文档库 最新最全的文档下载
当前位置:文档库 › 回归模型进行参数估计和检验

回归模型进行参数估计和检验

回归模型进行参数估计和检验
回归模型进行参数估计和检验

2、多元线性回归模型

1)计算相关系数

打开Eviews---file---new---workfile---work create,截图如下:

点击OK,出现workfile:untitled,截图如下:

Quick---empty group,录入数据:

将ser01命名为gdp,ser02命名为m2,ser03命名为cpi,ser04命名为ltrate,ser05命名为tbrate

2)OLS估计

点击quick---generate series,编写函数,出现下面的截图:

点击OK,得到真实的rgdp,同时也会出现在列表中

再计算真实的货币供给:同样点击quick---generate series,编写函数,截图如下:

点击OK,也会得到真实的货币供给rm2,同时出现在列表中

长期利率:点击quick---estimate equation,编写函数,截图如下:

点击确定并重新命名为eq01,截图如下:

短期利率:点击quick---estimate equation ,编写函数,截图如下:

点击确定并重新命名为eq02,截图如下:

2)模型的统计检验

模型的总体显著性检验

023:0

H ββ==

123

:,0H ββ不全为

0.05(1,)(2,16) 3.63

F k n k F α--==

2

2

0.73(1)

218.25 3.63

0.27

(1)

16

()

R

k F R n k -=

==>--2

2

0.73(1)

218.25 3.63

0.27

(1)

16

()

R

k F R n k -=

==>--

01:0

H β=

11:0

H β≠

所以拒绝

1

H ,接受

H ,

1

β没有显著性; 02:0

H β=

12:0

H β≠

所以拒绝

1

H ,接受

H ,

2

β没有显著性;

03:0

H β=

13:0

H β≠

32.120

t <

所以拒绝

1

H ,接受

H ,

3

β没有显著性。

短期利率: ①拟合优度检验

2

0.729208

R = 0.19T S S = 0.14ESS TSS RSS =-=

2

R

度量的是因变量Y 的总变异中,由回归模型解释的部分所占的百分比或比例。

②模型的总体显著性检验

3

()0.051333se β= 16n =

1 1.984706

t =

23.602265

t = 30.497313

t =- 3k =

023:0H ββ== 123

:,0H ββ不全为 0.05(1,)(2,16) 3.63

F k n k F α--==

所以拒绝

H ,接受

1

H ,在总体上具有统计显著性。

③个别偏回归系数的

显著性检验

01:0

H β= 11:0

H β≠

0.052

2

()(16) 2.120

t n k t α-== 1111

1.073656

2.120

()t se βββ-=

=< 2222

1.841038

2.120

()

t se βββ-==< 3333

0.343535

()t se βββ-=

=- 2

0.046305i

R SS u =

=∑

2

1R S S

R T S S

=-

所以拒绝

1

H ,接受

H ,

1

β没有显著性; 02:0

H β=

12:0

H β≠

所以拒绝

H ,接受

1

H ,

2

β具有显著性; 03:0

H β=

13:0

H β≠

32.120

t <

所以拒绝1

H ,接受

H ,

3

β没有显著性。

0.052

2

()(16) 2.120

t n k t α-== 11

11

1.98

2.120

()

t se βββ-==< 2222

3.60 2.120

()t se βββ-=

=> 3333

0.50

()t se βββ-=

=-

非参数回归模型资料

非参数回归模型

精品资料 仅供学习与交流,如有侵权请联系网站删除 谢谢2 非参数回归模型 非参数回归模型也叫多元回归模型,它是一种脱离于混沌理论的多条路段分析方法。它是对当前路段和几条相邻路段的交通流信息对当前路段进行交通流预测的单条路段分析的扩展。它不需要先验知识,只需要有足够的历史数据即可。它的原理是:在历史数据库中寻找与当前点相似的近邻,并根据这些近邻来预测下一时间段的流量。该算法认为系统所有的因素之间的内在联系都蕴含在历史数据中,因此直接从历史数据中得到信息而不是为历史数据建立一个近似模型。非参数回归最为一种无参数、可移植、预测精度高的算法,它的误差比较小,且误差分布情况良好。尤其通过对搜索算法和参数调整规则的改进,使其可以真正达到实时交通流预测的要求。并且这种方法便于操作实施,能够应用于复杂环境,可在不同的路段上方便地进行预测。能够满足路网上不同路段的预测,避免路段位置和环境对预测的影响。随着数据挖掘技术左键得到人们的认可和国内外学者的大量相关研究,使得非参数回归技术在短时交通流预测领域得到广泛应用。 非参数回归的回归函数()X g Y =的估计值()X g n 一般表示为: ()()∑==n i i i i n Y X W X g 1 其中,Y 为以为广策随机变量;X 为m 维随机变量;(Xi,Yi )为第i 次观测值,i=1,...,n ;Wi(Xi)为权函数.非参数回归就是对g(X)的形状不加任何限制,即对g (X )一无所知的情况下,利用观测值(Xi,Yi ),对指定的X 值去估计Y 值。由于其不需要对系统建立精确的数学模型,因此比较适合对事变的、非线性的系统进行预测,符合对城市交通流的预测,同时可以与历史平均模型实现优缺点的互补。 K 近邻法 Friedman 于1977年提出了K 近邻法。其并不是让所有的数据都参与预 测,而是以数据点到X 点的距离为基础,甲醛是只有离X 最近的K 个数据被用来估计相应的g(X)值。可以引入欧式空间距离d ,然后按这个距离将X1,X2,...,Xn 与X 接近的程度重新排序:Xk1,...,Xkn,取权值如下: Wki(X:X1,...,Xn)=ki,i=1,..,n 将与X 最近的前K 个观测值占有最大的权K=1,其余的观测值赋予权值k=0.最终得到应用于短时交通流预测的K 近邻法可表示为:

多元线性回归模型的各种检验方法.doc

对多元线性回归模型的各种检验方法 对于形如 u X X X Y k k +++++=ββββΛΛ22110 (1) 的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验: 一、 对单个总体参数的假设检验:t 检验 在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0 H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。如果拒绝0H ,说明解释变量j X 对 被解释变量Y 具有显著的线性影响,估计值j β?才敢使 用;反之,说明解释变量j X 对被解释变量Y 不具有显 著的线性影响,估计值j β?对我们就没有意义。具体检验 方法如下: (1) 给定虚拟假设 0H :j j a =β;

(2) 计算统计量 )?(?)?()(?j j j j j j Se a Se E t βββββ-=-= 的数值; 11?)?(++-==j j jj jj j C C Se 1T X)(X ,其中σβ (3) 在给定的显著水平α下(α不能大于1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ; (4) 如果出现 2/αt t >的情况,检验结论为拒绝 0H ;反之,无法拒绝0H 。 t 检验方法的关键是统计量 )?(?j j j Se t βββ-=必须服从已 知的t 分布函数。什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定): (1) 随机抽样性。我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21ΛΛ=。这保证了误差u 自身的随机性,即无自相关性,

多元线性回归模型的各种检验方法-7页文档资料

对多元线性回归模型的各种检验方法 对于形如 u X X X Y k k +++++=ββββΛΛ22110 (1) 的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验: 一、 对单个总体参数的假设检验:t 检验 在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0H :j j a =β,做出具 有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。特别是,当j a =0时,称为参 数的(狭义意义上的)显著性检验。如果拒绝 0H ,说明解释变量j X 对被解释变量Y 具有显著的线性 影响,估计值j β?才敢使用;反之,说明解释变量 j X 对被解释变量Y 不具有显著的线性影响,估计值j β?对我们就没有意义。具体检验方法如下: (1) 给定虚拟假设 0H :j j a =β; (2) 计算统计量 )?(?)?()(?j j j j j j Se a Se E t βββββ-= -= 的数值; (3) 在给定的显著水平α 下( α 不能大于 1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ; (4) 如果出现 2/αt t >的情况,检验结论为拒绝0H ;反之,无法拒绝0H 。

t 检验方法的关键是统计量 )?(?j j j Se t βββ-= 必须服从已知的 t 分布函数。什么情况或条件下才会这 样呢?这需要我们建立的模型满足如下的条件(或假定): (1) 随机抽样性。我们有一个含n 次观测的随 机样 (){}n i Y X X X i ik i i ,,2,1:,,,,21ΛΛ=。这保证了误差u 自身的随机性,即无自相关性, 0))())(((=--j j i i u E u u E u Cov 。 (2) 条件期望值为0。给定解释变量的任何值,误差 u 的期望值为零。即有 这也保证了误差u 独立于解释变量 X X X ,,,21Λ,即模型中的解释变量是外生性的,也使得 0)(=u E 。 (3) 不存在完全共线性。在样本因而在总体中,没有一个解释变量是常数,解释变量之间也不存在严格的线性关系。 (4) 同方差性。常数==2 21),,,(σk X X X u Var Λ。 (5) 正态性。误差u 满足 ),0(~2 σNormal u 。 在以上5个前提下,才可以推导出: 由此可见, t 检验方法所要求的条件是极为苛刻的。 二、 对参数的一个线性组合的假设的检验 需要检验的虚拟假设为 0H :21j j ββ=。比如21ββ=无 法直接检验。设立新参数 211ββθ-=。

非参数回归模型

非参数回归模型 非参数回归模型也叫多元回归模型,它是一种脱离于混沌理论的多条路段分析方法。它是对当前路段和几条相邻路段的交通流信息对当前路段进行交通流预测的单条路段分析的扩展。它不需要先验知识,只需要有足够的历史数据即可。它的原理是:在历史数据库中寻找与当前点相似的近邻,并根据这些近邻来预测下一时间段的流量。该算法认为系统所有的因素之间的内在联系都蕴含在历史数据中,因此直接从历史数据中得到信息而不是为历史数据建立一个近似模型。非参数回归最为一种无参数、可移植、预测精度高的算法,它的误差比较小,且误差分布情况良好。尤其通过对搜索算法和参数调整规则的改进,使其可以真正达到实时交通流预测的要求。并且这种方法便于操作实施,能够应用于复杂环境,可在不同的路段上方便地进行预测。能够满足路网上不同路段的预测,避免路段位置和环境对预测的影响。随着数据挖掘技术左键得到人们的认可和国内外学者的大量相关研究,使得非参数回归技术在短时交通流预测领域得到广泛应用。 非参数回归的回归函数()X g Y =的估计值()X g n 一般表示为: ()()∑==n i i i i n Y X W X g 1 其中,Y 为以为广策随机变量;X 为m 维随机变量;(Xi,Yi )为第i 次观测值,i=1,...,n ;Wi(Xi)为权函数.非参数回归就是对g(X)的形状不加任何限制,即对g (X )一无所知的情况下,利用观测值(Xi,Yi ),对指定的X 值去估计Y 值。由于其不需要对系统建立精确的数学模型,因此比较适合对事变的、非线性的系统进行预测,符合对城市交通流的预测,同时可以与历史平均模型实现优缺点的互补。 K 近邻法 Friedman 于1977年提出了K 近邻法。其并不是让所有的数据都参与预测,而是以数据点到X 点的距离为基础,甲醛是只有离X 最近的K 个数据被用来估计相应的g(X)值。可以引入欧式空间距离d ,然后按这个距离将X1,X2,...,Xn 与X 接近的程度重新排序:Xk1,...,Xkn,取权值如下: Wki(X:X1,...,Xn)=ki,i=1,..,n 将与X 最近的前K 个观测值占有最大的权K=1,其余的观测值赋予权值k=0.最终得到应用于短时交通流预测的K 近邻法可表示为: ()()()()K t V t V g t V K i i ∑=+==+111

非参数统计模型

非参数统计第二次作业 ——局部多项式回归与样条回归 习题一: 一、本题是研究加拿大工人收入情况,即年龄(age)和收入(income)的关系。 此次共调查了205个加拿大工人的年龄和收入,所有工人都是高中毕业。且本题设定因变量为log.income,协变量为age,运用统计方法来拟合log.income 与age之间的函数关系。 二、模型的建立 1.估计方法的选取 拟合两个变量之间的函数关系,即因变量和协变量之间的关系,用回归估计的方法,回归估计包括参数回归估计和非参数回归估计。参数估计是先假定某种数学模型或已知总体的分布,例如总体服从正态分布,其中某些参数未知,如总体均值、方差等,然后利用样本去估计这些未知参数,常用的方法有极大似然估计,Bayes估计等,线性模型可以用最小二乘法估计。 非参数估计是不假定具有某种特定的数学模型,或总体分布未知,直接利用样本去估计总体的数学模型,常用的方法有局部多项式回归方法和样条函数回归方法。 本题调查了205个加拿大工人的年龄和收入,但是加拿大工人年龄和收入的具体分布未知,即这两个变量所能建立的数学模型未知,而且由协变量和因变量所形成的散点图可以看出它不符合某种特定的已知模型,需要进一步研究,然后拟合它们之间的函数关系。因此本题选用非参数回归估计的方法,来拟合因变量和协变量之间的关系。 针对此问题分别采用非参数估计中的局部多项式回归和样条函数回归方法对log.income 与age之间的函数关系进行估计。 2.局部多项式回归方法 局部多项式的思想是在某个点x附近,用一个多项式函数来逼近未知的光滑函数g(x)。选定局部邻域的大小h,对于任意给定某个点x 0,在其小邻域内展开泰勒公式,用一个p阶多项式来局部逼近g(x),然后再用极大似然估计。 (1)加拿大工人的收入(log.income)与年龄(age)之间的散点图如下所示:

非参数回归模型与半参数回归模型

第七章 非参数回归模型与半参数回归模型 第一节 非参数回归与权函数法 一、非参数回归概念 前面介绍的回归模型,无论是线性回归还是非线性回归,其回归函数形式都是已知的,只是其中参数待定,所以可称为参数回归。参数回归的最大优点是回归结果可以外延,但其缺点也不可忽视,就是回归形式一旦固定,就比较呆板,往往拟合效果较差。另一类回归,非参数回归,则与参数回归正好相反。它的回归函数形式是不确定的,其结果外延困难,但拟合效果却比较好。 设Y 是一维观测随机向量,X 是m 维随机自变量。在第四章我们曾引进过条件期望作回归函数,即称 g (X ) = E (Y |X ) (7.1.1) 为Y 对X 的回归函数。我们证明了这样的回归函数可使误差平方和最小,即 22)]([min )]|([X L Y E X Y E Y E L -=- (7.1.2) 这里L 是关于X 的一切函数类。当然,如果限定L 是线性函数类,那么g (X )就是线性回归函数了。 细心的读者会在这里立即提出一个问题。既然对拟合函数类L (X )没有任何限制,那么可以使误差平方和等于0。实际上,你只要作一条折线(曲面)通过所有观测点(Y i ,X i )就可以了是的,对拟合函数类不作任何限制是完全没有意义的。正象世界上没有绝对的自由一样,我们实际上从来就没有说放弃对L(X)的一切限制。在下面要研究的具体非参数回归方法,不管是核函数法,最近邻法,样条法,小波法,实际都有参数选择问题(比如窗宽选择,平滑参数选择)。 所以我们知道,参数回归与非参数回归的区分是相对的。用一个多项式去拟合(Y i ,X i ),属于参数回归;用多个低次多项式去分段拟合(Y i ,X i ),叫样条回归,属于非参数回归。 二、权函数方法 非参数回归的基本方法有核函数法,最近邻函数法,样条函数法,小波函数法。这些方法尽管起源不一样,数学形式相距甚远,但都可以视为关于Y i 的线性组合的某种权函数。也就是说,回归函数g (X )的估计g n (X )总可以表为下述形式: ∑==n i i i n Y X W X g 1 )()( (7.1.3)

回归分析方法

回归分析方法Newly compiled on November 23, 2020

第八章回归分析方法 当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型。如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。本章讨论其中用途非常广泛的一类模型——统计回归模型。回归模型常用来解决预测、控制、生产工艺优化等问题。 变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来。例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。回归分析就是处理变量之间的相关关系的一种数学方法。其解决问题的大致方法、步骤如下: (1)收集一组包含因变量和自变量的数据; (2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数; (3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型; (4)判断得到的模型是否适合于这组数据; (5)利用模型对因变量作出预测或解释。 应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上。运用一般计算语言编程也要

占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能。MATLAB 等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。MATLAB 统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。运用MATLAB 统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。在此基础上再介绍在建模过程中如何有效地使用MATLAB 软件。没有学过这部分数学知识的读者可以不深究其数学原理,只要知道回归分析的目的,按照相应方法通过软件显示的图形或计算所得结果表示什么意思,那么,仍然可以学到用回归模型解决实际问题的基本方法。包括:一元线性回归、多元线性回归、非线性回归、逐步回归等方法以及如何利用MATLAB 软件建立初步的数学模型,如何透过输出结果对模型进行分析和改进,回归模型的应用等。 8.1 一元线性回归分析 回归模型可分为线性回归模型和非线性回归模型。非线性回归模型是回归函数关于未知参数具有非线性结构的回归模型。某些非线性回归模型可以化为线性回归模型处理;如果知道函数形式只是要确定其中的参数则是拟合问题,可以使用MATLAB 软件的curvefit 命令或nlinfit 命令拟合得到参数的估计并进行统计分析。本节主要考察线性回归模型。 一元线性回归模型的建立及其MATLAB 实现 其中01ββ,是待定系数,对于不同的,x y 是相互独立的随机变量。

用R语言做非参数和半参数回归笔记

由詹鹏整理,仅供交流和学习 根据南京财经大学统计系孙瑞博副教授的课件修改,在此感谢孙老师的辛勤付出! 教材为:Luke Keele:Semiparametric Regression for the Social Sciences.John Wiley &Sons,Ltd.2008. ------------------------------------------------------------------------- 第一章introduction:Global versus Local Statistic 一、主要参考书目及说明 1、Hardle(1994).Applied Nonparametic Regresstion.较早的经典书 2、Hardle etc(2004).Nonparametric and semiparametric models:an introduction. Springer.结构清晰 3、Li and Racine(2007).Nonparametric econometrics:Theory and Practice.Princeton.较全面和深入的介绍,偏难 4、Pagan and Ullah(1999).Nonparametric Econometrics.经典 5、Yatchew(2003).Semiparametric Regression for the Applied Econometrician.例子不错 6、高铁梅(2009).计量经济分析方法与建模:EVIEWS应用及实例(第二版).清华大学出版社.(P127/143) 7、李雪松(2008).高级计量经济学.中国社会科学出版社.(P45ch3) 8、陈强(2010).高级计量经济学及Stata应用.高教出版社.(ch23/24) 【其他参看原ppt第一章】 二、内容简介 方法: ——移动平均(moving average) ——核光滑(Kernel smoothing) ——K近邻光滑(K-NN) ——局部多项式回归(Local Polynormal) ——Loesss and Lowess ——样条光滑(Smoothing Spline) ——B-spline ——Friedman Supersmoother 模型: ——非参数密度估计 ——非参数回归模型 ——非参数回归模型 ——时间序列的半参数模型 ——Panel data的半参数模型 ——Quantile Regression 三、不同的模型形式 1、线性模型linear models 2、Nonlinear in variables

实验一 Eviews的基本使用、线性回归模型的估计和检验

实验一 Eviews 的基本使用、线性回归模型的估计和检验 实验目的与要求:熟悉Eviews 软件基本使用功能、掌握线性回归模型的参数估计及其检验。 实验内容:建立一个工作文件、数据的输入、数据的保存、生成新序列、 作序列图和相关图。线性回归模型的参数估计及其检验。 实验步骤:(具体步骤同学们可按照课堂讲解的程序进行也可按下面的指导操作,无论怎么操作,只要得到正确的结果即可) 一、模型的构建 表 2002年中国各地区城市居民人均年消费支出和可支配收入 作城市居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)的散点图,如图 从散点图可以看出居民家庭平均每人每年消费支出 (Y)和城市居民人均年可支配 收入(X)大体呈现为线性关系, 4000 6000 8000 10000 12000 4000 6000 8000 10000 12000 14000 X Y

所以建立的计量经济模型为如下线性模型: 12i i i Y X u ββ=++ 二、估计参数 利用EViews 作简单线性回归分析的步骤如下: 1、建立工作文件 首先,双击EViews 图标,进入EViews 主页。在菜单一次点击File\New\Workfile ,出现对话框“Workfile Range ”。在“Workfile frequency ”中选择数据频率: Annual (年度) Weekly ( 周数据 ) Quartrly (季度) Daily (5 day week ) ( 每周5天日数据 ) Semi Annual (半年) Daily (7 day week ) ( 每周7天日数据 ) Monthly (月度) Undated or irreqular (未注明日期或不规则的) 在本例中是截面数据,选择“Undated or irreqular ”。并在“Start date ”中输入开始时间或顺序号,如“1”在“end date ”中输入最后时间或顺序号,如“31”点击“ok ”出现“Workfile UNTITLED ”工作框。其中已有变量:“c ”—截距项 “resid ”—剩余项。 在“Objects ”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并在“Name for Objects”上定义文件名,点击“OK ”出现数据编辑窗口。 若要将工作文件存盘,点击窗口上方“Save ”,在“SaveAs ”对话框中给定路径和文件名,再点击“ok ”,文件即被保存。 2、输入数据 在数据编辑窗口中,首先按上行键“↑”,这时对应的“obs”字样的空格会自动上跳,在对应列的第二个“obs”有边框的空格键入变量名,如“Y ”,再按下行键“↓”,对因变量名下的列出现“NA ”字样,即可依顺序输入响应的数据。其他变量的数据也可用类似方法输入。 也可以在EViews 命令框直接键入“data X Y ”(一元时) 或 “data Y 1X 2X … ”(多元时),回车出现“Group”窗口数据编辑框,在对应的Y 、X 下输入数据。 若要对数据存盘,点击 “fire/Save As”,出现“Save As ”对话框,在“Drives ”点所要存的盘,在“Directories ”点存入的路径(文件名),在“Fire Name ”对所存文件命名,或点已存的文件名,再点“ok ”。 若要读取已存盘数据,点击“fire/Open”,在对话框的“Drives”点所存的磁盘名,在“Directories”点文件路径,在“Fire Name”点文件名,点击“ok”即可。

线性回归模型检验方法拓展-三大检验

第四章线性回归模型检验方法拓展——三大检验作为统计推断的核心内容,除了估计未知参数以外,对参数的假设检验是实证分析中的一个重要方面。对模型进行各种检验的目的是,改善模型的设定以确保基本假设和估计方法比较适合于数据,同时也是对有关理论有效性的验证。 一、假设检验的基本理论及准则 假设检验的理论依据是“小概率事件原理”,它的一般步骤是 (1)建立两个相对(互相排斥)的假设(零假设和备择假设)。 (2)在零假设条件下,寻求用于检验的统计量及其分布。 (3)得出拒绝或接受零假设的判别规则。 另一方面,对于任何的检验过程,都有可能犯错误,即所谓的第一类错误 P(拒绝H |H0为真)=α 和第二类错误 P(接受H |H0不真)=β 在下图,粉红色部分表示P(拒绝H0|H0为真)=α。黄色部分表示P(接受H0|H0不真)=β。 而犯这两类错误的概率是一种此消彼长的情况,于是如何控制这两个概率,使它们尽可能的都小,就成了寻找优良的检验方法的关键。

下面简要介绍假设检验的有关基本理论。 参数显著性检验的思路是,已知总体的分布(,)F X θ,其中θ是未知参数。总体真实分布完全由未知参数θ的取值所决定。对θ提出某种假设 001000:(:,)H H θθθθθθθθ=≠><或,从总体中抽取一个容量为n 的样本,确定 一个统计量及其分布,决定一个拒绝域W ,使得0()P W θα=,或者对样本观测数据X ,0()P X W θα∈≤。α是显著性水平,即犯第一类错误的概率。 既然犯两类错误的概率不能同时被控制,所以通常的做法是,限制犯第一类错误的概率,使犯第二类错误的概率尽可能的小,即在 0()P X W θα∈≤ 0θ∈Θ 的条件下,使得 ()P X W θ∈,0θ∈Θ-Θ 达到最大,或 1()P X W θ-∈,0θ∈Θ-Θ 达到最小。其中()P X W θ∈表示总体分布为(,)F X θ时,事件W ∈{X }的概率,0 Θ为零假设集合(0Θ只含一个点时成为简单原假设,否则称为复杂原假设)。 0Θ-Θ为备择假设集合,并且0Θ与0Θ-Θ不能相交。由前述可知,当1H 为真时,它被拒绝(亦即H 0不真时,接受H 0)的概率为β,也就是被接受(亦即H 0不真时,拒绝H 0)的概率是1β-(功效),我们把这个接受1H 的概率称为该检验的势。在对未知参数θ作假设检验时,在固定α下,对θ的每一个值,相应地可求得1β-的值,则定义 =1()()P X W θβθ-∈

时间序列中回归模型的诊断检验

时间序列中回归模型的诊断检验 【摘要】:时间序列是指被观测到的依时间次序排列的数据序列。从经济、金融到工程技术,从天文、地理到气象,从医学到生物,几乎在各个领域中都涉及到时间序列。对时间序列数据进行统计分析及推断,被称为时间序列分析。近几十年来,金融时间序列分析得到了人们广泛的关注。Engle在1982年对英国的通货膨胀率数据进行分析时提出一种统计建模思想:时间序列自回归模型误差的条件方差不一定是常数,可以随时间的变化而不同。基于这个思想,Engle首次提出了条件异方差模型,即人们熟知的ARCH(p)模型。由于Engle出色的开创性工作,金融时间序列条件异方差模型很快在学术界和实际应用中得到了极大的关注。许多专家学者根据实际中经济、金融数据的各种特征,提出了各种各样的条件异方差模型,并研究各种参数或非参数估计方法。但是,提出的模型是否合理?或者说,观测数据是否真的来自这一模型?人们往往不太关心。这个问题实际上是所谓的模型检验问题。对于著名的Box-Jenkins时间序列建模三步曲:模型的建立、模型的参数估计和模型的检验,理论上他们具有同等重要的地位。但是,正如专著Li所述,人们关注更多的是前面两步工作,而第三步(即模型的检验)常常得不到应有的重视。对于近二十年来受到广泛关注的条件异方差模型,模型检验问题同样没有得到应有的关注,相关的研究寥寥无几。对传统的回归模型,文献中主要有两大类模型检验方法:局部光滑方法和整体光滑方法。局部光滑方法涉及用非参数

估计方法估计其均值函数从而有可能导致维数问题。为了避免维数问题,学者们提出了各种各样的整体光滑方法用于模型检验,构造的检验不需要非参数光滑,但是对高频备择不敏感。上述两种方法各有优缺点。另外,这两种方法基本上都是针对因变量为一元情形。因此,本文提出一些新的方法来处理时间序列自回归模型的模型检验问题。需要特别指出的是,本文考虑的时间序列包括一元和多元情形,回归函数形式可以非常一般,自回归变量可以有多个后置项。本文首先研究了一元时间序列一般形式的自回归模型(包括条件异方差模型的均值模型和方差模型)的模型检验问题。通过模型的残差或标准化的残差进行加权平均,我们构造了一个得分型检验统计量。该检验具有许多优良性质,比如:在零假设模型下是渐近卡方分布的,处理起来简单;对备择假设敏感,能检测到以参数的速度收敛到原假设的备择假设模型;通过权函数的选择可以构造功效高的检验。在方向备择情形,我们研究得到了最优(功效最高)的得分型检验。当备择不是沿着某一方向而是多个可能的方向趋于原假设时,我们构造了极大极小(maximin)检验,该检验是渐近分布自由的,并具有许多优良性质。另外,对备择完全未知(即完全饱和备择)情形,我们也基于得分型检验的思想提出了一个构造万能检验(omnibustest)的可行性方案。需要指出的是,关于时间序列回归模型的诊断检验问题,本文是第一篇理论上研究检验的功效性质的文章。另外,在进行功效研究的过程中,我们得到了当模型被错误指定时参数估计(拟极大似然估计)的渐近性质。注意到得分型检验在构造过程中涉及渐近方差的插入估计

非参数回归模型与半参数回归模型

第七章 非参数回归模型与半参数回归模型 第一节 非参数回归与权函数法 一、非参数回归概念 前面介绍的回归模型,无论是线性回归还是非线性回归,其回归函数形式都是已知的,只是其中参数待定,所以可称为参数回归。参数回归的最大优点是回归结果可以外延,但其缺点也不可忽视,就是回归形式一旦固定,就比较呆板,往往拟合效果较差。另一类回归,非参数回归,则与参数回归正好相反。它的回归函数形式是不确定的,其结果外延困难,但拟合效果却比较好。 设Y 是一维观测随机向量,X 是m 维随机自变量。在第四章我们曾引进过条件期望作回归函数,即称 g (X ) = E (Y |X ) (7.1.1) 为Y 对X 的回归函数。我们证明了这样的回归函数可使误差平方和最小,即 22)]([min )]|([X L Y E X Y E Y E L -=- (7.1.2) 这里L 是关于X 的一切函数类。当然,如果限定L 是线性函数类,那么g (X )就是线性回归函数了。 细心的读者会在这里立即提出一个问题。既然对拟合函数类L (X )没有任何限制,那么可以使误差平方和等于0。实际上,你只要作一条折线(曲面)通过所有观测点(Y i ,X i )就可以了是的,对拟合函数类不作任何限制是完全没有意义的。正象世界上没有绝对的自由一样,我们实际上从来就没有说放弃对L(X)的一切限制。在下面要研究的具体非参数回归方法,不管是核函数法,最近邻法,样条法,小波法,实际都有参数选择问题(比如窗宽选择,平滑参数选择)。 所以我们知道,参数回归与非参数回归的区分是相对的。用一个多项式去拟合(Y i ,X i ),属于参数回归;用多个低次多项式去分段拟合(Y i ,X i ),叫样条回归,属于非参数回归。 二、权函数方法 非参数回归的基本方法有核函数法,最近邻函数法,样条函数法,小波函数法。这些方法尽管起源不一样,数学形式相距甚远,但都可以视为关于Y i 的线性组合的某种权函数。也就是说,回归函数g (X )的估计g n (X )总可以表为下述形式: ∑==n i i i n Y X W X g 1 )()( (7.1.3)

多元线性回归模型的检验

多元线性回归模型的检验[1] 多元性回归模型与一元线性回归模型一样,在得到参数的最小二乘法的估计值之后,也需要进行必要的检验与评价,以决定模型是否可以应用。 1、拟合程度的测定。 与一元线性回归中可决系数r2相对应,多元线性回归中也有多重可决系数r2,它是在因变量的总变化中,由回归方程解释的变动(回归平方和)所占的比重,R2越大,回归方各对样本数据点拟合的程度越强,所有自变量与因变量的关系越密切。计算公式为: 其中, 2.估计标准误差 估计标准误差,即因变量y的实际值与回归方程求出的估计值之间的标准误差,估计标准误差越小,回归方程拟合程度越程。 其中,k为多元线性回归方程中的自变量的个数。 3.回归方程的显著性检验 回归方程的显著性检验,即检验整个回归方程的显著性,或者说评价所有自变量与因变量的线性关系是否密切。能常采用F检验,F统计量的计算公式为: 根据给定的显著水平a,自由度(k,n-k-1)查F分布表,得到相应的临界值Fa,若F > Fa,则回归方程具有显著意义,回归效果显著;F < Fa,则回归方程无显著意义,回归效果不显著。 4.回归系数的显著性检验 在一元线性回归中,回归系数显著性检验(t检验)与回归方程的显著性检验(F检验)是等价的,但在多元线性回归中,这个等价不成立。t检验是分别检验回归模型中各个回归系数是否具有显著性,以便使模型中只保留那些对因变量有显著影响的因素。检验时先计算统

计量ti;然后根据给定的显著水平a,自由度n-k-1查t分布表,得临界值ta或ta / 2,t > t ? a或ta / 2,则回归系数bi与0有显著关异,反之,则与0无显著差异。统计量t 的计算公式为: 其中,Cij是多元线性回归方程中求解回归系数矩阵的逆矩阵(x'x) ?1的主对角线上的第j个元素。对二元线性回归而言,可用下列公式计算: 其中, 5.多重共线性判别 若某个回归系数的t检验通不过,可能是这个系数相对应的自变量对因变量的影平不显著所致,此时,应从回归模型中剔除这个自变量,重新建立更为简单的回归模型或更换自变量。也可能是自变量之间有共线性所致,此时应设法降低共线性的影响。 多重共线性是指在多元线性回归方程中,自变量之彰有较强的线性关系,这种关系若超过了因变量与自变量的线性关系,则回归模型的稳定性受到破坏,回归系数估计不准确。需要指出的是,在多元回归模型中,多重共线性的难以避免的,只要多重共线性不太严重就行了。判别多元线性回归方程是否存在严惩的多重共线性,可分别计算每两个自变量之间的可决系数r2,若r2 > R2或接近于R2,则应设法降低多重线性的影响。亦可计算自变量间的相关系数矩阵的特征值的条件数k = λ1 / λp(λ1为最大特征值,λp为最小特征值),k<100,则不存在多重点共线性;若100≤k≤1000,则自变量间存在较强的多重共线性,若k>1000,则自变量间存在严重的多重共线性。降低多重共线性的办法主要是转换自变量的取值,如变绝对数为相对数或平均数,或者更换其他的自变量。 检验 当回归模型是根据动态数据建立的,则误差项e也是一个时间序列,若误差序列诸项之间相互独立,则误差序列各项之间没有相关关系,若误差序列之间存在密切的相关关系,则

第八章 统计回归模型

第八章 统计回归模型 回归分析是研究一个变量Y 与其它若干变量X 之间相关关系的一种数学工具.它是在一组试验或观测数据的基础上,寻找被随机性掩盖了的变量之间的依存关系.粗略的讲,可以理解为用一种确定的函数关系去近似代替比较复杂的相关关系.这个函数称为回归函数. 回归分析所研究的主要问题是如何利用变量X 、Y 的观察值(样本),对回归函数进行统计推断,包括对它进行估计及检验与它有关的假设等. 回归分析包含的内容广泛.此处将讨论多项式回归、多元线性回归、非线性回归以及逐步回归. 一、多项式回归 (1) 一元多项式回归 一元多项式回归模型的一般形式为εβββ++++=m m x x y ...10. 如果从数据的散点图上发现y 与x 呈现较明显的二次(或高次)函数关系,则可以选用一元多项式回归. 1. 用函数polyfit 估计模型参数,其具体调用格式如下: p=polyfit(x,y,m) p 返回多项式系数的估计值;m 设定多项式的最高次数;x ,y 为对应数据点值. [p,S]=polyfit(x,y,m) S 是一个矩阵,用来估计预测误差. 2. 输出预估值与残差的计算用函数polyval 实现,其具体调用格式如下: Y=polyval(p,X) 求polyfit 所得的回归多项式在X 处的预测值Y . [Y ,DELTA]=polyval(p,X,S) p ,S 为polyfit 的输出,DELTA 为误差估计.在线性回归模型中,Y ±DELTA 以50%的概率包含函数在X 处的真值. 3. 模型预测的置信区间用polyconf 实现,其具体调用格式如下: [Y ,DELTA]=polyconf(p,X,S,alpha) 求polyfit 所得的回归多项式在X 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y±DELTA ,alpha 缺省时为0.05. 4. 交互式画图工具polytool ,其具体调用格式如下: polytool(x,y,m); polytool(x,y,m,alpha); 用m 次多项式拟合x ,y 的值,默认值为1,alpha 为显著性水平,默认值为0.05. 例1 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s . 解 根据数据的散点图,应拟合为一条二次曲线.选用二次模型,具体代码如下: %%%输入数据

数学建模方法之统计回归总结

统计回归总结 由于客观事物内部规律的复杂及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型。所以我们通过对数据的统计分析,找出与数据拟合最好的模型。 我们通过实例讨论如何选择不同类型的模型,对软件得到的结果进行分析,对模型进行改进: 回归分析步骤如下: ●收集一组因变量和自变量的数据 ●选定因变量和自变量之间的模型,利用数据最小二乘准则计算模 型中的系数 ●利用统计分析方法对不同的模型进行比较找出与数据拟合得最好 的模型 ●判断这组模型是否适合于这组数据诊断有无不适合回归模型的异 常数据 ●利用模型对因变量做出预测与解释 实例分析 一、牙膏的销售量 题目: 收集了30个销售周期本公司牙膏销售量、价格、广告费用,及同期其它厂家同类牙膏的平均售价,请根据对数据的处理建立牙膏销售量与价格、广告投入之间的模型预测在不同价格和广告费用下的牙

膏销售量。 分析与假设 根据对题目中数据进行处理,作散点图分析(MATLAB )应用格式 Plot(x,y,’’) Plotfit(x,y,1),其中x 表示y 模型建立与求解 假设y ~公司牙膏销售量,x 1~其它厂家与本公司价格差 (1)x 2~公司广告费用 (2)将(1)、(2)式子联立可以得到 εββ++=110x y εβββ+++=2 22210x x y ε ββββ++++=22322110x x x y

(3) y~被解释变量(因变量) x1,x2~解释变量(回归变量,自变量) β0,β1,β2,β3~回归系数 ε~随机误差(均值为零的正态分布随机变量) 利用MATLAB工具求解可以得到。 格式如下 [b,bint,r,rint,stats]=regress(y,x,alpha) 输入: y~n维数据向量 x=[1 x1 x2 x22 ]~n×4数据矩阵,第一列为全1向量 alpha(置信水平,0.05) 输出: b~β的估计值 bint~b的置信区间 r ~残差向量y-xb rint~r的置信区间 Stats~检验统计回归模型;检验统计量:R2,F,p 注:其中R2越接近1越好,F远超过F检验的临界值,p远小于α=0.05 则可行

回归分析方法

第八章 回归分析方法 当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型。如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。本章讨论其中用途非常广泛的一类模型——统计回归模型。回归模型常用来解决预测、控制、生产工艺优化等问题。 变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来。例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。回归分析就是处理变量之间的相关关系的一种数学方法。其解决问题的大致方法、步骤如下: (1)收集一组包含因变量和自变量的数据; (2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数; (3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型; (4)判断得到的模型是否适合于这组数据; (5)利用模型对因变量作出预测或解释。 应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上。运用一般计算语言编程也要占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能。MA TLAB 等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。MATLAB 统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。运用MA TLAB 统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。在此基础上再介绍在建模过程中如何有效地使用MA TLAB 软件。没有学过这部分数学知识的读者可以不深究其数学原理,只要知道回归分析的目的,按照相应方法通过软件显示的图形或计算所得结果表示什么意思,那么,仍然可以学到用回归模型解决实际问题的基本方法。包括:一元线性回归、多元线性回归、非线性回归、逐步回归等方法以及如何利用MATLAB 软件建立初步的数学模型,如何透过输出结果对模型进行分析和改进,回归模型的应用等。 8.1 一元线性回归分析 回归模型可分为线性回归模型和非线性回归模型。非线性回归模型是回归函数关于未知参数具有非线性结构的回归模型。某些非线性回归模型可以化为线性回归模型处理;如果知道函数形式只是要确定其中的参数则是拟合问题,可以使用MATLAB 软件的curvefit 命令或nlinfit 命令拟合得到参数的估计并进行统计分析。本节主要考察线性回归模型。 8.1.1 一元线性回归模型的建立及其MATLAB 实现 01y x ββε=++ 2~(0,)N εσ 其中01ββ,是待定系数,对于不同的,x y 是相互独立的随机变量。

一元线性回归模型的统计检验概述(doc 8页)

一元线性回归模型的统计检验概述(doc 8页)

§2.3 一元线性回归模型的统计检验 回归分析是要通过样本所估计的参数来代替总体的真实参数,或者说是用样本回归线代替总体回归线。尽管从统计性质上已知,如果有足够多的重复抽样,参数的估计值的期望(均值)就等于其总体的参数真值,但在一次抽样中,估计值不一定就等于该真值。那么,在一次抽样中,参数的估计值与真值的差异有多大,是否显著,这就需要进一步进行统计检验。主要包括拟合优度检验、变量的显著性检验及参数的区间估计。 一、拟合优度检验

拟合优度检验,顾名思义,是检验模型对样本观测值的拟合程度。检验的方法,是构造一个可以表征拟合程度的指标,在这里称为统计量,统计量是样本的函数。从检验对象中计算出该统计量的数值,然后与某一标准进行比较,得出检验结论。有人也许会问,采用普通最小二乘估计方法,已经保证了模型最好地拟合了样本观测值,为什么还要检验拟合程度?问题在于,在一个特定的条件下做得最好的并不一定就是高质量的。普通最小二乘法所保证的最好拟合,是同一个问题内部的比较,拟合优度检验结果所表示优劣是不同问题之间的比较。例如图2.3.1和图2.3.2中的直线方程都是由散点表示的样本观测值的最小二乘估计结果,对于每个问题它们都满足残差的平方和最小,但是二者对样本观测值的拟合程度显然是不同的。 . . ....

. . . . . 图2.3.1 图2.3.2 1、总离差平方和的分解 已知由一组样本观测值),(i i Y X ,i =1,2…,n 得到如 下样本回归直线 i i X Y 10???ββ+= 而Y 的第i 个观测值与样本均值的离差) (Y Y y i i -=可 分解为两部分之和: i i i i i i i y e Y Y Y Y Y Y y ?)?()?(+=-+-=-= (2.3.1) 图2.3.3示出了这种分解,其中,)?(?Y Y y i i -=是样 本回归直线理论值(回归拟合值)与观测值i Y 的平均值之差,可认为是由回归直线解释的部分; )?(i i i Y Y e -=是实际观测值与回归拟合值之差,是回 归直线不能解释的部分。显然,如果i Y 落在样本回归线上,则Y 的第i 个观测值与样本均值的离差,全部来自样本回归拟合值与样本均值的离

相关文档
相关文档 最新文档