文档库 最新最全的文档下载
当前位置:文档库 › 102-简谐运动的动力学方程

102-简谐运动的动力学方程

102-简谐运动的动力学方程
102-简谐运动的动力学方程

102简谐运动的动力学方程

1. 选择题

1,一弹簧振子,物体的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。当物体通过平衡位置且向规定的正方向运动时开始计时。则其振动方程为: (A) )2

1/(cos π+=t m k A x ; (B) )21/cos(π-=t m k A x ;

(C) )2

1/cos(

π-=t k m A x ; (D) t m /k A x cos

=。

[ ]

2,一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。将它们拿到月球上去,相应的周期分别为1T '和2T '。则有

(A) 11T T >'且22T T >'; (B) 11T T <'且22T T <';

(C) 11T T ='且22T T ='; (D) 11T T ='且22T T >'。

[ ]

3,两个质量分别为1m 、2m 并由一轻弹簧的两端连结着的小球放在光滑的水平桌面上。当1m 固定时,2m 的振动频率为2ν,当2m 固定时,1m 的振动频率1ν为:

(A )2ν ; (B )122

m m ν ; (C )221

m m ν ; (D

)2

ν

[ ]

4,两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l ?和2l ?,且1l ?=22l ?,两弹簧振子的周期之比T 1:T 2为

(A )2; (B )

2; (C )

2

1; (D )2/1。

[ ]

5,同一弹簧振子悬挂相同的质量,分别按如图(a )、(b )、(c )所示的三种方式放置,摩擦力

都忽略不计,它们的振动周期分别为a T 、

b T 、

c T ,则三者之间的关系为

(A )a b c T T T == ; (B )a b c T T T => ; (C )

a b c T T T >> ; (D )a b c T T T << 。

[ ]

6,如图所示,质量为m 的物体由劲度系数为k 1和k 2的两个轻弹簧连接在水平光滑导轨上作微小振动,则该系统的振动周期为

(A)

T =

; (B)

2T = ;

(a )

(b )

(c )

(C)

2

T=;(D)

2

T=。

[ ]

7,如图所示,质量为m的物体,由劲度系数为k1和k2的两个轻弹簧连接到固定端,在水平光滑导轨上作微小振动,其振动频率为

(B)

m

k

k

2

1

2

+

π

=

ν;(B)

m

k

k

2

1

2

1+

π

=

ν;

(C)

2

1

2

1

2

1

k

mk

k

k+

π

=

ν;(D)

)

(

2

1

2

1

2

1

k

k

m

k

k

+

π

=

ν。

[ ] 8,一质量为m的物体挂在劲度系数为k的轻弹簧下面,振动角频率为ω ,若把此弹簧分割成二等份,将物体m挂在分割后的一根弹簧上,则振动角频率是

(A) 2ω ;(B) ;(C) 2

/

ω;(D) /2

ω。

[ ]

2. 判断题

1,简谐振动的周期、频率及圆频率由初始条件决定。

2,一给定劲度系数的弹簧振子作简谐振动,若弹簧所悬挂物体的质量m不同,则其振动频率也不同。

3,质点在与对平衡位置的位移成正比而反向的合外力作用下的运动就是简谐运动。

4,任何一个实际的弹簧都是有质量的,如果考虑弹簧的质量,弹簧振子的振动周期将变大。

3. 填空题

1,在两个相同的弹簧下各悬一物体,两物体的质量比

12

:

m m为4:1,则二者作简谐

振动的周期之比

12

:

T T为_______________________。

2,一弹簧振子,弹簧的劲度系数为k,重物的质量为m,则此系统的固有振动周期为______________________。

3,用40N的力拉一轻弹簧,可使其伸长20 cm。此弹簧下应挂__________kg的物体,才能使弹簧振子作简谐振动的周期T = 0.2π s。

4,将质量为0.2 kg的物体,系于劲度系数k = 19 N/m的竖直悬挂的弹簧的下端。假定在弹簧不变形的位置将物体由静止释放,然后物体作简谐振动,则振动频率为__________。

5,一个弹簧振子,第一次用力把弹簧压缩x后开始振动,第二次把弹簧压缩2x后开始振动,则两次振动的周期之比为。

6,摆球质量为m,摆长为l的单摆,当其作角谐振动时,从正向最大偏移位置运动到正向角位移一半处,所需的最短时间是。

7,一物块悬挂在弹簧下方作简谐振动,当这物块在平衡位置时,弹簧的长度比原长长

?l ,这一振动系统的周期为________________。

8,有两相同的弹簧,其劲度系数均为k 。把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________。

4. 计算题

1,一质量为0.20 kg 的质点作简谐振动,其振动方程为 10.6cos(5)2

x t =+

π (SI)

求:(1) 质点的初速度; (2) 质点在正向最大位移一半处所受的力。

2,质量为2 kg 的质点,按方程0.2sin[5]6

x t =-

π (SI )沿着x 轴振动。求:

(1) t = 0时,作用于质点的力的大小;

(2) 作用于质点的力的最大值和此时质点的位置。

3,由质量为M 的木块和劲度系数为k 的轻质弹簧组成在光滑水平台上运动的谐振子,如图所示。开始时木块静止在O 点,一质量为m 的子弹以速率v 0沿水平方向射入木块并嵌在其中,然后木块(内有子弹)作简谐振动。若以子弹射入木块并嵌在木块中时开始计时,试写出系统的振动方程。取x 轴如图。

M

结构力学第五章习题及答案

第五章 习题 5—2 试用力法计算下列结构,并会出弯矩图。 解:1.判断超静定次数:n=1 2. 确定(选择)基本结构。 3.写出变形(位移)条件: (a ) 根据叠加原理,式(a )可写成 (b ) 4 .建立力法基本方程 将? 11 = 11 x 1代入(b)得 F P A B C l/2 l/2 (a) F P X 1 X 1=1 M 1图 基本体系 M P 图 l F P F P l /2 1=?0 1111=?+?=?P

(c ) 5. 计算系数和常数项 EI l l l l EI 332)21(1311= ???=δ 6. 将d11、 ?11代入力法方程式(c ) 7.作弯矩图 3FP P l /16 1111=?+P X δEI l F l F l l l F l l EI P P P P 4852322212312221(13 1= ???+????=?) (1651111↑=?-=P P F X δp M X M M +=116 32165l F l F l F M P P P A = -?=

解:1.判断超静定次数:n=1 2. 确定(选择)基本结构。 3.写出变形(位移)条件: (a ) 根据叠加原理,式(a )可写成 (b ) 4 .建立力法基本方程 将?11 = 11 x 1代入(b)得 (c ) EI 2 EI 1 F P A B X 1 X 1=1 F P C (b) M 1图 基本体系 M P 图 l F P (l -a ) 1=?0 1111=?+?=?P 0 1111=?+P X δ

5. 计算系数和常数项 1 33)3221(1)]332()(21)332()(21[13 2331211EI a EI a l a a a EI a l a a l l a a a l EI + -=???++??-?++??-?= δ2 2216)2()(]3 )(2)(213)()(21 [1EI a l a l F a l F a a l a l F a a l EI P P P P +--= -??-?+-??-?=? 6. 将d11、 ?11代入力法方程式(c ) 31 23 3 231)1(322a I I l a al l F X P --+-= 7.作弯矩图 (d )解: 超静定次数为2 选择基本结构如图(1)所示力法典型方程为: d 11X 1+d 12X 2+△1P =0 d 21X 1 + d 22X 2+△2P =0 计算系数和常数项,为此作作出X 1=1、X 2=1和荷载单独作用下的弯矩图如(2)(3)(4)所示计 p M X M M +=1 1(a)

《图解刚体力学——欧拉运动学方程》

本科生毕业论文 论文题目:图解刚体力学——欧拉运动学方程 学生姓名:罗加宽 学号: 2008021152 专业名称:物理学 论文提交日期: 2012年05月17日 申请学位级别:理学学士 论文评审等级: 指导教师姓名:陈洛恩 职称:教授 工作单位:玉溪师范学院 学位授予单位:玉溪师范学院 玉溪师范学院理学院物理系 2012年05月

图解刚体力学—欧拉运动学方程 罗加宽 (玉溪师范学院理学院物理系 08级物理1班云南玉溪 653100) 指导教师:陈洛恩、杨春艳 摘要:本文阐述了描述刚体定点转动的欧拉角及欧拉运动学方程的图解,以期让复杂的问题转 化得简单清晰而易于学习者的理解,抽象的概念变得直观具体而易于学习者的掌握;并能在一 定程度上对提高学习者的空间思维能力、引导和培养学习者的创新思维能力有一定的帮助。 关键字:图解;刚体;欧拉角;欧拉运动学方程 1.引言 理论力学是研究物体机械运动一般规律的科学;依照牛顿的说法,理论力学“是关于力产生的运动和产生任何运动的力的理论,是精确的论述和证明” [1]。理论力学作为使用数学方法的自然知识的一部分,不仅研究实际物体,而且研究其模型—质点、质点系、刚体和连续介质。从研究次序来看,通常先研究描述机械运动现象的运动学,然后再进一步研究机械运动应当遵循哪些规律的动力学。至于研究平衡问题的静力学,对理科来讲可以作为动力学的一部分来处理,但在工程技术上,静力学却是十分的重要,因此,常把它和动力学分开,自成一个系统[2]。本文图解的内容为刚体力学运动学问题之一的刚体的绕定点的转动。 “图解”的方法,较早见于上海科学技术出版社1988年翻译出版的《图解量子力学》,原书名为The Picture Book of Quantum Mechanics,由Springer-Verlag 出版;类似的书还有Springer-Verlag出版的Visual Quantum Mechanics。其特点是通过将理论物理与数值计算相结合实现可视化来讲解物理知识。国外对物理的可视化教学十分重视,早在1995-1996年间Wiley出版社出版了9本有关物理多媒体教学的丛书,是由大学高等物理软件联盟(The Consortium for Upper-Level Physics Software,CUPS)编写该丛书及其所用的教学软件[3]。如今,图解法已经广泛应用于力学、电磁学、模拟电子技术等方面,理论力学方面同样也有不少人已经采用了图解法。如赵宗杰使用3dsmax建立质点外弹道运动规律的虚拟模型和场景[4];乐山师范学院王峰等利用Matlab分别对质点受力仅为位置、速度或时间的函数进行了图解,并说明了Matlab在理论力学中的应用[5];阜阳师范学院孙美娟、韩修林利用Mathematica进行编程作出了落体的位移—时间图像[6]。通过图解,使很多抽象繁难的物理问题在解析时达到空间立体直观,概念形成清晰,逻辑链路晓畅明朗,数式转换准确易见。 理论力学因理论性较强,与高等数学联系密切,一些概念的形成、公式的推导、逻辑推理等较抽象、繁难、复杂,往往使教授者感到教学很难达到预期的效果,学

结构动力学习题解答(一二章)

第一章 单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析和动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

结构力学题库答案

1 : 图 a 桁 架, 力 法 基 本 结 构 如 图 b ,力 法 典 型 方 程 中 的 系 数 为 :( ) 3. 2:图示结构用力矩分配法计算时,结点A 的约束力矩(不平衡 力矩)为(以顺时针转为正) ( ) 4.3Pl/16 3:图示桁架1,2杆内力为: 4. 4:连续梁和 M 图如图所示,则支座B 的竖向反力 F By 是:

4.17.07(↑) 5:用常应变三角形单元分析平面问题时,单元之间()。 3.应变、位移均不连续; 6:图示体系的几何组成为 1.几何不变,无多余联系; 7:超静定结构在荷载作用下的内力和位移计算中,各杆的刚度为() 4.内力计算可用相对值,位移计算须用绝对值 8:图示结构用力矩分配法计算时,结点A之杆AB的分配系数

μAB 为(各杆 EI= 常数)( ) 4.1/7 9:有限元分析中的应力矩阵是两组量之间的变换矩阵,这两组量是( )。 4.单元结点位移与单元应力 10:图示结构用位移法计算时,其基本未知量数目为( ) 4.角位移=3,线位移=2 11:图示结构,各柱EI=常数,用位移法计算时,基本未知量数 目是( ) 3.6 12:图示结构两杆长均为d,EI=常数。则A 点的垂直位移为( ) 4.qd 4/6EI (↓) 13:图示桁架,各杆EA 为常数,除支座链杆外,零杆数为:

1.四 根 ; 14:图示结构,各杆线刚度均为i,用力矩分配法计算时,分配 系数μAB 为( ) 2. 15:在位移法中,将铰接端的角位移,滑动支撑端的线位移作为基本未知量: 3.可以,但不必; 1:用图乘法求位移的必要条件之一是:( ) 2.结构可分为等截面直杆段; 2:由于静定结构内力仅由平衡条件决定,故在温度改变作用下静定结构将( ) 2.不产生内力 3:图示结构,各杆EI=常数,欲使结点B 的转角为零,比值P1/P2应 为( ) 2.1

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有 xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(2 2 =-+-dy x y dx y x 解:当0)1)(1(2 2 ≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(2 2 =--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(2 2 为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如 )(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到

第十三讲刚体的运动和动力学问题

第十三讲 刚体的运动学与动力学问题 一 竞赛内容提要 1、刚体;2、刚体的平动和转动;3、刚体的角速度和角加速度;4、刚体 的转动惯量和转动动能;5、质点、质点系和刚体的角动量;6、转动定理和角动量定理;7、角动量守恒定律。 二 竞赛扩充的内容 1、刚体:在外力的作用下不计形变的物体叫刚体。刚体的基本运动包括刚体的平动和刚体绕定轴的转动,刚体的任何复杂运动均可由这两种基本运动组合而成。 2、刚体的平动;刚体的平动指刚体内任一直线在运动中始终保持平行,刚体上任意两点运动的位移、速度和加速度始终相同。 3、刚体绕定轴的转动;刚体绕定轴的转动指刚体绕某一固定轴的转动,刚体上各点都在与转轴垂直的平面内做圆周运动,各点做圆周运动的角位移Φ、角速度ω和角加速度β相同(可与运动 学的s 、v 、a 进行类比)。且有:ω=t t ??Φ→?lim 0;β=t t ??→?ωlim 0。当β为常量时,刚体做匀加 速转动,类似于匀加速运动,此时有:ω=ω0+βt ; Φ=Φ0+ω0t+βt 2/2; ω2-ω02=2β(Φ-Φ0)。式中,Φ0、ω0分别是初始时刻的角位移和角速度。对于绕定轴运动的刚体上某点的运动情况,有:v=ωR , a τ=βR , a n =ω2R=v 2/R, 式中,R 是该点到轴的距离,a τ、a n 分别是切向加速度和法向加速度。 例1 有一车轮绕轮心以角速度ω匀速转动,轮上有一小虫自轮心沿一根辐条向外以初速度v 0、 加速度a 作匀加速爬行,求小虫运动的轨迹方程。 例2 一飞轮作定轴转动,其转过的角度θ和时间t 的关系式为:θ=at+bt 2-ct 3,式中,a 、b 、c 都是恒量,试求飞轮角加速度的表示式及距转轴r 处的切向加速度和法向加速度。 例3 如图所示,顶杆AB 可在竖直槽K 内滑动,其下端由凸轮K 推动,凸轮 绕O 轴以匀角速度ω转动,在图示瞬间,OA=r ,凸轮轮缘与A 接触处,法线n 与OA 之间的夹角为α,试求此瞬时顶杆OA 的速度。

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

结构动力学习题解答一二章

第一章 单自由度系统 1、1 总结求单自由度系统固有频率的方法与步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法与能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析与动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 与势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 与势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1、2 叙述用衰减法求单自由度系统阻尼比的方法与步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法与共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期与相邻波峰与波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

结构动力学习题解答(三四章)

第三章 多自由度系统 试求图3-10所示系统在平衡位置附近作微振动的振动方程。 图3-10 解:(1)系统自由度、广义坐标 图示系统自由度N=2,选x1、x2和x3为广义坐标; (2)系统运动微分方程 根据牛顿第二定律,建立系统运动微分方程如下: ;)(;)()(;)(3 4233332625323122222121111x K x x K x m x K x K x x K x x K x m x x K x K x m ---=------=---=&&&&&& 整理如下 ; 0)(;0)(;0)(3432333332653212222212111=++-=-++++-=-++x K K x K x m x K x K K K K x K x m x K x K K x m &&&&&& 写成矩阵形式 ;000)(0)(0) (0 0000321433365322221321321 ?? ????????=????????????????????+--+++--++????????????????????x x x K K K K K K K K K K K K x x x m m m &&&&&&(1) (3)系统特征方程 设)sin(,)sin(,)sin(332211?ω?ω?ω+=+=+=t A x t A x t A x 代入系统运动微分方程(1)得系统特征方程 ;000)(0)(0)(321234333 2 26532222121?? ????????=????????????????????-+---+++---+A A A m K K K K m K K K K K K m K K ωωω(2) (4)系统频率方程 系统特征方程(2)有非零解的充要条件是其系数行列式等于零, 即 ;0) (0)(0)(234333226532222121=-+---+++---+ωωωm K K K K m K K K K K K m K K 展开得系统频率方程

结构力学试题及参考答案

《结构力学》作业参考答案 一、判断题(将判断结果填入括弧内,以 √表示正确 ,以 × 表示错误。) 1.图示桁架结构中有3个杆件轴力为0 。(×) 2.图示悬臂梁截面A 的弯矩值是ql 2。 (×) l l 3.静定多跨梁中基本部分、附属部分的划分与所承受的荷载无关。(√ ) 4.一般来说静定多跨梁的计算是先计算基本部分后计算附属部分。(× ) 5.用平衡条件能求出全部内力的结构是静定结构。( √ ) 6.求桁架内力时截面法所截取的隔离体包含两个或两个以上的结点。(√ ) 7.超静定结构的力法基本结构不是唯一的。(√) 8.在桁架结构中,杆件内力不是只有轴力。(×) 9.超静定结构由于支座位移可以产生内力。 (√ ) 10.超静定结构的内力与材料的性质无关。(× ) 11.力法典型方程的等号右端项不一定为0。 (√ ) 12.计算超静定结构的位移时,虚设力状态可以在力法的基本结构上设。(√) 13.用力矩分配法计算结构时,汇交于每一结点各杆端分配系数总和为1,则表明分配系 数的计算无错误。 (× ) 14.力矩分配法适用于所有超静定结构的计算。(×) 15.当AB 杆件刚度系数i S AB 3 时,杆件的B 端为定向支座。 (×)

二、单项选择题(在每小题的四个备选答案中选出一个正确答案,并将其代号填在题干后面的括号内。不选、错选或多选者,该题无分。) 1.图示简支梁中间截面的弯矩为( A ) q l A . 82ql B . 42ql C . 22 ql D . 2ql 2.超静定结构在荷载作用下产生的内力与刚度(B ) A . 无关 B . 相对值有关 C . 绝对值有关 D . 相对值绝对值都有关 3.超静定结构的超静定次数等于结构中(B ) A .约束的数目 B .多余约束的数目 C .结点数 D .杆件数 4.力法典型方程是根据以下哪个条件得到的(C )。 A .结构的平衡条件 B .结构的物理条件 C .多余约束处的位移协调条件 D .同时满足A 、B 两个条件 5. 图示对称结构作用反对称荷载,杆件EI 为常量,利用对称性简化后的一半结构为(A )。 6.超静定结构产生内力的原因有(D ) A .荷载作用与温度变化 B .支座位移 C .制造误差 D .以上四种原因

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

结构动力学例题复习题

第十六章结构动力学 【例16-1】不计杆件分布质量和轴向变形,确定图16-6 所示刚架的动力自由度。 图16-6 【解】各刚架的自由度确定如图中所示。这里要注意以下两点: 1.在确定刚架的自由度时,引用受弯直杆上任意两点之间的距离保持不变的假定。根据这个假定并加入最少数量的链杆以限制刚架上所有质量的位置,则刚架的自由度数目即等于所加链杆数目。 2.集中质量的质点数并不一定等于体系的自由度数,而根据自由度的定义及问题的具体情形确定。

【例16-2】 试用柔度法建立图16-7a 所示单自由度体系,受均布动荷载)t (q 作用的运动方程。 【解】本题特点是,动荷载不是作用在质量上的集中荷载。对于非质量处的集中动荷载的情况,在建立运动方程时,一般采用柔度法较为方便。 设图a 质量任一时刻沿自由度方向的位移为y (向下为正)。把惯性力I 、阻尼力R 及动荷载)(t P ,均看作是一个静荷载,则在其作用下体系在质量处的位移y ,由叠加原理(见图b 、c 、d 及e ),则 )(R I y P D I P +δ+?=?+?+?= 式中,)t (q EI 38454P =?,EI 483 =δ。将它们代入上式,并注意到y m I -=,y c R -=,得 )(48)(38453 4y c y m EI t q EI y --+= 图16-7 经整理后可得 )(t P ky y c y m E =++ 式中,3EI 481k =δ= ,)(8 5)(t q k t P P E =?= )(t P E 称为等效动荷载或等效干扰力。其含义为:)(t P E 直接作用于质量上所产生的位移和 实际动荷载引起的位移相等。图a 的相当体系如图f 所示。 【例16-3】 图16-8a 为刚性外伸梁,C 处为弹性支座,其刚度系数为k ,梁端点A 、D 处分别有m 和 3 m 质量,端点D 处装有阻尼器c ,同时梁BD 段受有均布动荷载)t (q 作用,试建立刚性梁的运动方程。 【解】 因为梁是刚性的,这个体系仅有一个自由度,故它的动力响应可由一个运动方程来表达,方程可以用直接平衡法来建立。 这个单自由度体系可能产生的位移形式如图b 所示,可以用铰B 的运动)t (α作为基本

各类微分方程的解法大全

各类微分方程的解法 1.可分离变量的微分方程解法 一般形式:g(y)dy=f(x)dx 直接解得∫g(y)dy=∫f(x)dx 设g(y)及f(x)的原函数依次为G(y)及F(x),则G(y)=F(x)+C为微分方程的隐式通解 2.齐次方程解法 一般形式:dy/dx=φ(y/x) 令u=y/x则y=xu,dy/dx=u+xdu/dx,所以u+xdu/dx=φ(u),即du/[φ(u)-u]=dx/x 两端积分,得∫du/[φ(u)-u]=∫dx/x 最后用y/x代替u,便得所给齐次方程的通解 3.一阶线性微分方程解法 一般形式:dy/dx+P(x)y=Q(x) 先令Q(x)=0则dy/dx+P(x)y=0解得y=Ce- ∫P(x)dx,再令y=u e-∫P(x)dx代入原方程解得u=∫Q(x) e∫P(x)dx dx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dx dx+C] 即y=Ce-∫P(x)dx +e- ∫P(x)dx∫Q(x)e∫P(x)dx dx为一阶线性微分方程的通解 4.可降阶的高阶微分方程解法 ①y(n)=f(x)型的微分方程 y(n)=f(x) y(n-1)= ∫f(x)dx+C1 y(n-2)= ∫[∫f(x)dx+C1]dx+C2 依次类推,接连积分n次,便得方程y(n)=f(x)的含有n个任意常数的通解②y”=f(x,y’) 型的微分方程 令y’=p则y”=p’,所以p’=f(x,p),再求解得p=φ(x,C1) 即dy/dx=φ(x,C1),所以y=∫φ(x,C1)dx+C2 ③y”=f(y,y’) 型的微分方程

令y ’=p 则y ”=pdp/dy,所以pdp/dy=f(y,p),再求解得p=φ(y,C 1) 即dy/dx=φ(y,C 1),即dy/φ(y,C 1)=dx,所以∫dy/φ(y,C 1)=x+C 2 5.二阶常系数齐次线性微分方程解法 一般形式:y ”+py ’+qy=0,特征方程r 2+pr+q=0 6.二阶常系数非齐次线性微分方程解法 一般形式: y ”+py ’+qy=f(x) 先求y ”+py ’+qy=0的通解y 0(x),再求y ”+py ’+qy=f(x)的一个特解y*(x) 则y(x)=y 0(x)+y*(x)即为微分方程y ”+py ’+qy=f(x)的通解 求y ”+py ’+qy=f(x)特解的方法: ① f(x)=P m (x)e λx 型 令y*=x k Q m (x)e λx [k 按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Q m (x)的m+1个系数 ② f(x)=e λx [P l(x)cos ωx+P n (x)sin ωx ]型 令y*=x k e λx [Q m (x)cos ωx+R m (x)sin ωx ][m=max ﹛l,n ﹜,k 按λ+i ω不是特征方程的根或是特征方程的单根依次取0或1]再代入原方程,分别确定Q m (x)和R m (x)的m+1个系数

常微分方程数值解法

第八章 常微分方程的数值解法 一.内容要点 考虑一阶常微分方程初值问题:?????==0 0)() ,(y x y y x f dx dy 微分方程的数值解:设微分方程的解y (x )的存在区间是[a,b ],在[a,b ]内取一系列节 点a= x 0< x 1<…< x n =b ,其中h k =x k+1-x k ;(一般采用等距节点,h=(b-a)/n 称为步长)。在每个节点x k 求解函数y(x)的近似值:y k ≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分方程的数值解。 用数值方法,求得f(x k )的近似值y k ,再用插值或拟合方法就求得y(x)的近似函数。 (一)常微分方程处置问题解得存在唯一性定理 对于常微分方程初值问题:?????==0 0)() ,(y x y y x f dx dy 如果: (1) 在B y y A x x 00≤-≤≤,的矩形内),(y x f 是一个二元连续函数。 (2) ),(y x f 对于y 满足利普希茨条件,即 2121y y L y x f y x f -≤-),(),(则在C x x 0≤≤上方程?????==0 0)() ,(y x y y x f dx dy 的解存在且唯一,这里C=min((A-x 0),x 0+B/L),L 是利普希茨常数。 定义:任何一个一步方法可以写为),,(h y x h y y k k k 1k Φ+=+,其中),,(h y x k k Φ称为算法的增量函数。 收敛性定理:若一步方法满足: (1)是p 解的. (2) 增量函数),,(h y x k k Φ对于y 满足利普希茨条件. (3) 初始值y 0是精确的。则),()()(p h O x y kh y =-kh =x -x 0,也就是有 0x y y lim k x x kh 0h 0 =--=→)( (一)、主要算法 1.局部截断误差 局部截断误差:当y(x k )是精确解时,由y(x k )按照数值方法计算出来的1~ +k y 的误差y (x k+1)- 1~ +k y 称为局部截断误差。 注意:y k+1和1~ +k y 的区别。因而局部截断误差与误差e k +1=y (x k +1) -y k +1不同。 如果局部截断误差是O (h p+1),我们就说该数值方法具有p 阶精度。

结构力学计算题及答案

《结构力学》计算题61.求下图所示刚架的弯矩图。 a a 62.用结点法或截面法求图示桁架各杆的轴力。 63.请用叠加法作下图所示静定梁的M图。 64.作图示三铰刚架的弯矩图。 65.作图示刚架的弯矩图。

66. 用机动法作下图中E M 、L QB F 、R QB F 的影响线。 1m 2m 2m Fp 1 =1m E B A 2m C D 67. 作图示结构F M 、QF F 的影响线。 68. 用机动法作图示结构影响线L QB F F M ,。 69. 用机动法作图示结构R QB C F M ,的影响线。 70. 作图示结构QB F 、E M 、QE F 的影响线。

71. 用力法作下图所示刚架的弯矩图。 l B D P A C l l EI =常数 72. 用力法求作下图所示刚架的M 图。 73. 利用力法计算图示结构,作弯矩图。 74. 用力法求作下图所示结构的M 图,EI=常数。 75. 用力法计算下图所示刚架,作M 图。

76. 77. 78. 79. 80. 81. 82.

83. 84. 85.

答案 取整体为研究对象,由 0A M =,得 2220yB xB aF aF qa +-= (1)(2分) 取BC 部分为研究对象,由 0C M =∑,得 yB xB aF aF =,即yB xB F F =(2)(2分) 由(1)、(2)联立解得2 3 xB yB F F qa ==(2分) 由 0x F =∑有 20xA xB F qa F +-= 解得 4 3xA F qa =-(1分) 由0y F =∑有 0yA yB F F += 解得 2 3 yA yB F F qa =-=-(1分) 则222 4222333 D yB xB M aF aF qa qa qa =-=-=()(2分) 弯矩图(3分) 62. 解:(1)判断零杆(12根)。(4分) (2)节点法进行内力计算,结果如图。每个内力3分(3×3=9分) 63. 解:

常微分方程数值解法

常微分方程数值解法 【作用】微分方程建模是数学建模的重要方法,因为许多实际问题的数学描述将导致求解微分方程的定解问题。把形形色色的实际问题化成微分方程的定解问题,大体上可以按以下几步: 1. 根据实际要求确定要研究的量(自变量、未知函数、必要的参数等)并确定坐标系。 2. 找出这些量所满足的基本规律(物理的、几何的、化学的或生物学的等等)。 3. 运用这些规律列出方程和定解条件。基本模型 1. 发射卫星为什么用三级火箭 2. 人口模型 3. 战争模型 4. 放射性废料的处理通常需要求出方程的解来说明实际现象,并加以检验。如果能得到解析形式的解固然是便于分析和应用的,但是我们知道,只有线性常系数微分方程,并且自由项是某些特殊类型的函数时,才可以得到这样的解,而绝大多数变系数方程、非线性方程都是所谓“解不出来” 的于是对于用微分方程解决实际问题来说,数值解法就是一个十分重要的手段。 1. 改进Euler 法: 2. 龙格—库塔( Runge—Kutta )方法: 【源程序】 1. 改进Euler 法: function [x,y]=eulerpro(fun,x0,x1,y0,n);%fun 为函数,(xO, x1)为x 区间,yO 为初始值,n 为子 区间个数 if nargin<5,n=5O;end h=(x1-xO)/n; x(1)=xO;y(1)=yO; for i=1:n x(i+1)=x(i)+h; y1=y(i)+h*feval(fun,x(i),y(i)); y2=y(i)+h*feval(fun,x(i+1),y1); y(i+1)=(y1+y2)/2; end 调用command 窗口 f=i nlin e('-2*y+2*x A2+2*x') [x,y]=eulerpro(f,O,,1,1O) 2 x +2x , (0 < x < , y(0) = 1 求解函数y'=-2y+2 2. 龙格—库塔( Runge—Kutta )方法: [t,y]=solver('F',tspan ,y0) 这里solver为ode45, ode23, ode113,输入参数F是用M文件定义的微分方程y'= f (x, y)右端的函数。tspan=[t0,tfinal]是求解区间,y0是初值。 注:ode45和ode23变步长的,采用Runge-Kutta算法。 ode45表示采用四阶-五阶Runge-Kutta算法,它用4阶方法提供候选解,5阶方法控制误差,是一种自适应步长(变步长)的常微分方程数值解法,其整体截断误差为(△ 口人5解 决的是Nonstiff(非刚性)常微分方程。

结构动力学习题分析

第九章 结构动力计算 一、是非题 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、忽略直杆的轴向变形,图示结构的动力自由度为4个。 3、仅在恢复力作用下的振动称为自由振动。 4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。 l /2 l /2 l /2 l /2 (a)(b) 6、单 自 由 度 体 系 如 图 ,W =98 .kN ,欲 使 顶 端 产 生 水 平 位 移 ?=001 .m ,需 加 水 平 力 P =16kN ,则 体 系 的 自 振 频 率 ω=-40s 1 。 ? 7、结构在动力荷载作用下,其动内力 与动位移仅与动力荷载的变化规律有关。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 , EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。 A C 10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 : m m X X h EI EI EI EI X X P t 00148242424012312????????????+--????????????=?????? () 二、选择题 1、图 示 体 系 ,质 点 的 运 动 方 程 为 :

A .()()()y l P s in m y EI =-77683θ t /; B .()()m y EI y l P s in /+=19273 θ t ; C .()()m y EI y l P s in /+=38473θ t ; D .()()()y l P s in m y EI =-7963θ t / 。 l l 0.50.5 2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以 A .增 大 P ; B .增 大 m ; C .增 大 E I ; D .增 大 l 。 l t ) 3、单 自 由 度 体 系 自 由 振 动 的 振 幅 取 决 于 : A .初 位 移 ; B .初 速 度 ; C .初 位 移 、初 速 度 与 质 量 ; D .初 位 移 、初 速 度 与 结 构 自 振 频 率 。 4、考 虑 阻 尼 比 不 考 虑 阻 尼 时 结 构 的 自 振 频 率 : A .大 ; B .小 ; C .相 同 ; D .不 定 ,取 决 于 阻 尼 性 质 。 5、已 知 一 单 自 由 度 体 系 的 阻 尼 比 ξ=12.,则 该 体 系 自 由 振 动 时 的 位 移 时 程 曲 线 的 形 状 可 能 为 : D. C. B. A. 6、图 a 所 示 梁 ,梁 重 不 计 ,其 自 振 频 率 () ω=76873 EI ml /;今 在 集 中 质 量 处 添 加 弹 性 支 承 ,如 图 b 所 示 ,则 该 体 系 的 自 振 频 率 ω为 : A .() 76873 EI ml k m //+; B . ()76873EI ml k m //-; C .()76873 EI ml k m //-; D . () 76873 EI ml k m //+ 。 l l /2 /2 l l /2 /2(a)(b) 7、图 示 结 构 ,不 计 阻 尼 与 杆 件 质 量 ,若 要 其 发 生 共 振 ,θ 应 等 于 A . 23k m ; B .k m 3;

运动学、静力学、动力学概念

运动学、静力学、动力学概念 运动学 运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,通常不考虑力和质量等因素的影响。至于物体的运动和力的关系,则是动力学的研究课题。 用几何方法描述物体的运动必须确定一个参照系,因此,单纯从运动学的观点看,对任何运动的描述都是相对的。这里,运动的相对性是指经典力学范畴内的,即在不同的参照系中时间和空间的量度相同,和参照系的运动无关。不过当物体的速度接近光速时,时间和空间的量度就同参照系有关了。这里的“运动”指机械运动,即物体位置的改变;所谓“从几何的角度”是指不涉及物体本身的物理性质(如质量等)和加在物体上的力。 运动学主要研究点和刚体的运动规律。点是指没有大小和质量、在空间占据一定位置的几何点。刚体是没有质量、不变形、但有一定形状、占据空间一定位置的形体。运动学包括点的运动学和刚体运动学两部分。掌握了这两类运动,才可能进一步研究变形体(弹性体、流体等)的运动。 在变形体研究中,须把物体中微团的刚性位移和应变分开。点的运动学研究点的运动方程、轨迹、位移、速度、加速度等运动特征,这些都随所选的参考系不同而异;而刚体运动学还要研究刚体本身的转动过程、角速度、角加速度等更复杂些的运动特征。刚体运动按运动的特性又可分为:刚体的平动、刚体定轴转动、刚体平面运动、刚体定点转动和刚体一般运动。 运动学为动力学、机械原理(机械学)提供理论基础,也包含有自然科学和工程技术很多学科所必需的基本知识。 运动学的发展历史 运动学在发展的初期,从属于动力学,随着动力学而发展。古代,人们通过对地面物体和天体运动的观察,逐渐形成了物体在空间中位置的变化和时间的概念。中国战国时期在《墨经》中已有关于运动和时间先后的描述。亚里士多德在《物理学》中讨论了落体运动和圆运动,已有了速度的概念。

相关文档
相关文档 最新文档