文档库 最新最全的文档下载
当前位置:文档库 › 反刍动物对粗纤维的利用及营养调控

反刍动物对粗纤维的利用及营养调控

反刍动物对粗纤维的利用及营养调控
反刍动物对粗纤维的利用及营养调控

植物营养研究法习题集

附:习题集 一、名词解释: 1 培养(模拟)试验2试验因素3试验处理 4 试验水平 5 试验方案6交互作用7 因素的简单效应8 因素的主效应9 单一差异原则10 参数11统计数12总体 13 样本14 随机抽取15随机样本16 匀地播种 17探索播种18试验误差19 系统误差20 偶然误差 21 置信区间22 置信概率23 置信水平24 肥底 25 重复26 局部控制27 随机排列28边际效应 29 方差30 标准差31平均数32 变异系数 33 精确度34 统计假设检验35 最小二乘法原则36 相关系数 二、问答题 1、简述土壤培养、砂砾培养和溶液培养试验的特点和任务。 2、配制营养液的原则与依据是什么? 3、试验研究的基本要求是什么?试验研究选题应遵循什么原则? 4、试验方案设计中应遵循哪些原则? 4、试验方案设计中为什么遵循单一差异原则? 5、试验方法设计的核心问题是什么?其主要包括哪几方面的内容? 6、试验方法设计三原则是什么?其关系如何? 7、试验方法设计的基本内容是什么?各具有什么作用 9、总体与样本的关系如何? 10、简述样本平均数和标准差的数学意义 11、简述邮样本平均数和样本平均数的差数是如何分布的? 12、方差分析的基本原理是什么?基本步骤如何? 13、方差分析中为什么进行多重比较?有几种多重比较的方法?各有什么特点? 14、方差分析原理的数学基础是什么? 15、多重比较结果的表示方法有几种?各有什么特点? 16、随机区组设计和拉丁方设计在方差分析时变异原因是如何划分的?

17、简述单因素和复因素试验设计中方差分析的步骤。 18、简单相关和回归分析重应注意的什么问题? 19、相关系数和决定系数的意义及其应用? 20、在回归分析中,为提高估测精确度应采取什么措施? 21、田间试验的特点是什么? 22、随机区组设计、拉丁方设计和裂区试验设计在控制土壤变异上有何异同点? 三、计算题 1、表1为1米土体不同土层的含盐量,试计算:(1)1米土体的平均含盐量;(2) 0-10cm表层集盐量。 表1 不同土层的含盐量(%) 土层cm 0-2 2-5 5-10 10-20 20-40 40-60 60-80 80-100 盐分含量%重复1 1.05 1.14 0.84 0.33 0.23 0.14 0.054 0.052 重复2 1.13 1.08 0.86 0.31 0.20 0.11 0.054 0.050 平均 1.09 1.11 0.85 0.32 0.215 0.125 0.054 0.051 2、某班期终考试5门课程,其中4位学生考试成绩如表2,试计算极差、方差、标准差和变异系数。 表2 某班4位学生的期终考试成绩 学生 课程 平均数1 2 3 4 5 甲80 89 87 89 90 87 乙77 78 90 93 97 87 丙70 80 73 77 75 75 丁65 85 70 75 80 75 3、用定义式和计算公式分别计算下列数据的标准差S及均数标准差,写出计算公式。10、15、1 4、16、13、11、10、8、16、11、12、10、1 5、12、14、13。 4、为布置长期定位试验,于前一年进行小麦空白试验,共分100个小区收获,每小区的面积为3×3m2,现求得平均数X=2kg/mu,S=50kg/mu. 求:(1)保证5%精确度的重复次数; (2)保证10%精确度的次数。 5、设随机变量x服从标准正态分布N~(0,1),查表计算: (1)P(0.5

第十章 反刍动物营养实验技术.(DOC)

第十章反刍动物营养实验技术 第一节人工瘤胃技术 一. 人工瘤胃技术概述 人工瘤胃技术是体外研究瘤胃微生物营养与代谢的一类技术方法,又称瘤胃模拟培养法。由于人工瘤胃技术不受试验动物的限制,可以在常规实验室条件下进行研究,因此得到了越来越广泛的应用。 早期的人工瘤胃技术主要应用于较简单的研究目的。如Woodman和Evans(1938),通过体外瘤胃发酵证实纤维素在瘤胃内降解的唯一中间产物是葡萄糖,终产物是VFA 和乳酸。Quin(1943)用体外法研究了不同碳水化合物瘤胃发酵的产气量。Pearson 和Smith(1943)用体外法研究了瘤胃微生物对尿素的利用等。McDougall(1948)关于绵羊唾液矿物质组成的研究在人工瘤胃技术发展史上具有重要意义,之后的各种人工瘤胃系统人工唾液的配制均参照了McDougall的研究结果。早期的人工瘤胃发酵装置比较简单,不少装置仅是在厌氧的条件下对瘤胃液进行简单的培养。由于发酵产物在系统内的不断积累,这类系统不能用于要求长时间发酵的研究工作,通常有效的发酵时间为12~24小时。Louw于1949年设计了一套带有透析系统的人工瘤胃装置,将瘤胃液和底物放入渗析袋或半透膜中,然后悬浮在缓冲液内。该装置在一定程度上将底物和发酵终产物分离开,延长了有效发酵时间。 二十世纪五十年代至六十年代,人工瘤胃技术在牧草有机物和纤维素瘤胃降解研究方面得到了大量应用。用人工瘤胃技术研究的内容包括不同牧草以及牧草与纯纤维体外降解速度比较;牧草颗粒大小对体外降解速度的影响;体外评定牧草营养价值;用体外牧草发酵测定结果预测体内发酵等。这一阶段的人工瘤胃装置也趋于复杂,以更加接近瘤胃发酵的真实情况。如Donfer使用的发酵装置由32个发酵瓶组成,每个发酵瓶的容积为90ml,装入的发酵液容量为50ml。每个瓶均有进气口和出气口,以每分钟160个气泡的速度向瓶内通入二氧化碳。 二十世纪七十年代,随着反刍动物蛋白质营养研究的深入,人工瘤胃技术开始应用于饲料蛋白质的瘤胃降解率评定。1972年,Ben Braver发现体外培养法中的氨浓度与瘤胃内氨浓度有很好的相关,并用短期培养法对饲料蛋白质的瘤胃降解率进

植物营养研究进展

土壤酸化研究进展 资源与环境学院刘文祥 20081875 摘要:环境酸化是全球变化中的一个重要内容, 土壤酸化是环境酸化的一个重要方面。酸雨也是导致土壤酸化原因之一,同时农业措施也是一大主因综述了土壤酸化研究的进展, 主要有土壤酸化的概念、表示方法、研究方法、土壤酸化敏感性、土壤酸化与元素淋失的关系等方面。最后提出了进一步研究的方向,并给出改良措施,为土壤酸化改良方面给予指导。 关键词:土壤酸化酸雨酸性改良 一、土壤酸化概念与现状 土壤退化是指人类对土壤的不合理利用而导致的土壤质量和生产力下降的过程。主要有侵蚀化、土壤酸化、污染退化、肥力退化和生物学退化。目前,随着人口、环境资源的矛盾日益突出,土壤退化已经成为全球性的重大问题,由酸沉降导致的土壤酸化是全球变化中的一项重要内容,土壤酸化将加速土壤酸度的下降和元素的淋失,土壤贫瘠化;某些重金属元素的淋出则会毒害植物根系。土壤酸化作为土壤退化的一个重要方面, 加速了土壤酸度的提高、大量营养元素的淋失,造成土壤肥力的下降,严重影响作物的生长。由于土壤在陆地生态系统中处于物质迁移和能量转换的枢纽地位,研究土壤酸化对生态系统的影响尤为重要。 1、土壤酸度和土壤酸化的概念 根据土壤中H+的存在形态,可将土壤的酸度分为两大类型:一是活性酸,是土壤溶液中H+ 浓度的直接反映,其强度通常用pH值来表示土壤的pH值愈小,表示土壤活性酸愈强;二是潜性酸,是由呈交换态的H+、Al3+ 等离子所决定。当这些离子处于吸附态时,潜性酸不显示出来。当它们被交换入土壤溶液后,增加其H+ 的浓度,这才显示出酸性来。土壤中潜性酸的主要来源是由于交换性Al3+ 的存在,交换性Al3+ 的出现或增加, 不是土壤酸化的原因,而是土壤酸化的结果。土壤的潜性酸度和活性酸度可以相互转化,而前者要比后者大得多。然而, 只有盐基不饱和的土壤才有潜性酸。 用石灰位来表示土壤的酸性强度,由于钙是土壤中主要的盐基离子,除了某些碱化土壤外,一般占盐基离子的60%~80%,因此,土壤的酸性强度可以用氢离子和钙离子的相对比例的变化来代表,二者的关系可用数学式pH- 0.5pCa 表示,它代表与土壤固相处于平衡的溶液中氢离子的活度和钙离子的活度差,称为石灰位。强酸性土壤的pH 低至4.0~5.0,其石灰位可低至1.5;盐基饱和的土壤的pH 高至7.0~8.0,其石灰位可高达7.0,其它土壤的石灰位介于二者之间。关于土壤酸化,土壤酸化是指土壤内部产生和外部输入的氢离子引起土壤pH 值降低和盐基饱和度减小的过程,在湿润气候区,土壤形成和发育的过程本身就是一个自然酸化的过程,大气污染所引起的干、湿酸沉降则大大加快自然土壤的酸化速率。 2、土壤酸化现状 从世界范围来看,酸性土壤主要分布在两大地区,一是热带、亚热带地区,二是温带地区。北欧和北美的酸化问题主要发生在灰化土上,而我国的酸性土壤主要分布在长江以南的广大热带和亚热带地区和云贵川等地,面积约为2.04×108 hm2,主要集中在湖南、江西、福建、浙江、广东、广西、海南,大部分土壤的pH 值小于5.5,其中很大一部分小于5.0,甚至是4.5,而且面积还在扩大,土壤酸度还在

反刍动物营养消化代谢试验手册

反刍动物营养试验手册 -------消化代谢试验部分(修改版) 反刍动物营养研究室 中国农业科学院畜牧研究所 二〇〇四年六月一日

前言 2003年在本研究室进行了为期四个月的奶牛消化代谢实验,实验操作过程中,采用了许多方法,成功失败皆有。每每在失败之后方知实验操作之重要,经验积累之难得,于是便有了将这些看似简单的方法和提示落实于文字的想法,希望能给做相关实验的人员些许提示和帮助。但毕竟能力有限,在实验过程中因力求细致准确而有因简就繁之嫌,有些文字表达方面过于累赘,错误和不当之处在所难免,同时,由于实验内容要求,所涉及的方法有限,所以这只能是抛砖引玉,希望大家能够不吝指出,并不断改进,使之逐渐完善! 手册的形成是在导师王加启研究员指导督促以及实验室各位老师同学帮助下,集实验小组各成员(王吉峰博士、汪水平硕士和姚美蓉硕士)的工作结果而成! 2002级博士研究生李树聪 2004年7月13日 于反刍动物营养研究室

目录 饲料及其剩余料样品的采集______________________________________________1瘤胃液pH,NH3-N和VFA样品采集和保存__________________________________2瘤胃动态食糜样品采集和保存____________________________________________3分离瘤胃微生物样品采集________________________________________________4瘤胃原虫计数用样品的采集和保存________________________________________5乳样的采集和保存______________________________________________________6小肠液采集及其预处理__________________________________________________7粪样采集及其预处理____________________________________________________8尿样采集及其预处理____________________________________________________9瘤胃原虫计数方法_____________________________________________________10酸性洗涤不溶灰分的测定_______________________________________________12氨氮测定方法--氧化镁直接蒸馏法________________________________________13瘤胃液氨氮检测方法-靛酚比色法_______________________________________15瘤胃液VFA测定---气相色谱法___________________________________________18瘤胃微生物量测定方法-嘌呤碱基法______________________________________21 Co—EDTA 配制_______________________________________________________24铬染纤维的制备_______________________________________________________25原子吸收测定用容器洗涤方法___________________________________________27干法灰化食糜流量监测用指示剂(Co Cr Yb)测定________________________28湿法消化食糜流量监测用指示剂(Co Cr Yb)测定_________________________29瘤胃液中Co浓度的测定_________________________________________________30指示剂的配合和使用方法_______________________________________________31

植物营养研究方法复习题

植物营养研究方法复习题 一、名词解释 1.方差分析:将总变异剖分为各个变异来源的相应部分,从而发现各变异因子在总变异中相对重要程度的一种统计分析方法。 2.统计数:描述样本特征数,是总体特征数的近似值或估计值。3.交互作用:不同因素相互作用产生的新效应称为因素的交互作用。4.灭菌培养:又称无菌培养,在没有微生物的情况下设置的试验。5.回归分析:处理相关关系中变量与变量间数量关系的一种数学方法。 6.总体特征数:描述总体特征的数值如平均数等称为总体总征数。也称参数。 7.统计假设检验:对试验效应能否确立所做的一种数学判断方法,也称假设检验或统计检验。 8.协方差分析:通过数理统计的方法将协变量的影响大小估计出来,并把它们从试验误差和试验处理效果中分离出去,使试验结果得到正确的估计,这种方法叫协方法分析。 9.隔离培养:又叫分根培养,是将植物培养在被隔离的不同营养环境中进行栽培试验的方法。

10.根际:是指受植物根系生理活动的影响,在物理、化学、生物特征上不同于原土体的特殊土区。一般是指距根表数毫米的土区。 11处理:为了研究某个因素的效应或几个因素的关系及其综合效应,人为的使试验因素处于不同水平或试验因素间不同水平的组合,称为试验不同处理。 二、填空题 1.误差的种类包括偶然误差、系统误差。 2.变量的种类包括连续性变量、非连连续性变量。 3.抽样的方法有随机抽样、顺序抽样、典型抽样。 4.据试验研究的因素可将试验分为单因素试验、复因素试验、综合试验几种。 5.植物营养的模拟研究方法包括土培、砂培、水培、隔离培养、灭菌培养等。 6.隔离培养的种类包括固体—固体、液体—固体、液体—液 体。 7.误差的表示方法有极差、标准差、方差、变异系数。 8.抽样的方法有随机抽样、顺序抽样及典型抽样。

动物营养学

动物营养学 一、名词解释 1.养分(营养物质):饲料中凡能被动物用以维持生命、生产产品,具有类似化学性质的物质统称为营养物质(nutrients),亦称为养分或营养素。 2.营养:是动物摄取、消化、吸收食物并利用食物中的营养物质来维持生命活动、修补体组织、生长和生产产品的全部过程。 3.营养学:研究生物体营养过程的科学。通过这一过程的研究,可以阐明生命活动的本质,并通过营养调控措施维持生态系统的平衡。 4.饲料:动物的食物称为饲料;(准确定义)是指在正常情况下,凡是能被动物采食、消化、利用,并对动物无毒无害的所有物质的总称。 5. 饲料的营养价值;饲料或养分完成一定营养或营养生理功能的能力大小。5.蛋白质互补:由于各种饲料所含EAA种类、含量、限制的程度不同, 多种饲料混合可起到AA取长补短的作用。互补作用也可能发生在不同时间饲喂的多种饲料中,但随间隔时间增长,互补作用减弱。 6.IP(理想蛋白):指日粮中各氨基酸含量与比例与动物的需要相吻合,动物可最大限度的利用饲料蛋白质。AA间平衡最佳、利用效率最高的蛋白质。理想蛋白中各种氨基酸(包括NEAA)具有等限制性,不可能通过添加或替代任何剂量的任何氨基酸使蛋白质的品质得到改善。 7.维生素:一类动物代谢所必需而需求量极少的低分子有机化合物,体内一般不能合成,必须由饲粮提供或者提供先体物。 8.蛋白质的周转代谢:动物体内,老组织不断更新,被更新的组织蛋白降解为氨基酸,而又重新用于合成组织蛋白质的过程称为蛋白质的周转代谢。 9.常量元素: 动物机体内含量大于或等于0.01%的元素.主要包括Ca. P .Na .K .Cl .Mg. S等7种。 10.微量元素:通常指生物有机体中含量小于0.01%的化学元素,目前查明必需的微量元素有铁锌铜锰碘硒钴钼氟鉻硼等12种,铝钒镍锡砷铅锂溴等8种元素在动物体内的含量非常低。 11.CP(粗蛋白质):是指饲料中所有含氮化合物的总称。CP%=N%×6.25

动物营养学课程论文

提高反刍动物饲料转化效率的措施 摘要:为了更深入的了解提高反刍动物饲料转化效率的措施;为了更好的掌握查阅、收集、整理、归纳与分析《动物营养学》相关资料的方法;为了对《动物营养学》的最新研究进展有一个更全面的了解;同时也为了毕业论文的写作打好基础。故而归纳各家对提高反刍动物饲料转化效率的措施的研究写了这篇综述论文。 关键词:转化;措施;效率;反刍动物 引言 反刍动物属哺乳纲,偶蹄目,反刍亚目。我们在生活中所熟知的反刍动物以牛、羊为最。其他不怎么常见的如骆驼、鹿、长颈鹿。这类动物都生有复杂的反刍胃,可以反刍食物,即可以把吞入胃中的食物呕到嘴部咀嚼充分后再吞入腹中。反刍动物一般都有四个胃骆驼较为特殊有三个胃。四个胃分别为瘤胃、网胃、瓣胃以及皱胃。不同的胃对饲料的消化、吸收和利用具有不同的功能与作用[1]。我国作为一个世界上首屈一指的农业大国,具有丰富的饲料资源。这对我们研究提高反刍动物饲料转化效率的措施具有重要的意义。对我国的畜牧业来讲同样具有重要的意义。 正文 1提高植物性饲料转化效率的方法 我国作为世界上首屈一指的农业大国,秸秆饲料资源相当丰富。如何很好的利用这些饲料资源成为我们必须要认真面对的问题。由于秸秆类饲料中各有机物质的消化率普遍较低,一般很少超过50%[2]。其中粗蛋白在3%~6%不等。粗灰分含量很高,对动物有营养意义的矿物元素很少。矿物质和维生素的含量都很低,尤其是钙和磷的含量很低[3]。含磷量在0.02%~0.16%,而日粮配方所需的含磷量都在0.2%以上。远低于动物的日需要量。于是如何提高饲料的转化效率成为动物科学工作者的重中之重。 1.1 物理法 我国作为世界上首屈一指的农业大国,秸秆饲料资源相当丰富。如何很好的利用这些饲料资源成为我们必须要认真面对的问题。由于秸秆类饲料中各有机物质的消化率普遍较低,一般很少超过50%。其中粗蛋白在3%~6%不等。粗灰分含量很高,对动物有营养意义的矿物元素很少。矿物质和维生素的含量都很低,尤其是钙和磷的含量很低。含磷量在0.02%~0.16%,而日粮配方所需的含磷量都在0.2%以上。远低于动物的日需要量。于是如何提高饲料的转化效率成为动物科学工作者的重中之重。 对于植物饲料在我国主要就是各种秸秆,且多为农作物秸秆。提高饲料的转化效率不外乎破坏植物细胞壁,弱化或破坏木质素与纤维素或半纤维素之间的结构,使饲料主要是

浅谈反刍动物营养

学号:14720210 姓名:徐修志专业:养殖 反刍动物营养浅谈 摘要:本文通过查阅各种资料,对小肽、蛋白能量比、碳水化合物、粗纤维等物质对反刍动物的作用进行综合性总结,进而更深刻了解反刍动物营养的各方面机理。蛋白质的营养实际上就是小肽和氨基酸的营养,经过深入研究,人们认识到动物对蛋白质的需要完全由游离氨基酸来满足,小肽的营养起着重要的补充作用。能量是评价饲料的重要指标,饲料能量浓度高低决定动物采食量。因此,蛋白质和能量水平是决定动物生产性能的重要因素。但两者之间并不是孤立的,也不是二者水平越高,动物的生产性能和健康状况越好。反刍动物日粮中的碳水化合物可分为纤维性和非纤维性碳水化合物。调整反刍动物日粮中纤维的组成和含量,可以调控瘤胃中碳水化合物的分解速度和程度、pH值和挥发性脂肪酸产生的量和比例,调节氮源的利用,最终影响微生物的合成和动物的生产性能。 关键词:反刍动物营养小肽蛋白能量比碳水化合物粗纤维 以往的观点都认为,蛋白质在肠道中都被消化成氨基酸,然后通过肠壁被机体吸收,为使畜禽获得最佳生产性能,饲粮中只要提供各种必需氨基酸,就能达到目的。事实上,许多试验表明,饲粮中粗蛋白含量过低,既使添加足够的必需氨基酸也不能获得预期的结果。近几十年的研究表明,当动物采食按理想氨基酸模式配制的纯化日粮或氨基酸平衡的低蛋白日粮时,不能获得最佳生产性能和饲料效率。为了达到最佳生产性能,必须有一定数量的小肽(二、三肽)。 1 小肽在反刍动物营养中的应用 1.1 小肽对反刍动物瘤胃微生物的调控作用 由于小肽对反刍动物具有特殊的调控作用,这使肽营养研究成为瘤胃微生物氮素营养研究的新热点。尽管大多数瘤胃微生物能利用氨和氨基酸作为氮源生长,但是肽合成微生物蛋白质的效率高于氨基酸。肽对瘤胃微生物生长的主要效应是加快微生物的繁殖速度、缩短细胞分裂周期,瘤胃细菌的生长速度在有肽时比有氨基酸时快70%。 1.2 小肽在瘤胃内的代谢主要由瘤胃微生物的肽酶完成 最新研究发现,瘤胃内的肽酶以外切酶为主。肽分子量的大小对其利用途径有影响,细菌对大分子肽的摄取速度比对小分子肽和氨基酸的摄取速度快,使大分子的肽更易于转化为菌体蛋白(Broderick等,1988),研究发现,氨基酸残基大于3和4时,肽的摄取速度下降。因此,分子量大小对肽代谢有影响。而且肽链的氨基酸序列对肽的利用效率也有影响。 1.3小肽的吸收机制和特点 反刍动物吸收的主要部位是瓣胃,其次是瘤胃等其他非肠系膜和肠系膜组织。小肽的吸收是一个主要依靠H+或Ca2+浓度电导而进行的消化能量的转运过程。由于小肽的吸收具有耗能低、不易饱和且各种肽之间运转无竞争性与抑制性的特点,再加上肽本身对于氨基酸或肽的转运的促进作用,动物对肽中氨基酸残基的吸收比对游离氨基酸的吸收更迅速、更有效。 1.4 小肽对瘤胃微生物生态体系的影响 肽能底否对微生物生长有促进作用,主要取决于碳水化合物的发酵速度。

4植物根系和根际的研究方法

第4章植物根系和根际的研究方法 第一节植物根系的研究方法 植物根系具有吸收和输送养分和水分、合成植物激素和其他有机物质、储存营养物质以及支撑植物使之固定于土壤中等多方面的作用。它是植物与外界环境之间进行物质交换的主要器官,因此它与植物营养有着密切的关系。但植物根系的研究比地上部分的研究要困难的多。 一、根系研究方法 (一)钉板法:常用。 1、钉板的制作: 小板:50cm×50cm,钉长5cm,钉距5cm。 大板:60cm×100cm,钉长5cm,钉距5cm。 2、取样 3、清洗 4、根系摄影与测定 (二)容器法: 容器种植主要研究根系生理或生态学特性。条件容易控制。 1、容器大小与根系体积适应 2、种植盒的制作: (三)玻璃壁或玻璃管法:用探头观察根系生长情况。 (四)多孔膜法:尼龙纤维多孔膜(孔径0.3m) 二、根系测定方法 (一)根系形态特征及其测定方法 根系形态特征包括根系体积、几何形状、长度、分布深度、根密度、分枝状况、根重、根表面积、根毛数量和根尖数等。根系形态与养分、水分的吸收能力有密切关系。在植物营养研究中,常用的根形态参数主要有根重、根长、根表面积、根密度、根毛和根尖数等。 1、根重 根重对于表征根的总量是一个很好的参数,植物吸收养分的数量和速率通常用单位根重作参量。根重分为根干重和根鲜重两种。根干重对于养分和水分吸收不是个理想的参数,因为老而粗的根所占的重量很大,而吸收养分和水分的能力很小。但当了解植物地下部的生产力时,干重常作为估计的标准。在估算根/冠比(R/S)时,也要用根干重。 测定根干重的方法,一般采用烘干重量法。在105o C条件下烘干10-20h或在60-70o C下烘干20h,称重。

动物营养模型中营养代谢调控的研究进展

动物营养代谢调控的数学模型化研究进展 易渺杨琴熊本海* (中国农业科学院北京畜牧兽医研究所,动物营养学国家重点实验室,北京100193) 摘要:模型是现实情景的再现。在营养、代谢和生物医学等领域,很早就开始利用数学模型来辅助进行相关研究了。动物数学模型化技术作为一种行之有效的研究手段,不仅能总结动物营养学过去的科研成果、整合现有的理论知识,更能指明动物营养学未来研究的方向或具体的领域。本文立足数学模型的内涵,详细介绍了动物数学模型的分类和动物系统的层次结构,通过阐释动物营养代谢模型中的调控理论和调控形式,总结了近30年来主要的动物营养代谢调控模型,尤其与激素有关的代谢调控模型的新进展,最后分析了营养模型化研究所面临的挑战和发展趋势。数学模型在动物营养代谢调控中的应用,对于预测动物营养需要、绘制动物体内营养物质代谢调控通路具有重要意义。 关键字:数学模型;模型化;营养;代谢调控;激素 模型是现实情景的再现。早在二战之前,营养、代谢和生物医学等领域就已经开始利用模型来辅助进行相关研究了[1]。作为一类描述现实情景的工具,很多模型将现有理论知识与生产实践相结合,从而预测动物的营养需要量、改善动物生长性能、减少养分排泄并最终降低生产成本[2]。毫不夸张的说,自20世纪初开始,几乎所有动物营养学的研究成果都被直接或间接地用于营养需要量模型的构建、评估和改进[3]。随着营养模型研究的发展,动物生理、生化、遗传及环境方面的知识渐成体系,面对海量的试验数据,能否通过模型化技术来量化并描绘出动物体内代谢反应中的细节,能否恰当地描述动物的代谢反应及其对营养需要量产生的影响,对经济动物的高效饲养至关重要。 1 动物数学模型分类和动物系统的层次结构 1.1 动物数学模型分类 数学模型依据不同的评价标准可划分为确定型(Deterministic)或随机型(Stochastic),静态型(Static)或动态型(Dynamic),以及经验型(Empirical)或机理型(Mechanistic)[4]。 收稿日期: 基金项目:973计划课题(2011CB100805),863计划课题(2012AA101905) 作者简介:易渺(1987-),男,湖南常德人,硕士研究生,主要从事动物营养与饲料科学研究。E-mail: ym_caas@https://www.wendangku.net/doc/c810205532.html, 通讯作者:熊本海(1963-),湖北红安人,研究员,博士生导师,E-mail: Bhxiong@https://www.wendangku.net/doc/c810205532.html,

动物营养学

《动物营养学》复习思考题 绪论 ★1、名词解释:养分、营养、营养学、饲料、饲料的营养价值。 ★2、试述动物营养学的研究目标和任务。 3、简述动物营养学在动物生产中的地位. 4、生产及实际生活中与动物营养有关的常见问题有哪些? 5、如何学习和应用动物营养学的知识? 6、你期望通过学习本课程获得那些知识和技能? 第一章动物与饲料的化学组成 ★1。名词解释:CP、粗灰分、EE、CF、ADF、NDF。 2. 简述饲料概略养分分析法对饲料养分如何分类、测定各种养分含量的基本原理。 3。简述述概略养分分析体系的优缺点。 ★4.简述养分的一般营养生理功能。 ★5. 比较动植物体组成成分的异同? ★6。经测定饲喂态玉米含水8%,CP 9。6%、EE3。6%、CF 1.3%、粗灰分1。1%、Ca 0.03%、P0。29%,问饲喂态时NFE含量?绝干状态时CP、Ca? 7。实际生产中如何防止饲料营养价值的下降? 第二章动物对饲料的消化 ★1。解释消化、吸收、消化率的概念。 ★2。比较单胃动物与反刍动物消化方式的异同。 ★ 3.简述瘤胃消化饲料的生物学基础及其消化的优缺点。 ★4。蛋鸡每天采食120 g饲粮,饲粮含CP18%,Ca 3.5%,每天随粪排出CP 4.32 g、Ca1。95 g,随粪排出内源CP1。5g,内源Ca 0。90 g,问该饲粮的CP、Ca表观与真消化率是多少? ★5.简述影响饲料消化率的因素。 6.饲料颗粒化处理、少量多餐饲喂、奶牛TMR日粮各有哪些优点和缺点? 7。单胃动物回肠末端(家禽去盲肠)消化率、真消化率的意义? 第三章水的营养 ★1.水分的基本营养生理功能。 2.为什么动物缺水的危害比缺乏饲料的危害大? ★3.动物如何调控其体内的水分平衡? ★4.影响动物需水量的因素有那些? 5.如何减少夏季高温季节家禽发生软便? 6.生产中强迫奶牛多饮水有哪些负面作用? 7。多饮水能否缓解母猪便秘现象? 第四章蛋白质的营养 ★1.名词解释:EAA、NEAA、LAA、RDP、UDP、IP。 ★2。简述蛋白质的营养生理功能. ★3.解释氨基酸之间的拮抗、平衡、转化及中毒关系。 ★4.列出猪和家禽常见的EAA名称,常见拮抗氨基酸 对、转化氨基酸对。 ★5。阐述单胃动物、反刍动物对蛋白质的消化、吸收过程及其特点.

沉痛悼念冯仰廉教授

Ⅰ 沉痛悼念冯仰廉教授 中国反刍动物营养学科奠基人与开拓者、著名动物营养学家、中国农业大学动物科学技术学院教授冯仰廉先生,因病医治无效,于2016年11月26日15时53分在北京逝世,享年85岁。 冯仰廉先生,1931年4月2日生于江苏徐州,汉族,中共党员。1953年南京农学院毕业后留校任教,1956年调入北京农业大学畜牧系从事教学科研工作,历任讲师、副教授、教授,直到 70岁退休。曾多年担任畜牧系总支副书记,1964—1966年受国家派遣在中国驻荷兰、丹麦大使馆做科技工作,1980—2000年多次在英国、法国等国科研机构开展合作研究。在60多年从 教工作中,冯仰廉先生曾任农业部动物营养学重点开放实验室学术委员会副主任、动物营养学国家重点实验室顾问、中国畜牧兽医学会名誉理事长、中国畜牧兽医学会动物营养学分会理事长、养牛学分会理事长、《中国畜牧杂志》和《动物营养学报》主编等职务。 冯仰廉先生是一位卓越的科学家,开创并发展了我国反刍动物营养学科,创建了以奶牛能量单位(N N D)、肉牛综合净能(R N D)、小肠蛋白质营养新体系为核心的中国特色反刍动物营养需要体系;创造性地自主研制了我国第一个自控大型双呼吸测热室,系统揭示了反刍动物能量转化代谢规律;主持制定了中华人民共和国农业行业标准《奶牛饲养标准》、《肉牛饲养标准》,获得多项国家级和省部级科技奖项,发表学术论文数百篇,编著如《实用肉牛学》、《反刍动物营养学》等多部著作,其中《反刍动物营养学》是国内第一部反刍动物营养学专著,已成为国内研究生教材,为我国反刍动物营养学科和产业发展做出了杰出贡献。 冯仰廉先生是一位杰出的教育家,恪守为人师表、教书育人之道,一丝不苟、兢兢业业致力于我国养牛学、反刍动物营养学的学科建设和人才培养,培育了一批肩负中国反刍动物营养科学研究、教书育人、产业发展的科学家、学者、企业家。1989年获农业部“部属院校优秀教师”称号,1990年被国家教委和科委联合授予“全国高等学校先进科技工作者”光荣称号,2009年被评为中国畜牧兽医学会“先进工作者”,2010年被中国奶业协会授予“中国奶业终身贡献奖”,2015年被中国畜牧兽医学会养牛学分会授予“终身成就奖”,2016年被中国畜牧兽医学会动物营养学分会授予“终身成就奖”。 冯仰廉先生一生成绩卓著,为人谦逊,平易近人。他曾自评,“我不是什么天才,我是一个苦学派”。冯仰廉先生严谨治学的态度、勇于创新的学术思想、率先垂范的工作作风、诲人不倦的高尚情操、宽厚慈爱的长者风范为年轻一代树立了人生典范,永远值得我们学习和敬仰! 让我们牢记先生的教诲,继承和发展先生的事业! 追忆往昔,峥嵘岁月;还看今朝,桃李芬芳。 音容宛在,馨香不散;德范长存,流洒人间! 中国农业大学动物科技学院

动物营养学的发展趋势及对我国动物营养学未来发展的建议

动物营养学的发展趋势及对我国动物营养学未来发展的建议 发布时间:2010-09-02 浏览量:77 次 摘要:本文对动物营养学的概念及作用、发展趋势及前沿和我国动物营养学的研究现状及存在的问题做了概要分析,并对我国动物营养学的未来发展和推动其发展的政策措施提出了初步建议,仅供同行参考。 关键词:动物营养学发展趋势建议 1 前言 动物营养学是一门主要以动物生理学和动物生物化学为基础,揭示营养物质在动物体内的代谢机理、规律及功能、研究发挥最大遗传潜力对各种营养素的适宜需要量以及评定饲料对动物的营养价值的应用基础科学,是沟通动物饲养学与动物生理生化这些主要基础学科的桥梁,最终目标是为畜禽饲养中科学配制全价平衡高效饲料等,以改善动物健康和促进动物高效生产,用最少的饲料投入向人类提供量多、质优且安全的畜产品,同时减少畜牧生产对环境的污染,保护生态平衡,奠定理论基础。饲料是畜牧业赖以持续稳定发展的物质基础,饲料成本占整个畜牧业生产成本的70%左右。因此,动物营养学的科研水平直接关系到饲料工业和畜牧业的生产水平和可持续发展,在畜牧业乃至整个国民经济发展中起着十分重要的作用。 2 动物营养学的发展趋势及前沿 动物营养科学,如从拉瓦希(Lavoisier)1777年提出生物氧化学说为起点,迄今已逾220年。它和其它科学一样,是在人类活动中知识积累的基础上随着其它相关科学的进展而发展起来的。十九世纪为营养学的草创年代,主要反映在能量代谢与饲料的能值评定方面,同时也萌发了对蛋白质与矿物元素的研究。二十世纪为营养科学之盛世。这一个世纪以来,营养科学突飞猛进,揭开了新的篇章。营养研究由粗到细、由浅入深、由表及里,正向着更深入、更全面和更系统的方向发展,具体主要表现在以下几个方面: 2.1 营养代谢机理研究正向分子水平深入

植物营养学复习题(重点总结),推荐文档

第一章绪论 、概念 植物营养学、植物营养、营养元素、肥料 二、回答题 1.肥料在农业可持续发展中有何重要作用? 2.植物营养学的主要研究领域有哪些? 3.植物营养学的主要研究方法有哪些? 第二章植物的营养成分 一、回答题 1、判断必需营养元素的依据是什么? 2、目前发现的高等植物必需营养元素有哪些?按其在植物体内含量多少可划分为哪几类? 3、肥料三要素指哪些元素?为什么? 4、什么是营养元素的同等重要性和不可替代律?对生产有什么指导作用? 5、什么是有益元素和有毒元素? 第三章植物对养分的吸收和运输 一、概念 1、自由空间 2、生物膜 3、截获 4、质流 5、扩散 6、主动吸收 7、被动吸收 8、根外营养 9、根外追肥10、短距离运输11、长距离运输12、养分的再分配和再利用13、养分协助作用14、养分拮抗作用 二、填空题 1、植物吸收养分的器官有( )、( )。 2、植物根系吸收养分的途径是( )f( )f( )f()。 3、植物根系吸收养分最活跃的部位是( ),吸收养分最多的部位是( )。 4、根系可吸收利用的养分形态有( )、( )和( )。 5、土壤养分向根系迁移的方式有( )、( )和( ),其中( )是长 距离内补充养分的主要方式,其动力是( );( )是短距离内运输养 分的主要方式,其动力是( )。 6、根系吸收无机养分的方式有( )和( )。 7、根系吸收有机养分的机理有()、()和()。

8、影响植物吸收养分的外界环境条件有()、()、()、()、()、()和()。 9、离子间的相互作用有()和()。 三、回答问题 1、根系主要靠什么部位吸收养分?在生产实践将肥料施在什么位置较好?为什么? 2、土壤养分向根系迁移的方式有哪些?其特点分别是什么? 3、根系吸收养分的方式有哪些?其特点和区别是什么? 4、植物茎叶吸收养分的途径有哪些? 5、影响植物吸收养分的外界条件有哪些?生产实践中应如何调控环境条件以促进植物对养分的吸收? 6、根系吸收的养分有哪些去向? 7、根外营养有什么优点?为什么它只能作为根部施肥的一种补充? 8、养分在植物体内的运输方式有哪些?其特点分别是什么? 9、论述养分在植物体内循环、再分配的意义? 10、根据养分在植物体内再分配和再利用能力可将植物营养元素分为哪几类?分别与缺素部位有什么关系? 第四章植物营养特性 一、概念 1、植物营养性状 2、基因 3、基因型 4、表现型 5、基因型差异 6、植物养分效率 7、肥料农艺效率 8、肥料生理效率9、相对产量10、施肥增产率 11、养分吸收效率12、养分运转效率 13、养分利用效率14、植物营养期 15、作物营养阶段性16、作物营养连续性 17、作物营养临界期18、作物营养最大效率期 19、根系阳离子交换量(CEC)20、根际21、菌根22、根长23、根密度24 根/冠比25、根际效应26、高效植物和耐性植物27、遗传力28、根系活力 二、简答论述 1、试述研究植物营养遗传特性的意义。 2、简述植物营养性状基因型差异的表现形式。

反刍动物蛋白质的营养调控

反刍动物营养!饲料研究!!够 收稿日期:#$$%+$%+#,满足代谢与生产的需要。但高产奶牛却是例外(杨赵军,*"">)。随着产奶量的提高,日粮中精粗比例增加及饲料加工过程对烟酸和体内可以合成烟酸的色氨酸的破坏,奶牛会缺乏烟酸。@<8+8277等人进行的体内与体外试验发现,烟酸可以促进瘤胃微生物合成蛋白质。在以玉米、棉籽饼和粗料为日粮条件下,向牛的瘤胃液中分别添加维生素A 、维生素B 、维生素C ,在各自适宜浓度下能促进瘤胃微生物的生长(林海,*""’)。 *?*?#!硫化物 硫是反刍动物所必需的矿物质之一。瘤胃微生物合成某些氨基酸、维生素、酶时需要硫。硫化物是合成菌体蛋白硫的主要来源(D<11E;=,*",%;FG;=H I23,*">#)。日粮中适宜的硫水平可促进瘤胃内细菌蛋白质的合成(J<21K ,*""()。 *?*?(!肽与氨基酸 肽是瘤胃微生物合成蛋白质的重要底物(A3EH 912;821K ,*""();@099277等(*"’()和:<=6等(*"’>)的研究结果均表明,肽的摄取是瘤胃蛋白质降解的限速因素,它能够刺激瘤胃微生物的生长。A3I472等(*"’")证明,用肽或肽和氨基酸的混合物作氮源比单独以氨作为氮源更能促进微生物的生长。*?*?%!酵母培养物 通过酵母活细胞或酵母中的某些微生物生长促进因子对瘤胃微生物的作用,可促进瘤胃中纤维分解菌、乳酸菌等有益微生物的生长繁殖。日粮中添加酵母培养物,能促进纤维素分解菌生长,使瘤胃厌氧菌增加/倍(B;L96=,*"’>,*""();补饲酵母培养物能显著地增加进入真胃的微生物蛋白量。

!反刍动物营养!!"饲料研究!!

动物营养学重点

饲料:在正常情况下,凡是能被动物采食、消化吸收、无毒无害,并且能够提供营养物质的所有物质。 养分(营养物质、营养液):饲料中凡是被动物用以维持生命、生产产品,具有类似化学成分性质的物质。 营养:动物摄取、消化、吸收食物并且利用食物中的营养物质来维持生命活动、修补组织、生长和生产的全部过程。 营养学:研究生物的营养物质的科学,通过这一过程的研究,可以证明生命活动的本质,并通过营养调控措施维持生态平衡。 粗蛋白质(CP):一切含氮物质的总称,包括真蛋白和非蛋白氮。 粗灰分(CA):饲料、动物组织和排泄物样品在550-600摄氏度高温炉中,将所有有机物质全部焚烧后剩余的残渣。 乙醚浸出物(粗脂肪、EE):饲料中所有脂溶性物质的总称。包括真脂肪、类脂、脂溶性维生素、色素、有机酸、树脂等溶于乙醚的物质。 粗纤维(CF):植物细胞壁的主要成分,包括纤维素、半纤维素、木质素及角质等成分。饲料经1.25%烯酸和1.25%稀碱各煮沸30分钟后所剩余的不溶解的碳水化合物。 无氮浸出物(NFE):由饲料中的淀粉、葡萄糖、双糖、单糖等可溶性碳水化合物组成。 干物质:出去初水分和吸附水的饲料成为绝干饲料,样本中绝干饲料的含量。 采食量:动物在24小时内的采食饲料的质量。 随意采食量:动物在充分接触饲料的情况下,在一定的时间内采食饲料的量。 实际采食量:在实际生产过程中,正常健康的动物在一定的时间内实际采食的总量。 消化:饲料在消化道内经过一系列物理、化学和微生物的作用,把结构复杂难溶于水的大分子物质分解为结构简单的可溶性小分子物质的过程。 消化率:饲料中可消化养分占食入饲料的养分的百分率。 吸收:饲料经过消化道各种方式的消化后,营养成分被分解成能够被吸收的小分子,通过肠道上皮细胞进入血液淋巴液的过程。 总能:饲料被完全氧化所释放的能量。 消化能:饲料可消化养分所含的能量。 代谢能:是饲料中能为动物体所吸收和利用的营养物质的能量。 净能:指动物用于维持和生产产品的那部分能量。 热增耗:来源于饲料营养物质被动物采食、消化、吸收和代谢所消耗的能量,是采食前后体热差。 必需脂肪酸(EFA):指体内不能合成或合成的量不能满足要求,必须由饲粮供给,在体内具有明确的生理作用,是对机体正常生长发育和健康不可缺少的多不饱和脂肪酸。 共轭亚油酸(CLA):是一组亚油酸异构体,是一类具有共轭双键的十八碳双烯酸的位置和几何异构体的总称。 必需氨基酸(EAA):指动物不能由体内代谢合成或合成量不能满足动物需要,必须由饲粮提供的部分氨基酸。 非必需氨基酸(NEAA):在动物机体内可以合成,不必由饲粮提供的氨基酸。 限制性氨基酸(LAA):饲粮中所含EAA的量与动物需要量相比,差距较大的AA. 理想蛋白质(SEAA):指AA组成和比例与畜禽AA需要完全一致的蛋白质。 必需矿物质元素:在动物生理和代谢过程中有明确的功能,必须由饲料提供,供给不足则产生特有缺乏症,及时补充则症状减轻或消失的矿质元素称为必需矿物质元素。 常量元素:占动物体重的0.01%以上。 微量元素:仅占动物体重的0.01%以下。 电解平衡:动物体摄入水及各种无机盐类,同时又不断地排出定量的水和电解质,使动物体内各种体液之间保持一种动态的平衡,以维持正常的生理功能。 维生素:指食物中含有一类特殊有机成分,这些成分可预防人的脚气病、糙皮病、佝偻病和坏血病。 脂溶性维生素:是以维生素原的形成存在于植物中组织,维生素原能够在动物体内转变成脂溶性维生素,包括V A、VD、VE、VK。 水溶性维生素:无维生素原,存在于植物组织的就是水溶性维生素。

反刍动物饲料营养价值表

反刍动物常用饲料营养价值表 饲料名称干物质% 粗蛋白% 粗脂肪% 粗纤维% 无氮浸出 物% 钙% 磷% 消化能(兆焦/千克)综合净能(兆焦/千克) RND千克 NND千克产奶净能(兆焦/千克) 大麦青割 甘薯藤 黑麦草 苜蓿 沙打旺 象草 野青草 狗尾草 玉米秸青贮 冬大麦青贮 苜蓿青贮 甘薯蔓青贮 甜菜叶青贮 甘薯片 胡萝卜 马铃薯 甜菜 羊草 苜蓿干草 野干草 干黑麦草 碱草 大米草 玉米秸 小麦秸 稻草 谷草 甘薯蔓 花生蔓 玉米 高梁 大麦 稻谷 燕麦 小麦 小麦麸 玉米皮

高梁糠 黄面粉 大豆皮 豆饼 菜籽饼 胡麻饼 花生饼 棉籽饼 向日葵饼高梁酒糟玉米酒糟啤酒糟 粉渣 马铃薯粉渣甜菜渣 酱油渣15.7 13.0 18.0 26.2 14.9 20.0 18.9 25.3 22.7 22.2 33.7 18.3 37.5 24.6 12.0 22.0 15.0 91.6 88.7 85.2 87.8 91.7 83.2 90.0 89.6

90.7 88.0 91.3 88.4 89.3 88.8 90.6 90.3 91.8 88.6 88.2 90.2 91.1 87.2 91.0 90.6 92.2 92.0 89.9 89.6 92.6 37.7 21.0 26 15 15 8.4 24.3 2.0 2.1 3.3 3.8 3.5 2.0 3.2 1.7 2.4 2.6 5.3 1.7 4.6

1.1 1.6 2.0 7.4 11.6 6.8 17.0 7.4 12.8 5.9 5.6 2.5 4.5 8.1 11.0 8.6 8.7 10.8 8.3 11.6 12.1 14.4 9.7 12.1 9.6 9.5 18.8 43.0 36.4 33.1 44.6 32.5 46.1 9.3 4.0 8.10 2.8 1.0 0.9 7.1 0.5

相关文档
相关文档 最新文档