紧密,它们称束缚反离子。它们在介质成为运动整体,带有负电荷,另一部分反离子则包围在周围,它们称为自由反离子,形成扩散层。这样在表面离子和反离子之间就形成双电层。 动电电位:微粒所带负电与扩散层所带正电形成双电层,称动电电位。热力电位:所有阴离子与阳离子之间形成的双电层,相应的电位. 起分散作用的是动电电位而不是热力电位,动电电位电荷不均衡,有电荷排斥现象,而热力电位属于电荷平衡现象。如果介质中增大反离子的浓度,而扩散层中的自由反离子会由于静电斥力被迫进入束缚反离子层,这样双电层被压缩,动电电位下降,当全部自由反离子变为束缚反离子后,动电电位为零,称之为等电点。没有电荷排斥,体系没有稳定性发生絮凝。 位阻效应 一个稳定分散体系的形成,除了利用静电排斥,即吸附于粒子表面的负电荷互相排斥,以阻止粒子与粒子之间的吸附/聚集而最后形成大颗粒而分层/沉降之外,还要利用空间位阻效应的理论,即在已吸附负电荷的粒子互相接近时,使它们互相滑动错开,这类起空间位阻

乳化剂在食品中的作用原理

○食品添加剂○ 乳化剂在食品中的作用原理 张佳程 周浩 摘要:本文简要介绍了乳化剂在食品中的三方面作用:降低界面张力;与淀粉和蛋白质相互作用;改进脂肪和油的结晶。阐述了乳剂与食品中各成分的相互作用的基本原理。 关键词:乳化剂作用原理 一、引言 早在1921年,在人造黄油工业中,就应用了单双甘油酯,不过直到15—20年后,食品乳化剂的生产才有较大的工业规模。随着食品生产的工业化发展,对食品乳化剂提出了新的要求。 食品乳化剂的世界总需求量约25万吨,其中单甘油酯约占总消费量的2 3,其次是蔗糖酯。我国单甘油酯产量约2200吨,也已开发了乳化能力强的高纯度(90%以上)的分子蒸馏单甘酯。蔗糖酯我国从80年代开始开发,近来发展很快。大豆磷酯是使用很普遍的乳化剂,兼有一定的营养价值。但目前由于纯度不够,利用价值不高,有较大应用潜力。 二、食品乳化剂的概念 乳化剂一词,仅仅指凭借界面作用,能够促进乳状液或泡沫的乳化作用或稳定作用。不过,表面活性剂一词也常用在这些产品上。在食品中,乳化剂一词有时易产生误解,因为有些产品中所谓乳化剂的实际功能,只能与淀粉蛋白质等成分相互作用,完全与乳化作用无关。但是根据传统习惯,我们仍称它们为乳化剂。 通常食品乳化剂必须具有两种性质:表面活性和可食性。因而,通常食品乳化剂定义为能改善乳化体中各种构成相互之间的表面张力,使之形成均匀的分散体或乳化体,从而改进食品组织结构、口感、外观,以提高食品保存性的一类可食性的具有亲水和亲油双重性的化学物质。乳化剂一般分为油包水型和水包油型两类,以亲水亲油平衡值(H ydroph ilty and L i poph ilyty Balance,简称HLB)表示其特性。规定100%亲油性的乳化剂HLB为0,100%亲水性的HLB为20,其间分20等分,以表示其亲水亲油性的强弱情况和不同的作用(如图1)。在食品乳化剂中,一般亲油性占上风,但根据化学成分的不同,HLB值有相当大的变化。按Griffin 提出的公式可以计算出HLB值。 HLB 值 各乳化剂的适用性 各主要单酯的适用范围图1、HLB值与乳化剂的关系 HLB=20(1-S A) S=酯的皂化值 A=脂肪酸的酸值 三、食品乳化剂的作用 食品乳化剂的作用主要分三方面: 11乳化剂降低油—水界面的张力,促进乳化作用,在油—水、乳化剂界面上形成相平衡稳定乳状液。 油水两相之所以不相容,是由于两相间存在界面张力(或称表面张力),即油和水的接触面上有相互排斥和各自尽量缩小彼此接触面积的两种作用力。只有当油浮于水面分为两层时,其接触面积最小,最稳定。 牛奶是奶油及水的乳化体系,一般奶油表现为细微的小滴分散于水中,但长期静置后由于界面张力关系,奶油小滴便聚集成小球,并长大成凝聚团块,浮于水面,若加入乳化剂,其亲油基与奶油结合,在奶油微滴表面形成一层物理膜,可以防止油滴相互聚集。此时

农药常用乳化剂

农药常用乳化剂 1、农乳300# (农药乳化剂300号) 化学名称及组成二苄基联苯基聚氧乙烯醚非离子乳化剂。与其他乳化剂复配成混合塑乳化剂。用于各种有机氯,有机磷杀虫剂及除草剂 2、农乳500#(农药乳化剂500号) 十二烷基苯磺酸钙阴离子乳化剂和分散剂,与其他乳化剂复配成混合型乳化剂,用于有机氯、有机磷农药及除草剂 3、农乳600#1(农药乳化剂600号) 苯乙烯基苯基聚氧乙烯醚与农乳500#、700#复配制成混合型乳化剂,可大大降低乳化剂用量和农药成本 4、农乳700#(农药乳化剂700号) 烷基酚甲醛树脂聚氧乙烯醚非离子乳化剂和润湿剂,适用于有机氯、有机磷农药作为乳化性能调整剂,是除草剂用乳化剂的特效单体 5、农乳1600#(农药乳化荆1600号 苯乙基苯基聚氧乙烯一聚氧丙烯醚有机氯、有机磷农药乳化剂单体 6、宁乳700# 苯乙樟(或α-甲基苯乙烯)苯酚甲醛树脂聚氧乙烯醚非离子农药乳化剂,适用于各种杀虫剂,杀菌荆和除草剂制造 7、宁乳33# 苯乙烯基苯酚甲醛树脂聚氧乙烯-聚氧丙烯嵌段型聚醚非离子乳化剂,适用于杀虫剂,杀菌剂和除草剂等农药配制 8、宁乳34#

苯乙烯苯酚甲醛树脂聚氧乙烯聚氧丙烯醚非离子乳化剂,用于各种农药生产 9、宁乳37# 苯乙烯基苯酚甲醛树脂聚氧乙烯醚非离子乳化剂,用于生产杀虫剂,杀菌剂和除草剂 10、农药乳化剂0201 阴离子与非离子表面活性剂的复配物用于配制对硫磷乳剂,用量为10%,也适用于配制辛硫磷乳剂;与农乳0203-B复配用于配制杀螟威乳剂 11、农药乳化剂0201B 阴离子与非离子表面活性剂的复配物用于配制对硫磷乳剂,用量为8%;也适用于配制50%辛硫磷乳剂;与农乳0203—B复配用于配制杀螟威乳剂;也可配调50%乙基1605,50%倍硫磷 12、农药乳化剂02 非离子和阴离子表面活性剂与溶剂的复配物 13、农药乳化剂02C 特殊非离子和阴离子表面活性剂的复配物配制粮食防护荆防虫磷(高浓度马拉硫磷乳油)的专用乳化剂 14、农药乳化剂0203A 阴离子与非离子表面活性剂的复配物以6%用量调配敌敌畏乳剂.呈有色透明溶液;用于配制抗菌素402乳剂.用量为5%~10% 15、农药乳化剂0203B 阴离子、非离子表面活性剂与溶剂的复配物以3%~6%的甩量可调配80%DDVP,40%~50%甲胺磷、40%氧化乐果等农药乳油

乳化剂对乳液聚合的重要性分析

乳化剂对乳液聚合的重要性分析 作者:管理员发表时间:2011-3-3 11:42:58 阅读:次 在乳液聚合体系中,乳化剂虽然不直接参加化学反应,但它是最重要的组分之一。乳化剂的种类和浓度将直接影响引发速率及链增长速率。它也会影响决定聚合物性能的聚合物的分子质量及分子质量分布,以及影响与乳液性质有关的乳胶粒浓度、乳胶粒的尺寸及尺寸分布等。乳化剂选择是否合理,不仅涉及到乳液体系是否稳定,生产过程能否正常进行,以及其后的贮存及应用是否安全可靠,而且也关系到聚合物的成本。 乳化剂的HLB值供选择乳化剂时参考,因为它既不能确定所需乳化剂的浓度,又不能确定所生产的乳液的稳定性,但从实践中知道对于甲基丙烯酸甲酯的乳液聚合,HLB值为l2.1~13.7的乳化剂可获得为稳定的胶乳,HLB值为ll.8~12.4适用于丙烯酸乙酯的乳液聚合,甲基丙烯酸甲醑与丙烯酸乙酯共聚时(各50%)选择HLB值,为11.95~13.05的乳化剂较为恰当。 阴离子表面活性剂对电解质的化学稳定性较差,生成的胶乳微粒的粒度较小,胶乳稳定性好,聚合过程中不太容易产生凝聚块。因此使用阴离子表面活性剂时易得到固含量高而稳定的胶乳。非离子表面活性剂对电解质的化学稳定性良好,但聚合反应速度较慢,所得微粒粒径较大,聚合过程中易产生凝聚块。由于以上特点,工业生产中乳液聚合主要使用阴离子乳化剂或阴离子乳化剂与非离子乳化剂的混合乳化剂。很少单独使用非离子乳化剂。混合乳化剂中增高非离子乳化剂的比例可提高胶乳对电解质的化学稳定性,并增大胶乳微粒的平均粒径。混合乳化剂形成的胶束,其分子数小于阴离子或非离子乳化剂两者单独形成的胶束。因而使产品胶乳微粒分布加宽。 在一般聚合过程中,乳化剂的用量应超过CMC量,而与分子质量、单体用量、要求生产的胶乳粒子的粒径大小等因素有关。一般为单体量的2%~l0%,增加乳化剂用量,反应速度加快,但回收未反应单体时,容易产生大量泡沫,而使操作发生困难。因此,通常用量在单体量的5%以下,甚至少于l%。 阴离子表面活性剂是乳液聚合工业中应用最为广泛的乳化剂,通常是在pH>7的条件下使用。重要的有: 脂肪酸盐R—COOM,例如肥皂(硬脂酸钠); 松香酸盐C19H29COOM,例如歧化松香酸钠; 烷基硫酸盐ROS03M,例如十二醇硫酸钠; 烷基磺酸盐R-S03M,例如十六烷基磺酸钠; 烷基芳基磺酸盐。

实验室常用乳化剂整理

1.吐温系列 2.脂肪醇聚氧乙烯醚系列(平平加系列) 3.乳化剂OP 系列 4.壬基酚聚氧乙烯醚NP 系列 5.非离子表面活性剂 6、壬基酚聚氧乙烯醚系列产品 7、脂肪醇聚氧乙烯醚系列 8、蓖麻油聚氧乙烯醚系列 9、脂肪酸聚氧乙烯酯系列 10、聚乙二醇系列 11.脂肪醇聚氧乙烯醚系列 12.脂肪酸聚氧乙烯酯系列 13.烷基胺聚氧乙烯醚系列 14.烷基酚聚氧乙烯醚系列 15.聚乙二醇系列 16.蓖麻油聚氧乙烯醚系列 17乳化剂TX 系列 18乳化剂SOPE 19乳化剂SG 20乳化剂LAE 系列 21渗透剂JFC 22JFC

1.吐温系列 商品名称:吐温 Tween 化学成份:失水山梨醇脂肪酸酯聚氧乙烯醚 性能及用途:本系列产品为黄色油状液体或蜡状固体,无毒无刺激,且具有一定的水溶性,并溶于多种有机溶剂。由于本系列产品具有优良的乳化、润湿、分散和渗透性能,因而,作为乳化剂、润湿剂、分散剂和渗透剂等,在化妆品、食品加工、制革工业、化纤油剂、农药、印染、金属加工、炸药等行业有着广泛的应用。 质量指标:见附表

包装规格:液体采用 200Kg 镀锌桶包装,固体料采用 50Kg 塑料桶或 25Kg 编织袋。贮运:本品无毒、难燃,按一般化学品运输。贮存于通风、干燥处。 吐温系列==聚氧乙烯失水山梨醇脂肪酸酯 指标/规格T-80 T-60 T-40 T-20 外观黄色至琥珀色油状液体或膏状物 羟值(mg KOH/g) 65-82 80-105 85-100 90-110 皂化值(mg KOH/g) 43-55 40-55 40-55 40-50 酸值(mg KOH/g) 2.0 2.0 2.0 2.0 水份(%) 2.5 3.0 2.5 2.5 HLB 值15 14.5 15.5 16.5 2.脂肪醇聚氧乙烯醚系列(平平加系列) 产品名称外观(25 ℃) 浊点℃HLB 值PH 值 平平加白色膏体85~90 12.8 5~7 -10 平平加白色固体≥9513.0/15 5~7 -15 平平加-10:用平平 -20 加白色固体≥10016.5/15.5 5~7 作纤维纺织 油剂的乳化金属清洗剂;平平 -25 加白色固体≥10017.0/16.5 5~7 剂、洗涤剂和 平平加-15:匀 染剂、纺织油平平加白色固体≥10017.5 5~7 剂组份、毛纺工业中作净-35 洗剂; 平平加-20:剂、剥色剂、合纤纺织油剂组份、乳化剂、抗静电剂; 平平加-25:印染行业作匀染剂、缓染剂、一般工业乳化剂、金属加工净洗剂、农业浸种渗透剂; 平平加-35:匀染剂、造纸皮革行业乳化剂、配制纺织染整前处理剂及后处理剂。平平加(AEO)系列

表面活性剂作用机理

表面活性剂作用机理 表面活性剂具有湿润、乳化、去污、分散等作用,主要是因为: 1、表面活性剂能降低接触界面的表面张力 纯液体的表面张力在恒温下是定值,而溶液的表面张力则随溶液的组成不同而不同。通过实验人们发现,各种物质的水溶液的表面张力与浓度的关系主要有以下三种情况: 1、稍有上升,无机盐(氯化钠、硫酸钠)及多羟基有机物(蔗糖、甘露醇) 2、逐渐降低,低分子极性有机物(醇、醛、酮、脂、醚等) 3、低浓度时,显著降低,后变化不大(含有8个碳以上的碳氢链的羧酸盐、磺酸盐等) 通常把2、3类物质称为表面活性物质,而把第1类物质称为非表面活性物质。而第3类称为表面活性剂,即加入少量即能大幅降低溶液的表面张力,而随着浓度继续增大表面张力降低不再明显的物质。 表面活性剂能够降低溶液的表面张力主要是由其结构的特殊性决定的。它具有两性基团:亲水性基团和亲脂性基团,它能显著降低接触界面的表面张力,增加污染物特别是憎水性有机污染物在水相的溶解性。 2、表面活性剂能形成胶束 当表面活性剂达到一定浓度时,其单体急剧 聚集,形成球状、棒状或层状的“胶束”,该浓 度称为临界胶束浓度(critical micelle concentration,CMC),胶束是由水溶性基团包裹 憎水性基团核心构成的集合体,当胶束溶液达 到热力学稳定时可以形成微乳溶液。 根据“相似相容”原理,憎水性有机物有进 入与它极性相同胶束内部的趋势,因此将表面 活性剂达到或超过CMC时,污染物分配进入 胶束核心,大量胶束的形成,增加了污染物的溶解性,同时NAPLs从含水层介质上大量解析,溶解于表面活性剂胶束内,表面活性剂对NAPLs溶解性增加的程度可以由胶束——水分配系数和摩尔增溶比(MSR)来表示。

乳液聚合的复习题

乳液聚合复习题 1 什么是乳液聚合?乳液聚合的特点? 乳液聚合是在水或者其它液体做介质的乳液中, 按胶束机理或低聚物机理生成彼此孤立的乳胶粒,并在其中进行自由基聚合或者离子加成聚合来生产高聚物的一种聚合方法. 优点: 1 反应热易排出 2 具有高的反应速率和高的分子量 3 水作介质,安全、价廉、环保 缺点: 1 需经一系列后处理工序,才能得到聚合物 2 具有多变性 3 设备利用率低 2 什么是增溶现象?乳化作用及搀合作用分别是什么? 许多油类和烃类在水中溶解度很小但是向水中加入少量乳化剂后其溶解度显著增大这种现象称为增容现象 乳化作用:使两种互不相溶的的液体借助于表面活性剂(又称界面活性剂)的作用,降低它们之间的张力,使一种液体以极微小的状态均匀地分散在另一种液体中,这种作用叫乳化作用 掺合作用即分散作用,固体以极细小的颗粒形式均匀的悬浮在液体介质中叫做分散。 3 什么是临界胶束浓度(CMC)? 乳化剂能形成胶束的最低浓度或表面活性剂分子形成胶束时的最低浓度叫临界胶束浓度,CMC越小,越易形成胶束,乳化能力越强。 4 解释乳液聚合体系的物理模型? 分散阶段(加引发剂前) 乳化剂(三种形式):单分子(水相)、胶束、被吸附在单体珠滴表面 单体(三个去向):单体珠滴、单分子(水相)、被增溶在胶束中 阶段Ⅰ(乳胶粒生成阶段) 诱导期结束到胶束耗尽 乳化剂(四个去处/形式):单分子(水相)、胶束、被吸附在单体珠滴表面、吸附在乳胶粒表面上

单体(三个去向):单体珠滴、单分子(水相)、被增溶在胶束和乳胶粒 阶段Ⅱ(乳胶粒长大阶段)胶束耗尽到单体珠滴消失 乳化剂(三种位置):单分子(水相)、被吸附在单体珠滴表面、吸附在乳胶粒表面上;动态平衡 单体(三个去向):单体珠滴、单分子(水相)、被增溶在乳胶粒中 阶段Ⅲ(聚合完成阶段) 两相:乳胶粒相和水相 5 乳液聚中,分散阶段单体和乳化剂的去向? 6 乳液聚合的阶段Ⅰ,乳胶粒形成阶段,乳化剂的去向? 7 乳液聚合三个阶段的特征? 8 什么是凝胶效应?玻璃化效应?产生原因? 凝胶效应:随着反应转化率提高反应区乳胶粒中单体浓度越来越低但是反应速率不仅不下降反而随转化率增加而大大增加这种现象叫凝胶效应 原因:随转化率增大,体系粘度增加,链自由基卷曲,活性端基受包埋,双基扩散终止困难,导致链终止速率常数降低而形成的。 玻璃化效应:某些单体的乳液聚合过程在阶段3后期当转化率曾至某一值时转化速率突然降低至0 这种现象叫做玻璃化效应 原因:阶段Ⅲ乳胶粒中聚合物浓度随转化率增大而增大,单体-聚合物体系的玻璃化温度T g 也随之提高。当转化率增大到某一定值时,就使得T g刚好等于反应温度。此时在乳胶粒中,不仅活性分子链被固结,而且单体也被固结。是链增长速率常数K p急剧降低至零,故链增长速率也急剧降低至零。 9 Smith-Ewart关于阶段Ⅰ动力学理论的假定? ⑴阶段Ⅰ开始时,向体系中投入的乳化剂全部形成胶束,忽略在单体珠滴表面上吸附的以及在水中溶解的乳化剂; ⑵进入阶段Ⅰ以后,乳化剂完全在胶束和乳胶粒之间进行分配 ⑶不管在胶束中还是在乳胶粒上,单位质量同种乳化剂的覆盖面积相等; ⑷在阶段Ⅰ,乳胶粒中聚合物与单体的比例不变; 发⑸在阶段Ⅰ,每一个乳胶粒中聚合反应速率相等。 10 Smith-Ewart关于阶段Ⅰ动力学理论的两种极端情况?(推导过程见课本30—33) 假定所有的自由基全被胶束捕获而不进入乳胶粒,即所生成的自由基全部用于形成新的乳胶粒。这样,自由基生成速率将刚好等于新乳胶粒生成速率。 乳胶粒数的上限方程。 (2)不管粒子大小如何,单位表面积上单位时间内捕获自由基的能力都是一样的。 乳胶粒数的下限方程 11 Smith-Ewart关于阶段Ⅰ反应速率的理论?

分散剂的7种类型

本文摘自再生资源回收-变宝网(https://www.wendangku.net/doc/ce9608851.html,)分散剂的7种类型 分散剂又称湿润分散剂,它除具有湿润作用外,其活性基团一端能吸附在粉碎成细小微粒的颜料表面,另一端溶剂化进入漆基形成吸附层(吸附基越多,链节越长,吸附层越厚),产生电荷斥力(水性涂料)或熵斥力(溶剂型涂料),使颜料粒子长期分散悬浮于漆基中,避免再次絮凝,因而保证制成的色漆体系的贮存稳定。 分散剂有很多种,初步估算,现存世界上有1000多种物质具有分散作用。现按其结构来区分,可分为以下7种类型。 阴离子型润湿分散剂 大部分是由非极性带负电荷的亲油的碳氢链部分和极性的亲水的基团构成。2种基团分别处在分子的两端,形成不对称的亲水亲油分子结构。它的品种有:油酸钠c17h33coona、羧酸盐、硫酸酯盐(r—o—so3na)、磺酸盐(r—so3na)等。阴离子分散剂相容性好,被广泛应用于水性涂料及油墨中。多元羧酸聚合物等也可应用于溶剂型涂料,并作为受控絮凝型分散剂广泛使用。 阳离子型润湿分散剂 非极性基带正电荷的化合物,主要有胺盐、季胺盐、吡啶鎓盐等。阳离子表面活性剂吸附力强,对炭黑、各种氧化铁、有机颜料类分散效果较好,但要注意其与基料中羧基起化学反应,还要注意不要与阴离子分散剂同时使用。 非离子型润湿分散剂

在水中不电离、不带电荷,在颜料表面吸附比较弱,主要在水系涂料中使用。主要分为乙二醇性和多元醇型,降低表面张力和提高润湿性。与阴离子型分散剂配合使用作为润湿剂或乳化剂,广泛应用于水性色浆、水性涂料及油墨中。 两性型润湿分散剂 是由阴离子和阳离子所组成的化合物。典型应用的是磷酸酯盐型的高分子聚合物。这类聚合物酸值较高,可能会影响层间附着力。 电中性型润湿分散剂 分子中阴离子和阳离子有机基团的大小基本相等,整个分子呈现中性,但却具有极性。如油氨基油酸酯c18h35nh3oocc17h33等均属于这种类型,在涂料中应用相当广泛。 高分子型超分散剂 高分子型分散剂最为常用,稳定性也最佳。高分子型分散剂也分为多己内多酯多元醇-多乙烯亚胺嵌段共聚物型分散剂、丙烯酸酯高分子型分散剂、聚氨酯或聚酯型高分子分散剂等,由于它们的锚定基团一头与树脂缠绕吸附,另一头又与颜料粒子包附,因此贮存稳定性是比较好的。 受控自由基型超分散剂

相关文档