文档库 最新最全的文档下载
当前位置:文档库 › 发酵工艺与设备

发酵工艺与设备

发酵工艺与设备
发酵工艺与设备

发酵工艺与设备

1、现代生物工程技术包括基因工程、细胞工程、酶工程和发酵工程,发酵工程是生物技术产业化的重要环节,绝大多数生物技术的目标都要通过发酵工程来实现

2、发酵技术由两个核心部分组成:第一部分是涉及获得特殊反应或过程所需的良好的生物细胞---微生物菌种;第二部分则是选择最精良设备,开发最优技术操作,创造充分发挥微生物细胞作用的最佳环境----发酵工艺与设备

3、为实现工业化生产,就必须解决实现这些工艺的工业生产环境、设备和过程控制的工程学的问题,因此就有了“发酵工程”

4、上游工程包括优良种株的选育,最是发酵条件的确定,营养物的准备等,中游工程包括发酵开始前采用高温高压对发酵原料和发酵罐以及各种连接管道进行灭菌的技术;在发酵过程中不断向发酵罐中通入干燥无菌空气的空气过滤技术;在发酵过程中根据细胞生长要求控制加料速度的计算机控制技术;还有种子培养和生产培养的不同的工艺技术。下游工程是对目的产物的提取与精制。

5、下游工程这一过程是比较困难的,这是因为一方面生物反应液中的目的产物的浓度是很低微的。例如:浓度最高的乙醇仅为10%左右,氨基酸不超过8%,抗生素不超过5%,酶制剂不超过1%,胰岛素不超过0.01%,单克隆抗体不超过0.0001%;另一方面因为反应液杂质常与目的产物有相似的结构,加上一些药物或食品的产品对纯度、有害物质都有严格的要求。

6、发酵工程与化学工程非常接近,化学工程中许多单元操作在微生物工业中得到应用。国外许多学术机构把发酵工程作为化学工程的一个分支,称为生化工程。但由于微生物工业是培养和处理活的有机体,所以除了与化学工程有共性外,还有它的特殊性。例如:空气除菌系统、培养基灭菌系统等都是微生物工业中所特有的。再如化学工程中,气、液两相混合、吸收的设备,仅有通风和搅拌的作用,而通风机械搅拌发酵罐除了上述作用外,还包括复杂的氧化、还原、转化、水解、生物合成以及细胞的生长和分裂等作用,而且还有其严格无菌要求,不能简单地与气体吸收设备完全等同起来。提取部分的单元操作虽然与化工中的单元操作无明显区别;但为适应菌体与微生物产物的特点,还要采取一些特殊措施并选用合适的设备。简言之,发酵过程是将化学工程中各有关单元操作与微生物的特点一并考虑进行操作的,两者的不同点在于:①、作为生物化学反应,通常在常温常压下进行,因此没有爆炸之类的危险,各种生产设备一般不必考虑防爆问题。②、微生物发酵过程需防止杂菌污染,生产过程所需的设备、培养基和空气都需进行严格的无菌处理,一旦杂菌入侵就有可能导致发酵生产的失败。③、微生物发酵液成分较复杂,大多为非牛顿流体,其产品分离与纯化过程比化学反应过程产品复杂得多。④、制造发酵产物的微生物菌体也是发酵产物,微生物细胞富含蛋白质、核酸、维生素等有用物质。微生物发酵液一般不含对生物体有害的物质。

7、发酵工业生产水平的三个决定要素:生产菌种的性能、发酵和提取工艺条件以及生产设备。

8、代谢控制发酵是指利用生物化学和遗传学的原理,利用生物工程手段控制微生物的代谢朝人们希望的方向进行,更多地产生和积累人们需要的目的产物。

9、微生物代谢的人工控制,包括控制发酵(外因控制)和控制育种(内因控制)两个方面。外因即控制环境因素,如氧的供应、营养物的类型和浓度、表面活性剂的存在和PH值得调节等都能够控制微生物细胞的生理和代谢。内因控制即代谢控制育种则是通过遗传变异来改变微生物的正常代谢途径和方向,根据人们的需要来使其代谢产物得到形成和积累。

10、种龄指的是种子的培养时间;接种量是指移入的种子液体积和接种后培养液体积的比例。

11、天然和合成培养基的优缺点

天然培养基是指一类成分非常复杂的天然产品,其中大部分是农副产品。其特点是营养丰富、价格便宜。缺点是每批次生产时由于天然培养基的成分含量都会不同而影响发酵。

合成培养基最大的优点是成分已知,主要用于研究菌种的代谢过程或者是动植物细胞悬浮液培养中;缺点是价格相对来说较昂贵,成分单一,不适合工业化大规模生产。

12、在碳源的选择上需要考虑以下因素:①、原料成本占生产总成本的比例,在工业生产中,利润是企业的生命,最好采用来源广泛,价格低廉的原料作为发酵培养基的碳源。②、在某些发酵过程中,必须除去碳源中的杂质。如糖蜜中除了含有微生物生长的糖分外还含有许多杂质,这些杂质对于发酵来说是有害的需要通过预处理去除掉。在柠檬酸发酵中高浓度的铁离子含量会导致异柠檬酸的生产,影响产品质量。③、对碳源的选择,往往还受到政策的影响。④、培养基的配制方法,特别是灭菌方法。

13、控制培养基中营养成分含量主要分为三个步骤来进行优化:①、根据前人的经验和培养基成分,初步确定可能的培养基成分;②、通过单因子实验最终确定出最为适宜的培养基成分;③、当培养基成分确定后,剩下的问题就是各成分最适的浓度,由于培养基成分很多,为减少实验次数常采用一些合理的实验设计方案。

14、在生产菌种接种之前要对发酵培养基、发酵罐、管路系统及空气系统和环境等方面进行灭菌,防止杂菌和噬菌体的大量繁殖

15、在生产中,为了防止杂菌或噬菌体的污染,通常采用消毒与灭菌技术,两者合称为发酵生产中的无菌技术。发酵工业中允许的染菌概率是10-3.即灭菌1000批次的发酵中只允许有一次染菌。

16、微生物对热的抵抗力用热阻来表示,微生物对热的抵抗力越大,热阻越大

17、为什么采用高温瞬时灭菌法的原因

采用高温瞬时灭菌法处理后的培养基质量较好。温度愈高,灭菌时间愈短,营养成分的破坏率愈小

18、分批灭菌的基本流程P55

19、空气净化除菌的方法包括加热灭菌、辐射灭菌、静电吸附灭菌和过滤除菌等。目前工业发酵生产过程中,过滤除菌是获得大量无菌空气最常用的除菌方法。

20、过滤除菌法就是使含菌空气通过过滤介质,以阻截空气流中所含微生物,使其与空气分离从而取得无菌空气的方法

21、无菌空气制备的首要步骤就是空气的采集和压缩

22、设备与管道的清洗与灭菌原因:①、设备和管道的洁净可使潜在的污染危险降至最小②、有助于防止设备或管道污垢的产生③、在许多工业生产过程如食品加工和制药行业中,几乎每一个国家都有相关的法规去保证其过程一定的卫生要求。

23、固态厌氧发酵主要特点

固态厌氧发酵可因陋就简、因地制宜地利用一些来源丰富的工农业副产品,至今仍在白酒、酱酒等产品的生产上沿用着。但是这种方法有许多缺点,如劳动强度大,不便于机械化操作,微生物品种少、生长慢,产品有限等

24、在酵母菌厌氧发酵过程中,酒精作为是主要产物外,还伴着一些副产物,包括醇、醛、酸、酯等四大类化学物质,因而葡萄糖不可能全部被转变为酒精

25、甲烷发酵社会意义P86

26、我国传统的白酒生产为固态发酵

27、浓香型白酒以泸州特曲为典型代表,山西汾酒是清香型大曲酒生产工艺的典型代表,酱香型大曲酒的典型代表是贵州茅台酒

28、酒精发酵的三个阶段及其特点P93

29、酒精发酵罐结构图P95

30、啤酒发酵特点

啤酒生产大致可分为麦芽制造和啤酒酿造两大部分,啤酒发酵在发酵池或圆柱锥底发酵罐中进行,用蛇管或夹套冷却并控制温度。进行下面发酵时,最高温度控制在8-13℃,前发酵过程分为起泡期、高泡期、低泡期,一般5-10日后排出底部酵母泥。前发酵得到的啤酒成为嫩啤酒,口味粗糙,CO2含量低,不宜饮用。为了使嫩啤酒后熟,将其送入贮酒罐中或继续在圆柱锥底发酵罐中冷却至0℃左右进行后发酵,调节罐内CO2压力使其溶入啤酒中,贮酒期需1-2月,在此期间残存的酵母、冷凝固物等逐渐沉淀,啤酒逐渐澄清,CO2在酒内饱和,口味醇和,适于饮用

31、生物素的调节原理

生物素是谷氨酸发酵的关键物质,当细胞内的生物素水平高时,谷氨酸不能透过细胞膜,因而得不到谷氨酸,谷氨酸发酵生产中,谷氨酸生产菌属于生物素缺陷型菌种,生物素作为脂肪酸生物合成最初反应的关键乙酰CoA羧化酶的辅酶,参与了脂肪酸的合成,进而影响磷脂的合成。当磷脂合成减少到正常量的一半左右时,细胞变形,谷氨酸向膜外漏出,积累于发酵液中。因而可以通过限量控制生物素的含量,也就是通过控制生物素亚适量,提高细胞膜的渗透性。在发酵的前期,满足细胞的生长,合成完整的细胞膜;中期生物素耗尽,细胞膜合成不完整,完成长菌型细胞向产酸性细胞的转变,细胞膜的渗透性增加,使得谷氨酸渗透到细胞外,在细胞内谷氨酸达不到引起反馈调节的程度,从而使谷氨酸能够源源不断被优先合成

32、发酵醪具有的一般特征包括:①、含水量高,一般可达90%-95%,②、产品浓度低。③、悬浮物颗粒小,密度与液体相差不大,④、固体粒子可压缩性大,⑤、液体黏度大,大多为非牛顿型流体,⑥、产物性质不稳定

33、预处理的常用方法有①、加热法②、调节悬浮液的PH,③、凝聚和絮凝④、添加助滤剂

⑤、添加反应剂

34、发酵液进行提取时主要通过两个步骤来确定:①、先研究该发酵产物是属于哪一个类型,是属碱性、酸性、两性物质或它的溶媒系统,初步进行试验,可以大致确定它是属于哪一类型②、通过稳定性的研究,如将发酵物用各种不同的温度,条件及不同的PH值进行处理,来检查有效的物质稳定情况。这样可以了解该发酵产物在哪一种适合的条件下进行提取精制而不受破坏,同时在保证质量的前提下,尽可能提高其效率

厌氧发酵罐操作说明(供参考)

一、电控箱面板上按钮和指示灯说明 电控柜面板图 在电控箱面板上有以下按钮和指示灯:进料阀开、进料阀关、排料阀开,排料阀关,系统运行和系统停止以及急停。具体的使用说明如下: 1、进料阀开/关:当按下进料阀开按钮时,进料电动阀打开,当阀门全部打开后, 进料阀开的按钮上的绿色指示灯亮,同时进料泵自动启动,当按下进料阀关时,进料阀关闭,同时进料泵停,当进料阀完全关闭后,进料阀关的按钮上的红色指示灯亮。 2、排料阀开/关:当按下排料阀开按钮时,排料电动阀打开,当阀门全部打开后, 排料阀开的按钮上的绿色指示灯亮;当按下排料阀关时,排料阀关闭,当排料阀完全关闭后,排料阀关的按钮上的红色指示灯亮。

3、排料阀开/关:当按下系统运行按钮后,整个系统按照设定的参数自动运行, 同时系统运行指示灯亮;当按系统停止按钮后,系统停止运行,同时系统停止运行指示灯亮。 4、急停按钮:出现紧急情况时可以按下急停按钮,使整个系统停机。 二、触摸屏上相应的参数设定说明 主画面 1、系统上电后,触摸屏自动进入主画面,此画面中显示发酵罐内 当前的温度,压力以及搅拌的转速和热水罐的温度以及液位状态;进出料状态也在此画面中显示。按下参数设定键进入参数设定画面。

参数设定一 2、在此画面中设定热水罐和发酵罐的工作参数,说明如下:(参数 都在系统运行时生效) 1)热水罐加热器启动/停止温度:当热水管内温度低于启动温度时,并且热水罐内的水位超过了中液位时,电加热器自动启动,加热到设定的停止温度后,电加热器自动停止运行。注意:停 止温度应大于启动温度。 2)发酵罐加热泵启动/停止温度:当发酵罐内的温度低于启动温度时,并且热水罐内的水位超过了中液位时,加热泵启动循环, 给发酵罐加热,当温度到停止温度时,加热泵停止。注意:停 止温度应大于启动温度。 3)发酵罐排气阀开/关压力:当发酵罐内的压力大于开阀压力时,排气电磁阀自动打开,当发酵罐内压力降到关阀压力时,排气 电磁阀自动关闭。注意:开阀压力应大于关阀压力。 4)搅拌器转速设定:通过此参数来设定变频器的频率。从而设定发酵罐搅拌器的转速。 按下一页进入参数设定二画面,按返回,回到主画面。

华南理工发酵工艺学试题

华南理工大学20XX年攻读硕士学位研究生入学考试试题科目名称:发酵工艺学 适用专业:发酵工程 一、选择题(每小题1分,21题共21分)daaba,abbbb,caaac,aaadb,c 1、细菌对革兰氏染色的不同反应主要是由于革兰氏阳性和阴性细菌在()的结构和化学组成上的差别所引起的。 A细胞核B细胞质C细胞膜D细胞壁E鞭毛 2、霉菌的有性孢子是() A.孢囊孢子 B.卵孢子C节孢子D厚垣孢子 E.分生孢子 3、干热法常用于()灭菌。 A.盐溶液 B.细菌培养基 C.油料物质 D.医院的毛毯 4、与细菌耐药性有关的遗传物质是()。 A鞭毛B质粒C细菌染色体D毒性噬菌体E异染颗粒 5、要制备原生质体,可采用()来破壁。 A溶菌酶 B.纤维素酶 C.蜗牛酶 D.甘露聚糖酶 E.果胶酶 6、BOD有助于确定()。 A.废水的污染程度 B.土壤的过滤能力 C. 100ml水样中的细菌数 D.生态系统中的生物群类型 7、下列脂肪酸中,属必需脂肪酸的是: A、油酸 B、亚油酸 C、软脂酸 D、棕榈酸 8、醛缩酶作用的底物是下列哪种物质? A、6-磷酸葡萄糖 B、6-磷酸果糖 C、1,6-二磷酸果糖 D、1,3-二磷酸甘油酸 9、一分子葡萄糖经EMP途径与TCA循环进行彻底氧化可产生几分子ATP? A、18分子ATP B、38分子ATP C、35分子ATP D、15分子A TP 10、果糖激酶所催化的反应生成下列哪种中间产物? A、1-磷酸果糖 B、6-磷酸果糖 C、1,6-二磷酸果糖 D、3-磷酸甘油醛和磷酸二羟丙酮 11、下列哪个酶是调控柠檬酸循环运转速度的变构酶? A、顺乌头酸梅 B、异柠檬酸脱氢酶 C、苹果酸脱氢酶 D、柠檬酸脱氢酶 12、利用PRPP作为合成前体的氨基酸有: A、Phe和Try B、Try和His C、Try和Tyr D、Tyr和His 13、tRNA分子具有下列何种功能: A、识别密码子 B、识别反密码子 C、识别氨基酸 D、将mRNA接到核糖体上 14、脂肪酸全合成过程中,延伸的二碳单位的直接供体是: A、乙酰CoA B、丙二酰CoA C、丙二酰ACP D、胆碱-CDP 15、酵解途径中各步反应是以下列哪种条件进行? A、需要氧气 B、需要二氧化碳 C、不需要氧气 D、需要氮气 16、甘油生物合成主要是下列哪种物质引起的? A、氢氧化钠 B、硫酸铵 C、酶 D、亚硫酸盐 17、强酸型阳离子交换树脂中含有以下哪种成分? A、磺酸基 B、磷酸基 C、羧基 D、酚羟基 18、使用化学消泡剂时应选用以下哪种类型?

氨基酸发酵工艺学试卷A答案

《氨基酸发酵工艺学》试卷A答案 一、名词解释(每小题3分,共18分) 1、代谢控制发酵:就是用遗传学或其它生物化学的方法,人为的改变、控制微生物的代谢,使有用产物大量生成、积累的发酵。 2、DE值:即葡萄糖值,表示淀粉水解程度及糖化程度。DE值=还原糖/干物质×100% 3、噬菌体效价:每毫升试样中所含有具有侵染性的噬菌体的粒子数 4、发酵转换:当发酵条件发生改变时,必然会影响到生物代谢途径分支的关键酶的酶量和酶活性的改变,从而导致发酵方向发生转换,从而产生不同的代谢产物 5.淀粉液化:利用α-淀粉酶将淀粉液化,转化为糊精及低聚糖,使淀粉的可溶性增加。 6.临界溶氧浓度:指不影响菌的呼吸所允许的最低氧浓度。 二、单项选择题(每小题2分,共20分) 1.B 2.B 3.C 4.A 5.B 6.B 7.D 8.C 9.D 10.A 三、填空题(每空1分,共20分) 1.蛋白质水解液抽提法,化学合成法,酶法,微生物发酵法 2.控制磷脂的合成添加表面活性剂油酸缺陷型甘油缺陷型温度敏感型(能写出任意三条即可) 3.长菌型细胞转移期细胞产酸型细胞 4.α-型结晶β-型结晶自然起晶加晶种起晶 5.等电点法离子交换法锌盐法

6.离子交换法菌体钙离子 四、简答题(每小题6分,共30分) 1、淀粉水解糖制备中,酸解法的工艺流程? 答:淀粉、水、盐酸→调浆→进料→水解→冷却、中和→脱色→过滤→糖化液 2、酸法制备淀粉水解糖的质量要求有哪些? 答:(1)糖液透光率>90%(420nm) (2)不含糊精、蛋白质(起泡物质)。 (3)转化率>90%。 (4) 还原糖浓度>16% (5)糖液不能变质 3、氨基酸发酵菌种为什么要定期分离纯化?有什么意义? 定期分离纯化的原因:因为工业生产菌种酵母自身发生了退化,退化的原因:(1)菌种的自发突变在10-8左右 (2)由于菌种大多为诱变菌种,容易受外界环境的影响,发生回复突变。 菌种纯化的意义:(1)保证产品的稳产、高产 (2)进行生产育种。 4、氨基酸生产中,泡沫对发酵的影响? ①发酵液逃逸 ②感染 ③降低装填系数,设备利用率降低

沼气发酵工艺介绍

1.2.2 厌氧处理工艺选择 1、各类厌氧工艺性能概述 (1)完全混合厌氧工艺(CSTR) CSTR是在常规消化器内安装了搅拌装置,使发酵原料和微生物处于完全混合状态,该消化器常采用恒温连续投料或半连续投料运行,适用于高浓度及含有大量悬浮固体原料的处理。在该消化器内,新进入的原料由于搅拌作用很快与发酵期内的发酵液混合,使发酵池底浓度始终保持相对较低的状态。而其排除的料液又与发酵液的底物浓度相等,并且在出料时微生物也一起被排出,所以,出料浓度一般较高。该消化器具有完全混合的状态,其水力停留时间、污泥停留时间、微生物停留时间完全相等,即HRT=SRT=MRT。为了使生长缓慢的产甲烷菌的增殖和冲出速度保持平衡,要求HRT较长,一般要10-15d或更长的时间,进料浓度8%-12%。中温发酵时负荷为3-4kgCOD(m3.d),高温发酵为5-6 kgCOD(m3.d)。 CSTR的优点:1.可以进入高悬浮固体含量的原料;2.消化器内物料的均匀分布,避免了分层状态,增加了底物和微生物接触的机会;3. 消化器内温度分布均匀;4.进入消化器的抑制物质,能够迅速分散,保持较低的浓度水平;5.避免了浮渣、结壳、堵塞、气体逸出不畅和短流现象。 缺点:1.由于消化器无法做到使SRT和MRT在大于HRT的情况下运行,所以需要消化器体积较大;2.要有足够的搅拌,所以能量消耗较高;3.生产用大型消化器难以做到完全混合;4.底物流出该系统时未完全消化,微生物随出料而流失。 (2)厌氧接触工艺反应器 厌氧接触工艺反应器是完全混合式的,是在连续搅拌完全混合式厌氧消化反应器(CSTR)的基础上进行了改进的一种较高效率的厌氧反应器。反应器排出的混合液首先在沉淀池中进行固液分离,污水由沉淀池上部排出,沉淀池下部的污泥被回流至厌氧消化池内。这样的工艺既保证污泥不会流失,又可提高厌氧消化池内的污泥浓度,从而提高了反应器的有机负荷率和处理效率,与普通厌氧消化池相比,可大大缩短水力停留时间。目前,全混合式的厌氧接触反应器已被广泛应用于SS浓度较高的废水处理中。其不足之处在于,厌氧污泥经沉淀池再回流,温度变化较大,影响了厌氧处理效率的提高,同时,厌氧罐内的热能损失也较大。但因受水泵性能的限制,该装置进料的干物质浓度(TS%)为4-6%,故需配兑2.5-3倍于发酵原料重量的配料污水;还需多级“预处理”以去除堵察水泵和管道的秸草等较大固形物。 (3)厌氧滤器(AF) 厌氧滤器是采用填充材料作为微生物载体的一种高速厌氧反应器,厌氧菌在填充材料上附着生长,形成生物膜。生物膜与填充材料一起形成固定的滤床。厌氧滤床可分为上流式厌氧滤床和下流式厌氧滤床二种。污水在流动过程中生长并保持与充满厌氧细菌的填料接触,因为细菌生长在填料上将不随出水流失,在短的水力停留时间下可取得较长的污泥泥龄。厌氧滤器的缺点是填料载体价格较贵,反应器建造费用较高,此外,当污水中SS含量较高时,容易发生短路和堵塞。 (4)上流式厌氧污泥床反应器(UASB) 待处理的废水被引入UASB反应器的底部,向上流过由絮状或颗粒状厌氧污泥的污泥床。随着污水与污泥相接触而发生厌氧反应,产生沼气引起污泥床的扰动。在污泥床产生的沼气有一部分附着在污泥颗粒上,自由气泡和附着在污泥颗粒上的气泡上升至反应器的上部。污泥颗粒上升撞击到三相分离器挡板的下部,这引起附着的气泡释放;脱气的污泥颗粒沉淀回到污泥层的表面。自由状态下的沼气和由污泥颗粒释放的气体被收集在三相分离器锥顶部的集气室内。液体中包含一些剩余的固体物和生物颗粒进入到三相分离器的沉淀区内,剩余固体物和生物颗粒从液体中分离并通过三相分离器的锥板间隙回到污泥层。UASB反应器的特点在于可维持较高的污泥浓度,很长的污泥泥龄(30天以上),较高的进水容积负荷率,

发酵工艺及设备复习资料

《发酵工程》复习资料 一、单项选择题 1、被现代誉为微生物学鼻祖、发酵学之父的巴斯德。 A、首次观察到大量活着的微生物; B、建立了单种微生物的分离和纯培养技术; C、阐明了微生物产生的化学反应本质; D、首次证明酒精发酵是酵母菌所引起的。 2、关于Pirt方程π=a + bμ,不正确的有。 A、a=0、b≠0:可表示一类发酵; B、a≠0、b ≠ 0:可表示二类发酵; C、a=0、b≠0:可表示三类发酵; D、第二类发酵表明产物的形成和菌体的生长非偶联。 3、代谢参数按性质分可分。 A、物理参数、化学参数和间接参数; B、中间参数和间接参数; C、物理参数、化学参数和生物参数; D、物理参数、直接参数和间接参数。 4、关于菌种低温保藏的原理正确的有。 A、低于最低温度,微生物很快死亡; B、低于最低温度,微生物代谢受到很大抑制,并不马上死亡; C、高于最高温度,微生物很快死亡; D、低于最低温度,微生物胞内酶均会变性。 5、下列不是利用热冲击处理技术提高发酵甘油产量的依据的有。 A、酵母在比常规发酵温度髙10~20℃的温度下经受一段时间刺激后,胞内海藻糖的含量显著增加; B、Lewis发现热冲击能提高细胞对盐渗透压的耐受力; C、Toshiro发现热冲击可使胞内3-磷酸甘油脱氢酶的活力提高15~25%,并导致甘油产量提高; D、Lewis发现热冲击可使胞内3-磷酸甘油脂酶的活力提高15~25%,并导致甘油产量提高。 6、霉菌生长pH为5左右,因此染为多。 A、细菌; B、放线菌; C、酵母菌; D、噬菌体。 7、放线菌由于生长的最适pH为7左右,因此染为多 A、细菌; B、酵母菌; C、噬菌体; D、霉菌。 8、不是种子及发酵液无菌状况检测方法的有。 A、酚红肉汤培养基检测; B、平板划线; C、显微镜观察; D、尘埃粒子检测。 9、要实现重组大肠杆菌的高密度培养,最常用和最有效的方法就是。 A、反复分批培养; B、分批补料流加培养法; C、连续培养法; D、反复分批流加培养法。 10、微生物菌种的筛选最关键的是要找到一个合适的“筛子”,在耐高酒精浓度酿酒酵母的筛选中,这个“筛子”是。 A、平板培养基中高葡萄糖含量; B、种子培养基中高酒精含量; C、平板培养基中高酒精含量; D、发酵培养基中高酒精含量。 11、在摇瓶发酵法生产糖化酶实验中,糖化酶比酶活力单位应为。 A、U/mL粗酶液; B、U/g淀粉; C、U/g酶; D、U/mL培养基。 12、在反复分批发酵过程中,细胞回用操作必须在进行。 A、密闭条件下; B、无菌条件下; C、稳定条件下; D、任何条件下。 13、现代发酵工程采取的优化策略是。 A、高产量; B、高转化率; C、高产率; D、高产量、高得率和高生产强度的相对统一。 14、下列叙述正确的是。 A、在稳定期,细胞增加速度和死亡速度达到平衡,细胞浓度达最大,活细胞重量基本维持恒定; B、稳定期往往是微生物次级代谢产物大量产生的时期; C、在稳定期,细胞的能量贮备已消耗完,细胞开始死亡; D、在工业生产中,通常在对数生长期的末期或衰亡期开始之后结束发酵过程。 15、在微生物培养过程中,消耗的底物。 A、只用于菌体生长、菌体维持和产物生成; B、只用于菌体生长和产物生成; C、用于菌体生长、菌体维持和产物的生成,有的底物还与能量的产生有关; D、只用于菌体生长。 16、现代发酵工程采取的优化策略是。 A、高产量; B、高转化率; C、高产率; D、高产量、高得率和高生产强度的相对统一。

发酵工艺优化

发酵工艺优化 从摇瓶试验到中试发酵罐试验的不同之处 1、消毒方式不同,摇瓶是外流蒸汽静态加热(大部分是这样的),发酵罐是直接蒸汽动态加热,部分的是直接和蒸汽混合,会因此影响发酵培养基的质量,体积,PH,透光率等指标。扩大时摇考虑 2、接种方式不同,摇瓶是吸管加入,发酵罐是火焰直接接种(当然有其他的接种方式),要考虑接种时的菌株损失和菌种的适应性等。 3、空气的通气方式不同,摇瓶是表面直接接触。发酵罐是和空气混合接触,考虑二氧化碳的浓度和氧气的融解情况。 4、蒸发量不同,摇瓶的蒸发量不好控制,湿度控制好的话,蒸发量会少。发酵罐蒸发量大,但是可以通过补料解决的。 5、搅拌方式不同,摇瓶是摇转方式进行混合搅拌,对菌株的剪切力较小。发酵罐是直接机械搅拌,注意剪切力的影响和无菌的影响。 6、PH的控制,摇瓶一般通过碳酸钙和间断补料控制PH,发酵可以直接流加控制PH,比较方便。 7、温度控制,摇瓶是空气直接接触或者传热控制温度,但是发酵罐是蛇罐或者夹套水降温控制,注意降温和加热的影响。 8、注意染菌的控制方法不一样,发酵罐根据染菌的周期和染菌的类型等可以采取一些必要的措施减少损失。 9、发酵罐可以取样或者仪表时时检测,但是摇瓶因为量小不能方便的进行控制和检测。 10、原材料不一样,发酵所用原材料比较廉价而且粗旷,工艺控制和摇瓶区别很大等等 发酵工艺中补料的作用 补料分批培养(fed—batch culture简称FBC)是指在分批培养过程中、间歇或连续地补加一种或多种成分的新鲜培养基的培养方法、与传统的分批集中补料培养相比、它有以下优点: (1)可以避免在分批发酵中因—次投料过多造成发酵液环境突变,造成菌丝大量生长等问题,改善发酵液流变等性质,使得发酵过程泡沫得以控制,节省消泡剂,并提高了装罐系数。 (2)可以控制细胞质量,以提高芽抱的比例,并使pH得以稳定。 (3)可以解除底物抑制,产物反馈抑制和分解阻遏。 (4)可以使“放料和补料”方法得以实施。该方法在发酵后期、产生了一定数量代谢产物后,在发酵液体积测量监控下,放出一部分发酵液,同时连续补充——部分新鲜营养液,实现连续带放、既有利于提高产物产量.又可降低成本,使得发酵指数得以大幅度提高。 (5)利用FBC技术、可以使菌种保持最大的生产力状态.随着传感技术以及对发酵过程动力学理沦深入研究、用模拟复杂的数学模型使在线方式实最优控制成为可能。 连续补料控制目前采用有反馈控制和无反馈控制两种方式。有反馈控制:选择与过程直接关系的可检测参数作为控制指标,例如可以测量、控制发酵液PH、采用定量控制葡萄糖流加。稳定PH在次级代谢最旺盛水平。而无反馈控制FBC是指无固定的反馈参数,以经验和数学模型相结合的办法来操作最优化控制、从而使抗生素发酵产量得以大幅度提高。例如发酵过程中前体的补加。由此可见,要实现对发酵过程的有效控制,就先要解决补科的连续控制问题。 目前国外发酵生产过程连续补料采用:流量计(电磁流量计、液体质量流量计)、小型电动、气动隔膜调节阀和控制器来实现连续补料控制。菜发酵工厂在中试试验中还成功地运用了电子称加三阀控制的自动补科系统 至于装液量的问题,应该从以下几个方面考虑: 1、保持在你所需要的转速培养情况下(尤其是在后期,菌丝很多时,转速很高时),不能让发酵液把你的塞子湿掉,容易造成染菌。 2、装液量的体积在消毒过程中,不能因为沸腾把塞子湿掉,或者跑出三角瓶,装液量太多会出现这样的情况。很容易染菌。 3、根据你的菌种的情况和发酵液的粘度,需要的混匀程度等等方面也要考虑。 4、建议你做一个梯度试验(40-50-60-70-80等)就可以找到你所需要的装液量。 关于剩余空气的排除在灭菌完毕后(100度左右),立刻用盖子或者其他的用品把你的培养摇瓶盖好,有时候这么点空气根本对兼性厌氧发酵没有什么影响,如果你的菌种要求很严的话,最好用干冰加入已经灭菌的空摇瓶后,立刻用其他的样品培养基分装即可。当然也可以用氮气。最好是二氧化碳。 你可以再查查看是否有其他的方法,我说的也不完全。!!

发酵工艺学试卷

试卷一 一、名词解释 铁混浊:由于葡萄酒中的氧化亚铁被氧化成氧化铁,氧化铁与单宁结合,则生成青色的鞣酸铁沉淀,即所谓的铁沉淀。 煮沸强度:又称蒸发强度,是指单位时间内所蒸发的水分占混合麦芽汁的百分比例,要求为8%—10%。 上霉:指在曲坯表面,因霉菌生长繁殖而长出霉点。 生啤:生啤酒:又叫鲜啤酒,这种啤酒不经过杀菌,具有独特的啤酒风味。 熟啤:普通啤酒都是要杀菌(巴氏杀菌),杀了菌之后叫熟啤酒。 扎啤:扎啤就是经过微孔膜过滤的啤酒。 二、填空 1.葡萄酒按酒液的颜色,可分为红葡萄酒和白葡萄酒两大类,根据酒液含糖分多少,分为干葡萄酒和甜葡萄酒两种。2.根据酵母在啤酒发酵液中的性状,可将它们分为:上面啤酒酵母,下面啤酒酵母。 3.大曲中的微生物以霉菌占绝大多数,小曲中的微生物主要是霉菌和酵母。 4.白酒酿造分为清渣和续渣两种方法。 三、选择 1.葡萄酒受污的酒液中,常见的乳酸菌不包括(D)。

A.明串珠菌 B.乳酸杆菌 C.足球菌D.枯草杆菌 2.酿造酱油的生产,主要以( A )为主要原料。 A.大豆或豆粕等植物蛋白质 B.面粉等淀粉质 C.大米或高粱D.优质大麦芽 3.微生物生长繁殖减慢,曲坯品温逐渐下降的阶段称为( A )。A.后火 B.大火 C.起潮火 D.凉霉 4传统法酿醋工艺中,老陈醋的配制以( A )为发酵剂。 A.大曲 B.小曲 C.麸曲 D.麦曲 四、简答 1.列举我国八大名白酒。 答:贵州茅台酒,山西汾酒,四川泸州老窖特曲酒,陕西西凤酒,四川五粮液,四川全兴大曲酒,安徽古井贡酒,贵州遵义董酒。2.说明酱油中风味物质的来源。 答:蛋白质的水解,淀粉的分解,脂肪的分解,纤维素的分解。 六、论述 1.试述啤酒发酵过程中对绿麦芽的质量要求及其质量控制措施?

厌氧发酵工艺

环化系环测1001 李园方 厌氧发酵 1前言 餐厨垃圾是城市生活垃圾中有机相的主要来源。餐厨垃圾以蛋白质、淀粉类、食物纤维类、动物脂肪类等有机物质为主要成分, 是能源和肥料潜在的资源。餐厨垃圾含水率高达75% ~ 90%, 渗沥液易通过渗透作用污染地下水, 产生出大肠杆菌等病原微生物, 直接危害人体健康[ 1] 。另外, 餐厨垃圾处理过程中也会产生大量的高浓度有机废水, 如果处理不当, 将造成巨大的环境污染和资源浪费。宁波市于2009 年6月建成了一座餐厨垃圾废水厌氧 发酵工程, 经过2个月的调试运转, 于2009年8月开始正式运行。现将该工程情况介绍如下。 2废水概况 餐厨垃圾经提油处理和加工成饲料的处理后会产生大量有机废水, 该工程废水处理量约为110m3 d- 1, 其水质pH 为3. 5 ~ 4. 0, CODC r 80 ~ 1602废水概况餐厨垃圾经提油处理和加工成饲料的处理后会产生大量有机废水, 该工程废水处理量约为110m3 d- 1, 其水质pH 为3. 5 ~ 4. 0, CODC r 80 ~ 1603工艺流程根据工艺流程, 餐厨垃圾废水制沼气及发电主 要为以下三个步骤。 3-1厌氧发酵调试阶段 活性污泥的培养及驯化对反应器的正常运行至关重要。本项目的

接种污泥取自宁波骆驼沼气站(该沼气站以猪粪为原料)。 ( 1)污泥驯化初期(时间10天)。投入一定量的接种污泥, 再加入稀释后的废水( CODCr < 10 g L- 1 )一起投入改进型升流式厌氧污泥床反应器( UASB )中, 调节pH 至中性, 使污泥恢复活性。 ( 2)污泥驯化中期(时间30天)。投入一定量的接种污泥, 餐厨垃圾废水稀释为50% ( CODC r 40~ 80 g L- 1 ) , 出水水质良好。污泥性质基本稳定,上清液澄清透明。这表明, 活性污泥开始驯化, 适应餐厨垃圾废水。 ( 3)污泥驯化后期(时间20天)。餐厨垃圾废水提高到进料COD 浓度80~ 120 g L- 1, 保持一个 水力停留期。随着餐厨垃圾废水投加量的增加, 出水COD有所提高, 但仍能保持较高的COD 去除率。较长时间稳定的去除率表明, 污泥已基本适应餐厨垃圾废水的特性, 活性污泥驯化完成。 3-2厌氧发酵阶段 该工程采用2000m3 的改进型升流式厌氧污泥床反应器进行厌 氧发酵制沼气, 发酵装置外观见图1。该反应器处理效率高, 耐负荷能力强, 出水水质相对较好, 沼泥生成量小, 具有防堵防爆的特点, 其 结构、运行操作维护管理相对简单, 造价也相对较低。具有良好的沉淀性能和聚凝性能的污泥在下部形成污泥层, 运行一段时间后, 出水悬浮物增加, 需要按时排泥。 该工程设计为连续投料的工业化生产工艺路线。厌氧发酵启动后,

发酵工艺学试题库

发酵工程发展史包括:传统发酵技术: 自然发酵、纯培养技术的建立、深层培养技术的建立、人工诱变育种、基因工程菌、发酵动力学、发酵的连续化自动化工程技术的建立 反馈调节包括:反馈抑制和反馈阻遏 在通气不充足时,糖和脂肪的氧化不完全,产生有机酸类的中间产物,这些都使培养基的pH 值下降。 如果无机氮源被同化,则培养基pH值会发生不同变化:生理酸性盐(被微生物利用后生酸的盐)的铵盐利用后,与其结合的酸游离,使pH值下降;生理碱性盐的硝酸盐(或有机酸盐)被利用后,则释放碱使其pH值上升。 啤酒按灭菌方式分 ◆熟啤酒:经过巴斯德灭菌不含活体酵母(瓶,3-6个月;易拉罐,1年) ◆鲜啤酒:不经过巴斯德灭菌含活体酵母(存不大于7天) ◆纯生啤酒:特殊过滤以除去活体酵母(可长达1年) 啤酒发酵的原料包括: 麦芽、辅料(德、挪不加)、酒花、水 麦芽粉碎方法 1 干法粉碎 2 回潮干法湿法 4 连续浸渍湿法粉碎(70年代) 发芽力:发芽三天发芽麦粒百分率, 96% 活性物质产生菌的筛选的步骤: 筛选步骤: 样品采集样品预处理增殖培养菌种初筛菌种复筛性能鉴定传代稳定性实验菌株终选 代谢控制发酵: 利用遗传学或其他生化方法,人为的在DNA水平上来改变和控制微生物的代谢,使得有用的产物大量积累的发酵称为代谢控制发酵。 诱导作用 定义:生物与一种化学物质--诱导物接触的结果大大地增加了酶合成的速度。 分解代谢物阻遏 1、定义:培养基中某种基质的存在会减少(阻遏)细胞中相应酶的合成速率。如葡萄糖、精氨酸等受分解代谢物阻遏的酶. 反馈抑制:是一生物合成途径的最终代谢物抑制那一途径的前面第一或第二个酶的活性。反馈阻遏:终产物或其结构类似物阻止了催化途径中一个或几个酶的合成。 能荷 能荷= {[ATP]+ [ADP]}/ {[ATP]+ [ADP] + [AMP]} 能荷不仅调节形成ATP的分解代谢酶类的活性,而且调节利用ATP的生物合成酶类的活性。异柠檬酸脱氢酶和磷酸果糖激酶受高能荷的抑制,而丙酮酸羧化酶、乙酰CoA羧化酶等在同一高能荷下被激活。 巴士德效应:啤酒酵母对各种可发酵性糖类的发酵均是通过EMP途径代谢生成丙酮酸后,进入无氧酵解或有氧循环,酵母在有氧TCA循环可获得更多生物能(38ATP),此时无氧发酵代谢就会抑制,这种抑制厌氧发酵代谢称为“巴士德效应”。 临界氧浓度:一般指不影响菌的呼吸所允许的最低氧浓度。 浸麦度(%) 浸麦后大麦的含水率即浸麦度(%) 浸后大麦总含水量 = ———————×100% 浸后大麦质量

厌氧发酵原理及其工艺

1.4 实验研究目的,技术路线 我国目前的农作物发酵制沼气技术与发达国家相比,起步较晚,大型项目的运行经验相对较少。由于我国幅员辽阔,不同地域的农作物资源种类不同,其物理和化学性质也有较大的差别,加之我国不同地区年平均气温差别较大,使我国农作物厌氧发酵制备沼气的大型项目难有统一的设计参数标准。对于不同的大型沼气项目,必须结合项目实际的农作物种类和物性、气候条件、供热条件、沼液和沼渔的消纳和后续处理工艺、农作物的价格和最大运输半径、原料的储存和供料方式、发电机组的选型等因素进行综合考虑,才能使项目实施后获得最佳的经济和社会效益。 根据我国农作物制备沼气技术的应用现状,结合本文研究的农作物制备沼气项目实际案例,本文的研究目的为:;研究发酵原料的物理化学性质和产气率,提出合理估算农作物(主要是黄瓜藤)和粒径的方法,为项目实例提供工艺选择、系统设计和经济性计算提供可靠依据。 为了实现上述目的,本文研究内容主要集中如下几个方面: (1)研究农作物破碎预处理的特点,为合理计算破碎预处理能耗提供计算方法。 (2)研究了黄瓜藤的鲜活度对发酵产气量和产气速率等因素的影响。 (3)不同投配率对发酵产气量和产气速率等因素的影响;为了厌氧发酵反应的持续反应,同时还研究不同投配率对于pH值的影响。 1.5 论文章节安排 本论文共包括六章内容。 第一章介绍课题的研究背景,国内能源消费和可再生能源利用现状,以及课题的主要研究内容和意义。 第二章厌氧发酵反应制备沼气的基本原理和影响参数。

第三章阐述农作物的破碎原理,从中说明粒度与能耗间的关系,并且从能耗的角度分析不同粒度的颗粒的耗能情况。 第四章针对需要采用实验方法对各个因素进行研究,确定实验的数据测量的方法以及实验进行过程中需要的注意事项,防止实验失败。 第五章实验采用定制CSTR厌氧反应器对黄瓜藤在中温条件下进行厌氧消化反应实验,研究系统的稳定性能和产气性能。 第六章作出对课题的总结和展望,总结本课题的研究成果,并提出不足之处和以后还需进一步研究的方向。

发酵工艺优化

发酵工艺优化 发酵工艺优化 从摇瓶试验到中试发酵罐试验的不同之处 1、消毒方式不同,摇瓶是外流蒸汽静态加热(大部分是这样的),发酵罐是直接蒸汽动态加热,部分的是直接和蒸汽混合,会因此影响发酵培养基的质量,体积,PH,透光率等指标。扩大时摇考虑 2、接种方式不同,摇瓶是吸管加入,发酵罐是火焰直接接种(当然有其他的接种方式),要考虑接种时的菌株损失和菌种的适应性等。 3、空气的通气方式不同,摇瓶是表面直接接触。发酵罐是和空气混合接触,考虑二氧化碳的浓度和氧气的融解情况。 4、蒸发量不同,摇瓶的蒸发量不好控制,湿度控制好的话,蒸发量会少。发酵罐蒸发量大,但是可以通过补料解决的。 5、搅拌方式不同,摇瓶是摇转方式进行混合搅拌,对菌株的剪切力较小。发酵罐是直接机械搅拌,注意剪切力的影响和无菌的影响。 6、PH的控制,摇瓶一般通过碳酸钙和间断补料控制PH,发酵可以直接流加控制PH,比较方便。 7、温度控制,摇瓶是空气直接接触或者传热控制温度,但是发酵罐是蛇罐或者夹套水降温控制,注意降温和加热的影响。 8、注意染菌的控制方法不一样,发酵罐根据染菌的周期和染菌的类型等可以采取一些必要的措施减少损失。 9、发酵罐可以取样或者仪表时时检测,但是摇瓶因为量小不能方便的进行控制和检测。 10、原材料不一样,发酵所用原材料比较廉价而且粗旷,工艺控制和摇瓶区别很大等等 发酵工艺中补料的作用 补料分批培养(fed—batch culture简称FBC)是指在分批培养过程中、间歇或连续地补加一种或多种成分的新鲜培养基的培养方法、与传统的分批集中补料培养相比、它有以下优点: (1)可以避免在分批发酵中因—次投料过多造成发酵液环境突变,造成菌丝大量生长等问题,改善发酵液流变等性质,使得发酵过程泡沫得以控制,节省消泡剂,并提高了装罐系数。 (2)可以控制细胞质量,以提高芽抱的比例,并使pH得以稳定。 (3)可以解除底物抑制,产物反馈抑制和分解阻遏。 (4)可以使“放料和补料”方法得以实施。该方法在发酵后期、产生了一定数量代谢产物后,在发酵液体积测量监控下,放出一部分发酵液,同时连续补充——部分新鲜营养液,实现连续带放、既有利于提高产物产量.又可降低成本,使得发酵指数得以大幅度提高。 (5)利用FBC技术、可以使菌种保持最大的生产力状态.随着传感技术以及对发酵过程动力学理沦深入研究、用模拟复杂的数学模型使在线方式实最优控制成为可能。 连续补料控制目前采用有反馈控制和无反馈控制两种方式。有反馈控制:选择与过程直接关系的可检测参数作为控制指标,例如可以测量、控制发酵液PH、采用定量控制葡萄糖流加。稳定PH在次级代谢最旺盛水平。而无反馈控制FBC是指无固定的反馈参数,以经验和数学模型相结合的办法来操作最优化控制、从而使抗生素发酵产量得以大幅度提高。例如发酵过程中前体的补加。由此可见,要实现对发酵过程的有效控制,就先要解决补科的连续控制问题。 目前国外发酵生产过程连续补料采用:流量计(电磁流量计、液体质量流量计)、小型电动、气动隔膜调节阀和控制器来实现连续补料控制。菜发酵工厂在中试试验中还成功地运用了电子称加三阀控制的自动补科系统

集装箱干式厌氧发酵设备简介

集装箱干式厌氧发酵设备简介 集装箱干式厌氧发酵设备是一种全新概念的有机废弃物厌氧发酵装置,它以干式沼气发酵工艺为核心技术,将现有沼气工程系统进行了装备化、产品化,形成了一套具有完整沼气发酵功能的标准设备,是目前中小型沼气发酵行业中一个独创的新产品。 一、产品开发背景 集装箱干式厌氧发酵设备是将干式发酵工艺和集装箱进行了融合,使设备具有了沼气发酵功能的同时实现了整套设备的可移动性,将以往的沼气系统的工程概念创造性的转变为设备概念。 利用干式发酵的工艺特点及集装箱的设备优势。实现了沼气工程设备化后的运输安装的便捷性、处理工艺的高效性、操作的简单、运行的稳定以及占地小投资低等。 二、运行工艺及参数 将工程中绝大部分系统进行设备化,如发酵、搅拌、加热、沼气存储、保温、沼气存储、沼气净化、固液分离、控制等。最后融合为一整体,进而装备化、产品化。基本工艺如下: 集装箱干式发酵设备

设备参数: 三、产品的特点及优势 (1)全套设备由集装箱高度集成,实现全套系统设备可移动,便于运输及搬迁;(2)设备安装简单,工程量大为减少,可实现系统设备的快速安装和启动;(3)集装箱场地布置简单,无需建造大量的土建设施; (4)设备自动化控制,操作简单,可实现单人操作; (5)模块集成,可扩容,可移动、可回收,可租赁,具有极高的残值; 四、项目工程案例 目前集装箱干式厌氧发酵设备目前已在全国多个地方进行了示范与推广,并取得了良好的市场反馈。

项目名称:湖北恩施某养鸡场粪污处理 运行时间:2015年4月 日产沼气:200立方米 沼气用途:发电与供暖 项目名称:广东揭阳某养牛场粪污处理 运行时间:2015年5月 日产沼气:200立方米 沼气用途:发电 上海华库环保科技有限公司 2015-10-27

有机酸发酵工艺学试卷

2006~2007学年第二学期期末考试 生物工程专业《有机酸工艺学》课程试卷 注意事项:1. 考生务必将自己姓名、学号、专业名称写在指定位置; 密封线和装订线内不准答题。 一、单选题(从四个答案中选一个正确答案,将代号添入括号,每题2分,共10分) 1. 深层发酵法生产柠檬酸时,若泡沫过多,可以加入下列那种物质( )。 A .植物油 B 碳酸钙 C. 氢氧化钠 D.黑曲霉孢子 2. 定性, 定量测定柠檬酸的反应中,柠檬酸经氧化后生成的3-酮戊二酸与溴作用能生成( )沉淀。 A .五溴丙酮 B.碳酸钙 C.硫酸钡 D. 以上都不对 3. 某些( )能利用以烷烃为主要成分的石油原料产生柠檬酸。 A .放线菌 B .黑曲霉 C .青霉 D . 酵母 4. 筛选产柠檬酸菌株时,判断产酸能力大小的依据是 ( )。 A.透明圈直径 B.菌落直径 C.变色圈与菌落直径比值 D.其它 5. 糖蜜预处理过程中的EDTA 处理法是为了除去( )。 A .淀粉 B 葡萄糖 C. 氯化钠 D.金属离子 二、多项选择题(本大题共10小题,每小题2分,共20分) 1. 在积累柠檬酸的情况下,必须要有另外的途径提供草酰乙酸。现在已公认草酰乙酸是由( )羧化形成的。 A .丙酮酸 B .磷酸烯醇丙酮酸 C. 丁酮 D. 丁酸 2. 验收糖蜜时考察的指标有那些( )。 A .微生物数量 B .含糖量 C.蛋白质 D .以上都不对 3. 在柠檬酸发酵工业生产上有价值的微生物有( )。

A.黑曲霉B. 大肠杆菌C. 解脂假丝酵母D.啤酒酵母 4. 柠檬酸的发酵工艺包括()。 A.表面发酵B 深层发酵C.固体发酵D.钙盐提取工艺 5.柠檬酸发酵时通常可用作产酸促进剂的有( )。 A.低级醇B.络合剂C.有机酸D.多元醇 6.柠檬酸的提取工艺有() A.钙盐法B. 萃取法C. 离子交换法D. 电渗析法 7.柠檬酸生产的原料包括下列那几种()。 A.淀粉质原料B. 制糖工业副产品C. 粗制糖类D. 二氧化碳 8.糖蜜原料的预处理方法有()。 A.钙盐法B. 黄血盐处理法C. 离子交换法D. EDTA法 9.柠檬酸发酵中的无菌空气过滤系统包括()。 A.除油过滤B. 除菌过滤C. 加热D. 以上都不对 10.影响深层发酵的因素包括()。 A.温度B. pH值C. 酸解时加酸量D. 通风 三、填空题(每空1分,共20分) 1.柠檬酸又名( ),英文名( ),学名为( )。 2. 1952年,美国Miles实验室首先采用( )法大规模生产柠檬酸。 3. 我国柠檬酸工业在解放前是个空白。但目前我国柠檬酸产量是世界( )。 4. 一水柠檬酸是从低于( )度的水溶液中结晶析出。 5. 柠檬酸钙盐有3种类型:( )、( ) 、( )。在工业生产中的柠檬酸钙指的是( )。 6. 柠檬酸是一种较强的有机酸,完全电离时可以电离出( )个H+。 7. 利用发酵法可以生产的有机酸有( )、( ) 、( )、( )、( ) 、( )。 8.现在普遍认为柠檬酸是经过( )途径、( )羧化和( )循环而合成的。

厌氧发酵工艺

厌氧发酵处理工艺 有机垃圾的厌氧发酵处理正成为有机垃圾处理的一种新趋势,具有巨大的经济效益和环境效益。若技术应用于日处理有机垃圾 800 吨左右的厌氧发酵系统,每日可以产生100000m3左右生物气体,其中氢气含量 20%以上,发电 160000 度;处理后的沼渣不仅可以生产出 100 吨左右的优质有机肥,而且不对周围环境产生影响,相反,处理了大量的废物,可以大大降低固体废物对环境的危害。厌氧发酵工艺是一种产能又环保的生物处理工艺,已经广泛应用于废水的处理,在有机固体垃圾处理方面应用。有机垃圾主要包括城市生活垃圾中的有机成份、各类农作物的秸秆、禽兽的排泄物以及常见的餐饮垃圾等。统计显示,我国城市生活垃圾的清运量约 1.5 亿吨/年,并以接近 10%的速度迅猛增加;我国作为农业大国,农作物秸秆资源丰富,总产量约为 7 亿吨/年,并且以每年 6%的速度增加;禽兽养殖粪便每年产量超过 20 亿吨;我国餐饮垃圾总量约合 2000 吨/天,目前,处理这些有机垃圾的方法主要有卫生填埋、焚烧、堆肥(好氧发酵)以及厌氧发酵方法。卫生填埋的优点是填埋量大且成本较低,不足是浪费大量的土地资源,对于城市而言,可供填埋的土地越来越少;焚烧的优点是短时间内减量幅度大(达80%~90%),同时可以回收部分能源,但是其初投资和运行成本较高,而且对环境污染严重;堆肥的资源化程度较高,但减量较少且堆肥过程中容易产生恶臭,影响空气质量,在发达国家受到严格限制。厌氧发酵方法处理有机垃圾是通过厌氧微生物的作用,将有机垃圾降解为甲烷、氢气和二氧化碳的生化过程,该方法最终产物恶臭味减小,并且产生的甲烷气体可以作为能源回收,同时达到减少垃圾容积,达到“减量化、资源化、无害化”的目的,具有巨大的经济效益和环境效益,是未来处理有机垃圾的重要发展方向之一。 厌氧发酵工艺: 厌氧发酵处理工艺的分类方法诸多,根据不同的分类方法,厌氧发酵方法被分成不同的发酵工艺。根据发酵阶段所处的反应器的不同进行分类,可以分为两相发酵工艺和单相发酵工艺。按照反应器的操作条件不同(如固含率、发酵温度)等可分为三类:按固含率分湿式、干式工艺;按运行温度可以分为高温发酵、中温发酵和常温发酵三类。 按进料方式可分为间歇式、连续式。

厌氧发酵工艺

以农业废弃物和农产品加工废水及废渣等各种有机物为原料,在厌氧条件下利用微生物的话动,生产沼气并使有机物得到处理的过程称为沼气发酵工艺。由于发酵原料和发酵条件的不同,所采用的发酵工艺也多种多样,目前应用或研究较多的工艺类型有塞流式反应器、完全混合厌氧消化工艺、上流式厌氧污泥床反应器、升流式固体反应器等。 1.塞流式反应器(Plug Flow Reactor,简称PFR) 塞流式反应器也称推流式反应器,是一种长方形的非完全混合式反应器。高浓度悬浮固体发酵原料从一端进入,从另一端排出,它是一种结构简单、应用广泛的工艺类型。该反应器没有搅拌装置,原料在反应器内呈自然沉淀状态,一般分为四层,从上到下依次为浮渣层、上清掖、活性层和沉渣层,其中厌氧微生物活动较为旺盛的场所只局限于活性层内,因而效率较低,多于常温条件下运转。我国农村应用最多的水压式沼气池和印度的哥巴式沼气池均属PFR。近年来经过研究和改进,一些新的农村家用沼气池得到应用,如曲流布料池,集气罩式池、塞流式池,北京-Ⅰ型池等。这些沼气池的性能有所提高,产气率都达到0.5 m3/(m3·d)以上。 2.完全混合厌氧消化工艺(continual stir Tank Reactor,简称CSTR) 完全混合厌氧消化工艺即工艺是世界上使用最多、适用范围最广的一种反应器。CSTR反应器内设有搅拌装置,使发酵原料与微生物处于完全混合状态,使活性区遍布整个反应器,其效率比常规反应器有明显提高。该反应器常采用恒温连续投料或半连续投料运转。CSTR反应器应用于含有大量悬浮固体的有机废物和废水,如酒精费醪、禽畜粪便等。在CSTR反应器内,进入的原料由于搅拌作用很快与反应器内发酵液混合,其排出的料液又与发酵液的浓度相等,并且在出料时发酵微生物也一起排出,所以出料浓度一般较高,停留时间要求较长,一般需15天或更长一些时间。CSTR反应器一般负荷,中温为3-4 kg COD/(m3·d),高温为5-6 kg COD/(m3·d)。为了提高反应器效率,在应用过程常加以改进,通过延长固体停留时间(SRT)来提高产气率。该工艺的优点是处理量大,产沼气多,易启动,便于管理,投资费用低,但是水力停留时间(HRT)和SRT要求较长。 3.上流式厌氧污泥床反应器: 上流式厌氧污泥床反应器,Upflow Anaerobic Sludge Bed Reactor,简称UASB 反应器。该工艺装置的特点为在反应器上部安装有气、液、固三相分离器,反应器内所产生的气体在分离器下被收集起来,污泥和污水升流进入沉淀区,由于该区不再有气体上升的搅拌作用,悬浮于污水中的污泥则发生絮凝和沉降,它们沿着分离器斜壁滑回反应器内,使反应器内积累起大量活性污泥。在反应器的底部是浓度很高并具有良好沉降性能的絮状或颗粒状活性污泥,形成污泥床。有机污

发酵工艺原理与设备教学大纲

发酵工艺原理与设备教学大纲 一、本课程的目的、要求、地位和作用 发酵工艺原理与设备是发酵工程专业及相关的生物工程、生物化工等专业的重要专业课。这门课是学生先期学习了“生物学基础”、“生物化学”、“微生物学”、“物理化学”、“机械基础”和“化工原理”等基础课或专业技术基础课后开设的一门必修学位课。该课程突出有关发酵过程的化学、生物学、生物化学和微生物学的原理,全面系统的阐述从发酵原辅料处理、培养基用水的处理和无菌空气的制备,到工业微生物菌种的扩大培养、各种发酵操作方式的工艺规律;下游工程的分离方法等发酵工程基础,发酵工业的主要设备的操作原理、性能及构造和设计方法。简要介绍一些非常规发酵过程,如固态发酵、基因工程菌发酵和动植物细胞培养等。同时还涉及发酵经济学的一些基本原理。 二、课程内容 第一篇发酵生物学原理(11学时) 第一章绪论(5学时) 第一节发酵过程的领域 第二节发酵过程的组成 第三节发酵工业的发展史 第二章发酵过程的生物学基础(5学时) 第一节发酵过程与微生物(自学) 第二节微生物的营养与培养基的设计(自学) 第三节微生物的生长模式及其动力学(自学) 第四节环境对微生物的影响(自学) 第五节代谢产物的代谢调控 第六节微生物代谢产物的过量产生 第三章发酵过程的生物化学基础(1学时) 第一节糖的微生物代谢(自学) 第二节脂类和脂肪酸的微生物代谢(自学) 第三节氨基酸和核酸的微生物代谢(自学) 第四节微生物的次级代谢 第五节芳香族化合物的微生物代谢 第六节 H2和CO2等的微生物代谢 第七节微生物的光合作用 第八节常见发酵产品的发酵机制(自学)

第二篇发酵过程工程原理及设备(52学时) 第四章培养基及其制备(6学时) 第一节原料 第二节原料的预处理 第三节淀粉的水解糖的制备 第四节糖蜜原料的处理 第五节前体物质、促进剂 第五章培养基及设备的灭菌(4学时) 第一节培养基灭菌的目的、要求和方法 第二节湿热灭菌的理论基础 第三节培养基灭菌的工程设计 第六章空气除菌的工艺及设备(4学时) 第一节空气中微生物的分布和发酵工业对空气无菌程度的要求第二节空气除菌方法 第三节介质过滤除菌的机理 第四节介质过滤除菌的流程 第五节介质过滤除菌的设备及计算 第七章生产菌种的扩大培养及保藏(4学时) 第一节种子的制备过程 第二节种子质量的控制 第三节实例 第四节生产发酵罐的无菌接种 第五节菌种的保藏和复壮 第八章发酵过程(12学时) 第一节发酵过程的代谢变化规律 第二节发酵的工艺控制 第三节发酵过程的主要控制参数 第四节发酵过程的自动控制 第五节发酵动力学 第六节发酵过程优化 第九章嫌气发酵设备(2学时) 第一节酒精发酵设备

相关文档