文档库 最新最全的文档下载
当前位置:文档库 › 利用工业碳酸锂提纯制备高纯度氟化锂

利用工业碳酸锂提纯制备高纯度氟化锂

利用工业碳酸锂提纯制备高纯度氟化锂
利用工业碳酸锂提纯制备高纯度氟化锂

2012年第6期

TIANJIN SCIENCE&TECHNOLOGY

创新技术

氟化锂,分子式LiF,作为一种重要的锂基基础材料,在很多方面得到广泛的应用。随着国民经济和各个行业的发展,氟化锂越来越受到人们的重视,氟化锂的生产工艺也引起了广泛的关注和研究。

1高纯LiF的合成工艺概述

根据对原料是否进行除杂及除杂方式的不同,高纯或电池级氟化锂生产工艺可分为直接制备法、复分解制备法、离子交换制备法和萃取制备法等。

1.1直接制备法

直接制备法是早期制备高纯或电池级氟化锂的主要方法,原料大部分是固体碳酸锂和氢氟酸溶液。此方法原理简单,但对固体碳酸锂的质量要求很高,且生成的氟化锂颗粒粒度极不均匀。

1.2离子交换制备法

1961年美国人Robert用离子交换法纯化LiOH溶液,然后与Na2SiF6反应制得电池级LiF,此法节约了萤石资源,降低了生产成本,但其主要缺点是产品中的硅及一些金属杂质元素的含量仍较高,不能满足现在对电池级氟化锂高质量的要求。

1.3萃取法

最早将萃取应用于制备电池级氟化锂的日本人小林健二,利用L-硝酸锂溶液与氢氟酸反应制备高纯氟化锂。此方法需要选择优质的萃取剂,对萃取浓度、萃取时间、被萃取液的pH值等条件要求比较严格,同时反应过程中会产生大量的酸性产物,造成一定的环境压力。

1.4复分解法

复分解法有许多种,总的来说就是氟盐与锂盐反应生成氟化锂,其优点为操作简单,但所得产品质量受原料质量影响颇大,同时副产的盐需要进行再处理才能使用,生产成本较高,不适宜大规模生产。

2利用工业碳酸锂提纯制备高纯度氟化锂

直接制备法原理简单,但对固体碳酸锂的质量要求很高,且生成的氟化锂颗粒粒度极不均匀。如果能将工业碳酸锂进行提纯得到高纯的碳酸锂,并能通过改善反应条件控制氟化锂的粒度,便能得到满足电池行业要求的高级别的氟化锂,并能有效减低原料成本。

2.1生产工艺的详细介绍

2.1.1工业碳酸锂的碳化除杂根据碳酸锂在水中溶解度低,碳酸氢锂在水中溶解度高的特点,将碳酸锂在一定条件下碳化成碳酸氢锂,与其中的杂质分离,再通过热解操作,将碳酸氢锂分解转化为碳酸锂,从而实现工业碳酸锂的精制提纯(工艺过程如图1所示)。

碳酸锂碳化成碳酸氢锂溶液,发生化学反应如下:

LiCO3+COa+H2O=2LiHCO3

图1工艺过程

二氧化碳在一定压力下与碳酸锂悬浊液反应生成碳酸氢锂,影响该反应的主要因素为固液比、二氧化碳的压力、反应时

于宝青(天津金牛电源材料有限责任公司天津300400)

赵庆云孙新华(中海油天津化工研究设计院天津300400)

利用工业碳酸锂

提纯制备高纯度氟化锂

【摘要】氟化锂作为一种重要的锂基基础材料,在很多方面得到广泛应用。将工业碳酸锂经过一次或

多次碳化和热解得到的精制的碳酸锂,与电子级氢氟酸反应生成氟化锂,再经过分离、干燥可得到高纯

或电池级的氟化锂,阐述了这一工艺过程。

【关键词】氟化锂工业碳酸锂氢氟酸碳化热解生产工艺

收稿日期:2012-11-09

4

2012年第6期

TIANJIN SCIENCE&TECHNOLOGY 创新技术

间、温度等。

2.1.2液固比对碳化反应速率的影响三相反应中,固体含量即固液比(质量比)对反应速率的影响是很大的。在相同的操作条件下,我们对不同的固液比条件的反应速率进行了实验。体系压力为0.4MPa,反应器搅拌速度为100r/min,反应温度为室温298K左右。通过对实验结果的比较,得出了不同固液比下的碳化情况,结果如图2。

图2不同的固液比条件的反应速率

由上图可以看出:不同的固液比对碳化反应速率的影响较为显著,主要表现为:随时间的延长,碳化反应速率均先减小,后增大,再减小趋于稳定。总体而言,随固液比的增大,碳化反应速率逐渐减小。考虑生产因素,液固比可以设定在(15~20)∶1。

2.1.3压力对碳化反应速率的影响在搅拌速度为400r/min,温度为298K,固液比为1∶20的条件下,研究了不同压力下碳化反应速率情况,实验结果如图3。

图3不同压力下碳化反应速率

由上图可以看出,不同压力下的碳化反应速率均是随时间的延长先急剧减小,后又逐渐增大,再减小直至趋于稳定。但随压力的增大,碳化反应速率也逐渐增大,到达反应平衡的时间减少,故增大压力有利于碳化反应的快速进行。考虑工业化生产,碳化压力设置为0.4MPa。

2.1.4温度对碳化反应速率的影响化学动力学的研究表明,温度对化学反应速率的影响较为显著。在搅拌速度为400r/min,固液比为1∶20,压力为0.4MPa条件下,研究了不同温度下的碳化反应速率,实验结果如图4。

一般温度升高反应速率就会加快。但从图4可以看出,对于Li2CO3的碳化反应而言,反应速率随温度的升高先增大后减小。一方面,一定范围内,温度升高确实加快了反应的进行;另一方面,主要是因为Li2CO3与CO2溶解度随温度的升高而减小,温度升高使得它们的溶解度降低,从而使反应速率减慢。因此温度应设置在20~30℃。

图4不同温度下的碳化反应速率

2.1.5碳化反应终点的确定为了确定工业Li2CO3碳化反应

的终点,在25℃的反应温度下及0.4MPa压力下,考察一次碳

化反应的终点pH值对Li2CO3收率的影响,结果如下表1。

表1一次碳化反应的终点pH值对Li2CO3收率的影响

由上表可以看出:碳化反应终点pH值为10~12时,

Li2CO3收率最高。

综上所述,在考虑工业化的情况下,得出的较佳碳化工艺

参数,见表2:

表2较佳碳化工艺参数

2.1.6碳化液的除杂如图5所示,将碳化的碳化液进行过滤,过程中采用两级精密过滤器(过滤精度分别为5mm、

1mm),除去碳化产生的不溶性杂质。过滤后的碳化液仍含有

一些可溶性杂质,经热解后,进入到产品中影响产品质量。可

通过络合沉淀的方法去除,向过滤后的碳化液中加入适量的络

图5精密过滤器

5

2012年第6期

TIANJIN SCIENCE&TECHNOLOGY

创新技术

图6浆料经分离得到湿碳酸锂结晶

合物,将未完全除去的难溶性或微溶的杂质形成络合物沉淀下来,然后再经过滤器过滤去除。络合物加入量为碳化液中Ca的110%~115%。经络合过滤后的产品杂质达到质量要求,且方法简单,便于操作。

2.1.7碳化液的热解将碳化过滤后碳酸氢锂溶液进行加热,将碳酸氢锂分解为碳酸锂、水和二氧化碳,由于碳酸锂不溶于水,分解生成的碳酸锂结晶出来,得到碳酸锂浆料,浆料经分离得到湿碳酸锂结晶产品(如图6所示)。

热解发生反应如下:

2LiHCO3=LiCO3+CO2+H2O

经实验研究发现热解温度控制在90~95℃左右,既能使碳酸氢锂完全分解,又使碳酸锂在水中溶解度降低,从而得到较多的碳酸锂晶体。

将碳酸锂浆液分离后得到碳酸锂晶体,碳酸锂晶体表面仍留有少量可溶性杂质分离除去。经研究发现,打浆洗涤能更好地将晶体表面可溶性杂质分离除去,为了减少碳酸锂的损失,将碳酸锂晶体在90~95℃的热水中打浆2~3遍(见表3)。

由以上表格可以看出经上述生产工艺得到的产品可以满足电池级产品对氟化锂的要求,如有更高的要求,则可对工业级碳酸锂进行多次碳化、多次热解。■

表3中间产品碳酸锂的分析检测结果

2.2精制碳酸锂与氢氟酸反应生产电池级氟化锂

将洗涤后的碳酸锂浆料与40%的氢氟酸溶液在一定条件下进行反应,将得到的浆料进行固液分离,滤液部分返回反应工序,固体物料经洗涤、干燥得到电池级氟化锂产品(如图7所示)。反应过程中发生的化学反应如下:

LiCO3+2HF=2LiF+CO2+H2O

图7电池级氟化锂产品

影响产品质量的主要因素是碳酸锂悬浊液的液固比、加酸速度、反应终点的控制。液固比过大,将会增加氟化锂在溶液中的溶解量,造成氟化锂产品的损失;液固比过小,又会导致氟化锂产品中夹带碳酸锂,影响产品的纯度。通过试验中得出碳酸锂浆料的液固比控制在(1.3~1.5)∶1。

碳酸锂的存在将使产品质量受到影响,为使碳酸锂完全反应,要保证反应液终点pH值为2,且保持反应2~3h,待反应充分后,再用少量碳酸锂慢慢中和至中性附近。

2.3氟化锂的分离与洗涤

将合成后的氟化锂悬浊液转移至离心机内进行分离,并用80~90℃的去离子水洗涤至溶液pH值为6~8之间,洗涤液固比为1.5∶1,再经分离得到湿氟化锂产品。

2.4烘干及包装

电池级氟化锂对水分要求为小于300mg/mL,因此需要将湿氟化锂产品进行干燥。湿氟化锂先用托盘(衬四氟)在烘箱内120℃下干燥至水分为1000mg/mL附近,然后转移到真空干燥器中,在250℃、-0.1MPa下干燥2~4h,待冷却后,在干燥气氛保护下进行包装。

3电池级氟化锂分析结果

采用上述工艺制得的电池级氟化锂分析结果如下表4:

表4分析结果6

碳酸锂氢化提纯实验方案.docx

碳酸锂氢化提纯实验方案 一、实验目的 .................................................................................................错误 ! 未定义书签。 探究碳酸锂氢化提纯工艺的可行性。........................................错误 ! 未定义书签。 摸索除 Ca、Mg 、 Cl、 Na 的最优方法。 .....................................错误 ! 未定义书签。 摸索 Li2CO3与 CO2料配比。 ........................................................错误 ! 未定义书签。 探究可加工原料 Li CO 质量范围。 ............................................错误 ! 未定义书签。 23 摸索最优锂损。 ............................................................................错误 ! 未定义书签。 摸索生产 Li2CO3最优范围。 ........................................................错误 ! 未定义书签。 探索最佳反应条件:T、 P、 t。 ..................................................错误 ! 未定义书签。 摸索最优反应设备。....................................................................错误 ! 未定义书签。 二、实验原理 .................................................................................................错误 ! 未定义书签。 三、实验试剂及仪器 .....................................................................................错误 ! 未定义书签。 实验试剂 ........................................................................................错误 ! 未定义书签。 实验仪器 ........................................................................................错误 ! 未定义书签。 四、实验内容 .................................................................................................错误 ! 未定义书签。 探究温度对氢化反应的影响 ........................................................错误 ! 未定义书签。 探究 CO 速率对氢化反应的影响 ................................................错误 ! 未定义书签。 2 探究搅拌速度对氢化反应的影响................................................错误 ! 未定义书签。 探究反应时间的氢化反应的影响................................................错误 ! 未定义书签。 探究固液比对氢化反应的影响 ....................................................错误 ! 未定义书签。 探究 732 树脂对 Ca2+、Mg 2+金属离子的吸附效果 ....................错误 ! 未定义书签。 探究 717 强碱阴离子树脂除 Cl-效果 ...........................................错误 ! 未定义书签。 热解碳酸氢锂 ................................................................................错误 ! 未定义书签。 探究生产 Li2CO3最优范围 ............................................................错误 ! 未定义书签。 五、实验表格 .................................................................................................错误 ! 未定义书签。 六、实验结果及分析 .....................................................................................错误 ! 未定义书签。

磷酸铁锂材料的制备方法

磷酸铁锂材料的制备方法主要有: (1)高温固相法:J.Barker等就磷酸盐正极材料申请了专利,主要采用固相合成法。以碳酸锂、氢氧化锂等为锂源,草酸亚铁、乙二酸亚铁,氧化铁和磷酸铁等为铁源,磷酸根主要来源于磷酸二氢铵等。典型的工艺流程为:将原料球磨干燥后,在马弗炉或管式炉内于惰性或者还原气氛中,以一定的升温加速加热到某一温度,反应一段时间后冷却。高温固相法的优点是工艺简单、易实现产业化,但产物粒径不易控制、分布不均匀,形貌也不规则,并且在合成过程中需要使用惰性气体保护。 (2)碳热还原法:这种方法是高温固相法的改进,直接以铁的高价氧化物如Fe 2O 3 、LiH 2 PO 4 和碳粉为原料,以化学计量比混合,在箱式烧结炉氩气气氛中于70 0℃烧结一段时间,之后自然冷却到室温。采用该方法做成的实验电池首次充放电容量为151mAh/g。该方法目前有少数几家企业在应用,由于该法的生产过程较为简单可控,且采用一次烧结,所以它为LiFePO 4 走向工业化提供了另一条途径。但该法制备的材料较传统的高温固相法容量表现和倍率性能方面偏低。 (3)水热合成法:S.F.Yang等用Na 2HPO 4 和FeCL 3 合成FePO 4 .2H 2 O,然后与CH 3 C OOLi通过水热法合成LiFePO 4 。与高温固相法比较,水热法合成的温度较低,约 150度~200度,反应时间也仅为固相反应的1/5左右,并且可以直接得到磷酸铁锂,不需要惰性气体,产物晶粒较小、物相均一等优点,尤其适合于高倍率放电领域,但该种合成方法容易在形成橄榄石结构中发生Fe错位现象,影响电化学性能,且水热法需要耐高温高压设备,工业化生产的困难要大一些。据称Pho stech的P 2 粉末便采用该类工艺生产。 (4)液相共沉淀法:该法原料分散均匀,前躯体可以在低温条件下合成。将Li OH加入到(NH 4) 2 Fe(SO 4 ) 3 .6H 2 O与H 3 PO 4 的混合溶液中,得到共沉淀物,过滤 洗涤后,在惰性气氛下进行热处理,可以得到LiFePO 4 。产物表现出较好的循环稳定性。日本企业采用这一技术路线,但因专利问题目前尚未大规模应用。(5)雾化热解法:雾化热解法主要用来合成前躯体。将原料和分散剂在高速搅拌下形成浆状物,然后在雾化干燥设备内进行热解反应,得到前躯体,灼烧后得到产品。 (6)氧化-还原法: 该法能得到电化学优良的纳米级的磷酸铁锂粉体,但其工艺很复杂,不能大量生产,只适合实验室研究。

碳酸锂行业上市公司研究报告

碳酸锂行业上市公司研究报告 编号:XSJYB(2016)-002澄泓研究理念:让研报变诚实,使投资更简单。 澄泓研究?新视界工作室成员:@简放、@Jirachi、@大徐、@明日花开、@后来居上_dioyan、@杨长雍 导读 2015年是新能源汽车行业高速发展的一年,根据工信部统计,2015年1~11月,新能源汽车累计生产27.92万辆,同比增长4倍。新能源汽车的高速增长,带动了整个产业链的高景气度,位于产业链上游的碳酸锂行业,更是迎来了春天。我们统计了2015年碳酸锂主要上市公司的涨幅:通过上表可以看出,平均涨幅超过200%,同期沪深300涨幅仅为5.58%,足以证明碳酸锂行业的投资热情高涨,持续受到资金关注。今天,我们就对碳酸锂以及该行业的上市公司近期全面梳理分析。 一、碳酸锂行业概述 1.1碳酸锂简介 碳酸是生产二次锂盐和锂制品的基础材料,因而成为了锂行业中用量最大的锂产品,其他锂产品其本上都是碳酸锂

的下游产品。碳酸锂不仅可以直接使用,还可以作为原料制备各种附加值高的锂盐及其化合物,广泛应用于锂电池、催化剂、半导体、陶瓷、电视、医药、原子能工业等领域,但是在高技术应用领域如彩色萤光粉、药用及锂电池等电子材料对碳酸锂质量的要求很高,工业级碳酸锂必须通过精制除去其中的无机盐类等杂质才能达到各种不同专用品的质量 指标要求。碳酸锂的应用已经超过了100种用途,目前大家对它的关注则主要是跟新能源汽车和新能源挂钩。根据用途可以进行如下分类: 注:1、含量中的区间是用来区分在各自规格中的产品级别,级别越高碳酸锂含量的最低要求越高;2、产品规格质量要求高低排列:工业级<萤光级<电池级<医药级<高纯级。 1.2 碳酸锂行业产业链 1.3碳酸锂资源分布简述 国际锂电池协会专家介绍,盐湖锂主要分布在南美、北美和亚洲,在全世界的储量当中,玻利维亚最大为42%、智利占34%、阿根廷占12%,中国为12%。矿山锂资源主要分布在美国、加拿大、澳大利亚、俄罗斯、中国和部分非洲地区。据中国地质科学院矿产资源研究所刘喜方研究员介绍,我国的矿石锂资源主要分布在四川、江西和新疆。“四川主要是

碳酸锂的生产工艺及研究进展

碳酸锂的生产工艺及研究进展 生产碳酸锂因其原料的不同,生产工艺也有所不同。以下详细介绍以锂辉石、盐湖卤水、海水各为原料,制取碳酸锂的生产工艺以及各工艺的优缺点。 2.1 以锂辉石为原料制取碳酸锂的生产工艺 近年来我国在积极开发盐湖锂资源。但由于我国盐湖卤水中的镁含量较高,镁和锂这两种元素较难分离,前几年还没有大规模的产业化生产,所以我国一直从锂矿石中提取锂盐。由于不同的锂矿物其性质差别很大,从锂矿物中提取碳酸锂的工艺也各不相同,其主要工艺有如下几种。 2.1.1 硫酸法生产工艺…其工艺流程图如图2.1所示。 图2.1 硫酸法生产碳酸锂的工艺流程图 硫酸法生产碳酸锂收率较高,并可处理Li2O含量仅1.0~1.5%的矿石。但是相当数量的硫酸和纯碱变成了价值较低的Na2SO4,应尽可能降低硫酸的配量。此方法最大优点是浸取烧结所得的溶液中含有110~150g/ L硫酸锂,经过浸取即可得到比较纯净的溶液。硫酸法也可用来处理锂云母和磷铝石。 2.1.2 锂辉石与硫酸盐混合烧结生产工艺 将锂辉石精矿与K2SO4(或CaSO4或两者混合物),在一定温度下混合烧结,经一系列物理、化学反应后,所配人的硫酸盐中的金属元素将矿石中锂置换生成可溶性的硫酸盐,主要杂质则生成难溶于水的化合物,然后将烧结后的熟料浸出分离,锂离子进人溶液,经净化、浓缩、沉淀后得到碳酸锂产品。 在处理锂辉石时,先使α-型转换成结构较疏松、易反应的β-型。这种相变实际上是结合在烧结过程中同时进行的。总的反应是:…

图2.2是硫酸钾烧结法处理锂辉石的工艺流程图。 图2.2 硫酸钾烧结法生产碳酸锂的工艺流程图 … 2.1.3 碳酸钠加压浸出生产工艺… 2.1.4 氯化焙烧生产工艺 此工艺主要是利用氯化剂使矿石中的锂及其它有价金属转化为氯化物进行提取的。氯化焙烧法生产工艺有两种:一种是中温氯化法。 在低于碱金属氯化物沸点的温度下制得含氯化物的烧结块,经过溶出使之与杂质分离;另一种是高温氯化或氯化挥发焙烧。在高于其沸点的温度下进行焙烧,使氯化物成为气态挥发出来与杂质分离。这两种方法都可用来处理各种含锂矿石。氯化剂为钾、钠、铵和钙的氯化物。 氯化焙烧的反应为:… 图2.3是处理锂辉石的高温氯化法生产碳酸锂的工艺流程。 … 图2.3 氯化挥发物焙烧法生产碳酸锂的工艺流程图 … 2.1.5 石灰石焙烧法生产工艺 …其工艺流程图如图2.4所示。 图2.4 石灰石焙烧法生产碳酸锂的工艺流程图 石灰法的主要优点是实用性很普遍,因为它适用于分解几乎所有的锂矿物。反应过程不需要稀缺的试剂(分解时使用天然产物——石灰石);可以利用媒、石油或煤气作燃料。缺点是浸出液中锂含量低,蒸发能耗大,锂的回收率较低,并

年产20000吨电池级碳酸锂和氢氧化锂项目建议书201709

年产20000吨电池级碳酸锂和单水氢氧化锂项目 项目建议书 二O一七年九月

第一章项目综述 一、主办单位基本情况:待定 本项目建议书编制人:梁高工联系方式:lianghu1974@https://www.wendangku.net/doc/cb10355581.html, 二、项目提出的背景、投资必要性 (一)项目建设内容 本项目拟生产9600吨/年电池级碳酸锂,2400吨/年工业级碳酸锂和8000吨/年单水氢氧化锂。 (二)提出的背景 单水氢氧化锂、碳酸锂和氯化锂同属于基础锂盐产品。碳酸锂是生产二次锂盐(氢氧化锂、溴化锂、丁基锂等)和金属锂的基础材料,因而碳酸锂是锂产品中最为关键的产品,其它锂产品基本都是碳酸锂的下游产品。碳酸锂产品大致有以下几种:电池级碳酸锂、工业级碳酸锂、药用碳酸锂、高纯晶体专用碳酸锂等。单水氢氧化锂的主要用途是用于生产锂离子电池、锂基润滑脂、溴化锂制冷机吸收液、二氧化碳特殊吸收剂等领域。电池级碳酸锂是生产锂离子电池正极材料的重要原料。 随着世界各国对环保问题的日渐重视,新能源汽车得到了快速发展。2017年9 月9 日,工信部副部长辛国斌在2017 中国汽车产业发展国际论坛上表示目前工信部已启动了燃油车禁售相关研究,将会同相关部门制定我国的燃油车禁售时间表;另外双积分管理办法也将于近日发布实施。燃油车禁售是大势所趋,多国已制定或正在制定时间表。目前已有挪威(2025年)、荷兰(2025年)、美国加州(2030)、德国(2030)、印度(2030)、法国(2040)、英国(2040)等多个国家和地区制定了禁售燃油车时间表。在此影响下,部

分车企已经开始转型,如沃尔沃已经宣布从2019 年起不再推出新的燃油车车型。其中电动汽车产业在世界各国都得到了政策支持,近年来发展势头十分迅猛。而锂离子电池是目前应用在新能源汽车上的技术最为成熟、最有发展前景的新型能源,其续航能力、充电时间等方面是目前成熟的铅酸蓄电池无法相比的。 在我国,电动自行车的产量也快速提高。随着社会信息化进程的加快,手机、笔记本电脑和其它移动电子设备的生产量也逐步攀升,对锂离子电池的需求也呈跳跃式的增长。 工业级碳酸锂可用于电解铝、制冷剂、钢连铸、金属锂、玻璃行业、陶瓷行业、锂盐生产等领域。我国玻璃行业、中央空调行业、陶瓷业、钢连铸产业等相关下游行业的发展必将带动相关碳酸锂需求的增长。 单水氢氧化锂的主要用途是用于生产锂离子电池、锂基润滑脂、溴化锂制冷机吸收液、二氧化碳特殊吸收剂等领域。随着国内锂基脂、锂电池工业、高档玻璃陶瓷工业、有机合成橡胶工业用金属锂、中央空调工业和相关化工行业的迅猛发展,国内单水氢氧化锂的需求增长特别强劲。 中国盐湖卤水锂资源储量居世界第3位,锂矿石资源居世界第4位。智利、阿根廷、玻利维亚等国有着丰富的含锂卤水资源,澳大利亚、新西兰等国有着大量的锂辉石精矿。这些丰富的锂资源为中国碳酸锂工业的发展提供了资源保证。 (二)投资的必要性和意义 1、项目建设符合国家产业政策 碳酸锂为锂离子电池用磷酸铁锂等正极材料的上游原料。国家发改委

粗级碳酸锂提纯工艺过程分析

粗级碳酸锂提纯工艺过程分析 发表时间:2018-11-14T20:47:29.847Z 来源:《基层建设》2018年第28期作者:陈贵娥[导读] 摘要:碳酸锂是一种广泛应用于医药、冶金、陶瓷等行业的复合材料。 中国恩菲工程技术有限公司北京 100038 摘要:碳酸锂是一种广泛应用于医药、冶金、陶瓷等行业的复合材料。它是锂盐相关产品中最受欢迎的产品之一。高纯碳酸锂广泛应用于电力技术、有机合成、存储食品和玻璃添加剂等领域,具有十分重要的意义。 关键词:粗级碳酸锂;提纯工艺;分析前言 近年来,伴随着我国科学技术的不断发展,使得无论是企业还是研究部门,都是对于碳酸锂的提纯浓度提出越来越高的要求,这样也给提纯精度带来挑战。然而就现实情况来说,大部分的初级碳酸锂产品并不能很好的满足市场需求。因此可以发现,我们针对新型的碳酸锂提纯方法进行理论性的研究分析,无论是对于工程应用,还是对于理论研究,都存在有非常积极地现实意义。 1工艺方案对比 1.1电解法 以粗碳酸锂为原料,将Li2CO3溶于HCL,经沉降和其它处理,除去Ca、Mg等绝大多数阳离子杂质后用作电解槽的阳极液。该电解过程可很完全地进行,能得到很高纯度的Li2CO3尤其是其它方法难于处理的Ca2+、Mg2+等杂质可降到更低的范围。该方法虽流程较短,但对膜的要求较高,电耗也大,近年来在盐湖提锂过程中尚未见使用报道。 1.2重结晶法 由于Li2CO3在水中的溶解度在高温下反而低于常温(加Li2CO3溶解度),而其它杂质很少有这种性质,因此可用加热溶解Li2CO3,然后冷却析出的方法精制Li2CO3,从而获得产品,但Li2CO3溶解度极低,溶解也较缓慢,在加热煮沸析出的过程中,要强烈搅拌使产品不至于粘壁过多。该方法一次回收率约40%,母液量极大,但视杂质情况可反复循环使用以提高回收率。该方法简单易行,除杂效果极佳,但Li2CO3溶解度很小,物料流通量过大,能耗也很大,生产量受设备限制,母液循环时还需要一定的降温时间,生产周期较长。 1.3碳酸氢化分解法 该方法与Li2CO3重结晶的方法有类似之处,利用了Li2CO3能碳酸氢化生成溶解度大得多的LiHCO3的性质,而其它大部分杂质不被氢化,不溶性碳酸盐可通过过滤除去,为提高收率,母液可循环使用,流程基本可实现全封闭。需注意的是LiHCO3分解过程若搅拌强度不够,粘壁十分严重,而且分解剧烈并放出大量的CO2气体,生产过程若控制不当,易于发生“冒槽”事故。此外,在该工艺中因Ca2+与Li+有着几乎完全相同的性质,需采取其它的除Ca2+方法,才能得到更好的产品。 1.4碳酸氢化沉淀法 鉴于碳酸氢化分解法流通量仍然较大,且分解释放出大量的CO2,若在此过程中加入纯净的LiOH溶液,不但能提高产能和收率,而且能充分利用CO2气体,把气-液反应转化成了液-液反应,易于控制产品纯度和粒度。经证实,本工艺得到的产品质量与碳酸氢化分解法相比,虽有一些差距,但优点也是明显的,使用大约一半相对价廉的工业Li2CO3原料,比直接碳酸氢化节省CO2气体用量,成本较低。不过这种方法所制得的Li2CO3的杂质含量仍然较高。 2工艺方法及流程将粗碳酸锂经研磨粉碎后加水配制成料浆,搅拌、过滤、洗涤,得碳酸锂精矿;所得碳酸锂精矿加水配制成碳酸锂料浆,加入氧化钙进行苛化反应,过滤得粗氢氧化锂溶液;粗氢氧化锂溶液浓缩后过滤,向滤液中加入络合剂除去杂质金属离子,得精制氢氧化锂溶液;精制氢氧化锂溶液中通入CO2进行碳化反应,后过滤得碳酸氢锂溶液;碳酸氢锂溶液加热进行脱碳反应,后过滤并洗涤,滤饼经干燥得高纯碳酸锂;合并滤液和洗液,加入氢氟酸调节其为酸性或中性,生成沉淀后过滤并洗涤,滤饼经干燥即得氟化锂。 3结果与讨论 3.1锂精矿制备 利用碳酸锂溶解度随温度升高逐渐降低的特性,将粗品碳酸锂和水按照不同比例混合配制成混合浆料,在一定温度下搅拌1h后过滤,除去产品中可溶性盐。影响锂精矿的工艺条件包括粗品碳酸锂与水配比和反应温度等。将粗品碳酸锂与水以不同质量比混合,将体系温度升至100℃保温1h,过滤,对比不同质量比条件下锂精矿产品质量,通过增加水的用量,可显著降低可溶性盐的量,但是当水用量提升至粗品碳酸锂质量5倍以上,水洗效果提升不明显,因此初步确定粗品碳酸锂与洗水质量比为1:5。 3.2苛化 初步提纯的锂精矿软膏与一定量的氧化钙反应形成氢氧化锂溶液,同时锂精矿中的Ca、Mg等难溶性杂质进一步脱除,该过程中氧化钙的用量对反应条件影响明显,锂精矿产品质量中Li、Na、K、Ca、Mg、Fe含量对应需要氧化钙的量计算理论所需氧化钙用量,后配制成石灰乳,不同氧化钙用量得到苛化液质量不同。通过对比苛化液中杂质的变化可以看出,适量增加氧化钙用量有利于脱除苛化液中的难溶性盐。但是氧化钙用量过高,会造成苛化液中Ca含量提高,氧化钙用量过多对于提升Li收率效果并不明显,综合苛化液质量和收率,初步确定氧化钙用量过量30%较为适宜。 3.3碳化液 EDTA除钙镁将苛化液调整至一定浓度后通入CO2,制备成LiHCO3溶液,LiHCO3、Li2CO3、CO2在水溶液中的溶解度呈现随温度升高而降低的趋势,因此随着温度升高,LiHCO3会分解生成Li2CO3,同时CO2的利用率也会降低,综合考量后确定生产过程中碳化温度为25-30℃。单纯通过碳化一精密过滤一脱碳过程可初步脱除碳酸锂中的难溶性杂质,但却难以将碳酸锂产品中杂质尤其是Ca质量分数控制到5x10-6以下。本实验过程中,使用EDTA,EDTA在溶液中与Ca、Mg离子形成可溶性络合物,后通过加热分解,LiHCO3形成Li2CO3沉淀,可溶性的杂质以络合物形式存留于溶液中,得到高纯碳酸锂产品。对比了不同EDTA用量对高纯碳酸锂产品质量的影响。通过对比可以看出,使用EDTA可明显降低产品中的Ca、Mg杂质含量,当EDTA用量增加至理论量4倍时,脱除杂质效果已经不明显,综合考量,确定EDTA用量为理论量4倍。 3.4脱碳

1-磷酸铁锂合成方法比较

磷酸铁锂正极材料制备方法比较 A.固相法 一.高温固相法 1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等),磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFePO4分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得LiFePO4粉体材料。 例1:C.H.Mi等采用一:步加热法得到包覆碳的LiFePO4,其在30℃,0.1 C 倍率下的初始放电容量达到160 mAh·g-1;例2:S.S.Zhang等采用二步加热法,以FeC:2O4·2H2O和LiH2PO4为原料,在氮气保护下先于350~380℃加热5 h形成前驱体,再在800℃下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放电容量为159 mAh·g-1;例3:A.S.Andersson等采用三步加热法,将由:Li2CO3、FeC2O4·2H2O和(NH4)2HPO4组成的前驱体先在真空电炉中于300℃下预热分解,再在氮气保护下先于450℃加热10 h,再于800℃烧结36 h,产物在放电电流密度为2.3 mA·g-1时放电,室温初始放电容量在136 mAh·g-1左右;例4:Padhi等以Li2CO3,Fe(CH3COO)2,NH4H2PO4为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA·h /g;Takahashi 等以LiOH·H2O, FeC2O4·2H2O,(NH4)2HPO4为原料,在675、725、800℃下,制备出具有不同放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以At+5%H2为保护气氛,在700℃下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3·4-3·5V之间,0·05C首次放电比容量为150mA·h/g;例6:高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4前驱体,再通过高温煅烧合成LiFePO4/C正极材料,首次放电比容量最为139·4mA·h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0·15%;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯

电池级碳酸锂项目可行性研究报告(专业经典案例)

电池级碳酸锂项目可行性研究报告 (用途:发改委甲级资质、立项、审批、备案、申请资金、节能评估等) 版权归属:中国项目工程咨询网 https://www.wendangku.net/doc/cb10355581.html,

《项目可行性研究报告》简称可研,是在制订生产、基建、科研计划的前期,通过全面的调查研究,分析论证某个建设或改造工程、某种科学研究、某项商务活动切实可行而提出的一种书面材料。 项目可行性研究报告主要是通过对项目的主要内容和配套条件,如市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等,从技术、经济、工程等方面进行调查研究和分析比较,并对项目建成以后可能取得的财务、经济效益及社会影响进行预测,从而提出该项目是否值得投资和如何进行建设的咨询意见,为项目决策提供依据的一种综合性的分析方法。可行性研究具有预见性、公正性、可靠性、科学性的特点。 《电池级碳酸锂项目可行性研究报告》主要是通过对电池级碳酸锂项目的主要内容和配套条件,如市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等,从技术、经济、工程等方面进行调查研究和分析比较,并对电池级碳酸锂项目建成以后可能取得的财务、经济效益及社会影响进行预测,从而提出该电池级碳酸锂项目是否值得投资和如何进行建设的咨询意见,为电池级碳酸锂项目决策提供依据的一种综合性的分析方法。可行性研究具有预见性、公正性、可靠性、科学性的特点。 《电池级碳酸锂项目可行性研究报告》是确定建设电池级碳酸锂项目前具有决定性意义的工作,是在投资决策之前,对拟建电池级碳酸锂项目进行全面技术经济分析论证的科学方法,在投资管理中,可行性研究是指对拟建电池级碳酸锂项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。 北京国宇祥国际经济信息咨询有限公司是一家专业编写可行性研究报告的投资咨询公司,我们拥有国家发展和改革委员会工程咨询资格、我单位编写的可行性报告以质量高、速度快、分析详细、财务预测准确、服务好而享有盛誉,已经累计完成6000多个项目可行性研究报告、项目申请报告、资金申请报告编写,可以出具如下行业工程咨询资格,为企业快速推动投资项目提供专业服务。

碳酸锂生产工艺

1、碳酸锂生产工艺 ①焙浸工段 转化焙烧:锂辉石精矿从精矿库人工送至斗式提升机提升至精矿仓,再经圆盘给料机和螺旋给料机加入碳酸锂回转窑窑尾,利用窑尾预热段高温气体干燥精矿,精矿在煅烧段约1200℃左右的温度下进行晶型转化焙烧,由α型(单斜晶系,密度3150kg/m3)转化为β型锂辉石(四方晶系,密度2400kg/m3,即焙料),转化率约98%。 酸化焙烧:焙料经冷却段降温后由窑头出料,再经自然冷却和球磨机研磨细到0.074mm(目数=25.4÷0.074x0.65)粒级在90%以上后,输送到酸化焙烧窑尾矿仓,再经给料机和螺旋输送机加入混酸机中与浓硫酸(93%以上)按一定比例(浓硫酸按焙料中锂当量过剩35%计,每吨焙料需浓硫酸约0.21t)混合均匀后,加入酸化焙烧室中,在250~300℃左右的温度下进行密闭酸化焙烧30~60min,焙料中β型锂辉石同硫酸反应,酸中氢离子置换β型锂辉石中的锂离子,使其中的 Li2O与SO42-结合为可溶于水的Li2SO4,得到酸化熟料。 调浆浸出和洗涤:熟料经冷却浆化,使熟料中可溶性硫酸锂溶入液相,为减轻溶液对浸出设备的腐蚀,用石灰石粉浆中和熟料中的残酸,将pH值调至6.5~7.0,并同时除去大部分铁、铝等杂质,浸出液固比约2.5,浸出时间约0.5h。浸出料浆经过滤分离得到浸出液,约含Li2SO4100g/L(Li2O 27g/L),滤饼即为浸出渣,含水率约35%。

浸出渣附着液中含硫酸锂,为减少锂损失,浸出渣经逆向搅拌洗涤,洗液再返回调浆浸出。 浸出液净化:焙料在酸化焙烧时,除碱金属能和硫酸起反应生产可溶性的相应硫酸盐外,其他的铁、铝、钙、镁等也与硫酸反应生产相应的硫酸盐。在浸出过程中虽能除去熟料中的部分杂质,但其余杂质仍留在浸出液中,需继续净化除去,才能保证产品质量。浸出液净化采用碱化除钙法,用碱化剂石灰乳(含CaO100~150g/L)碱化浸出液,将pH值提高至11~12,使镁、铁水解成氢氧化物沉淀。再用碳酸钠溶液(含Na2CO3300g/L)与硫酸钙反应生产碳酸钙沉淀,从而除去浸出液中的钙和碱化剂石灰乳带入的钙。碱化除钙料浆经液固分离,所得溶液即为净化液,钙锂比小于9.6×10-4,滤饼即为钙渣,返回调浆浸出。 净化液蒸发浓缩:净化液因硫酸锂浓度低,锂沉淀率低,不能直接用于锂沉淀或制氯化锂,需先用硫酸将净化液调至pH6~6.5,经三效蒸发器蒸发浓缩,使浓缩液中硫酸锂浓度达200g/L(含Li2O 60g/L)。浓缩液经压滤分离,滤液即完成液供下工序使用,滤饼即完渣返回调浆浸出。 ②碳酸锂生产工段

利用工业碳酸锂提纯制备高纯度氟化锂

2012年第6期 TIANJIN SCIENCE&TECHNOLOGY 创新技术 氟化锂,分子式LiF,作为一种重要的锂基基础材料,在很多方面得到广泛的应用。随着国民经济和各个行业的发展,氟化锂越来越受到人们的重视,氟化锂的生产工艺也引起了广泛的关注和研究。 1高纯LiF的合成工艺概述 根据对原料是否进行除杂及除杂方式的不同,高纯或电池级氟化锂生产工艺可分为直接制备法、复分解制备法、离子交换制备法和萃取制备法等。 1.1直接制备法 直接制备法是早期制备高纯或电池级氟化锂的主要方法,原料大部分是固体碳酸锂和氢氟酸溶液。此方法原理简单,但对固体碳酸锂的质量要求很高,且生成的氟化锂颗粒粒度极不均匀。 1.2离子交换制备法 1961年美国人Robert用离子交换法纯化LiOH溶液,然后与Na2SiF6反应制得电池级LiF,此法节约了萤石资源,降低了生产成本,但其主要缺点是产品中的硅及一些金属杂质元素的含量仍较高,不能满足现在对电池级氟化锂高质量的要求。 1.3萃取法 最早将萃取应用于制备电池级氟化锂的日本人小林健二,利用L-硝酸锂溶液与氢氟酸反应制备高纯氟化锂。此方法需要选择优质的萃取剂,对萃取浓度、萃取时间、被萃取液的pH值等条件要求比较严格,同时反应过程中会产生大量的酸性产物,造成一定的环境压力。 1.4复分解法 复分解法有许多种,总的来说就是氟盐与锂盐反应生成氟化锂,其优点为操作简单,但所得产品质量受原料质量影响颇大,同时副产的盐需要进行再处理才能使用,生产成本较高,不适宜大规模生产。 2利用工业碳酸锂提纯制备高纯度氟化锂 直接制备法原理简单,但对固体碳酸锂的质量要求很高,且生成的氟化锂颗粒粒度极不均匀。如果能将工业碳酸锂进行提纯得到高纯的碳酸锂,并能通过改善反应条件控制氟化锂的粒度,便能得到满足电池行业要求的高级别的氟化锂,并能有效减低原料成本。 2.1生产工艺的详细介绍 2.1.1工业碳酸锂的碳化除杂根据碳酸锂在水中溶解度低,碳酸氢锂在水中溶解度高的特点,将碳酸锂在一定条件下碳化成碳酸氢锂,与其中的杂质分离,再通过热解操作,将碳酸氢锂分解转化为碳酸锂,从而实现工业碳酸锂的精制提纯(工艺过程如图1所示)。 碳酸锂碳化成碳酸氢锂溶液,发生化学反应如下: LiCO3+COa+H2O=2LiHCO3 图1工艺过程 二氧化碳在一定压力下与碳酸锂悬浊液反应生成碳酸氢锂,影响该反应的主要因素为固液比、二氧化碳的压力、反应时 于宝青(天津金牛电源材料有限责任公司天津300400) 赵庆云孙新华(中海油天津化工研究设计院天津300400) 利用工业碳酸锂 提纯制备高纯度氟化锂 【摘要】氟化锂作为一种重要的锂基基础材料,在很多方面得到广泛应用。将工业碳酸锂经过一次或 多次碳化和热解得到的精制的碳酸锂,与电子级氢氟酸反应生成氟化锂,再经过分离、干燥可得到高纯 或电池级的氟化锂,阐述了这一工艺过程。 【关键词】氟化锂工业碳酸锂氢氟酸碳化热解生产工艺 收稿日期:2012-11-09 4

年处理10万吨锂云母制备高纯度碳酸锂及副产品综合利用项目环境影响报告书简本

年处理10万吨锂云母制备高纯度碳酸锂及副产品综 合利用项目 环境影响报告书 (简本) 委托单位: 评价单位:

年处理10万吨锂云母制备高纯度碳酸锂及副产品综合 利用项目 环境影响报告书

目录 1 建设项目概况 (1) 1.1 建设项目的地点及相关背景 (1) 1.2 建设项目主要建设内容、生产工艺、生产规模、投资 (1) 1.3 建设项目与法律法规、政策、规划和规划环评的相符性 (9) 2 建设项目周围环境现状 (10) 2.1 建设项目周围现状评价 (13) 2.2 建设项目环境影响评价范围 (13) 3 建设项目环境影响预测及拟采取的主要措施与效果 (15) 3.1 建设项目主要污染物 (15) 3.2 建设项目评价范围内的环境保护目标分布情况 (19) 3.3 主要环境影响及其预测评价 (22) 3.4 污染防治措施 (23) 3.5 建设项目环境保护措施的技术、经济论证结果 (24) 3.6 环境风险防范措施及应急预案 (27) 3.7 建设项目对环境影响的经济损益分析 (33) 3.8 建设项目拟采取的环境监测计划与管环境理制度 (33) 4 公众参与 (35) 4.1 公共参与的目的 (36) 4.2 环境信息公示 (36) 4.3 调查公众意见 (36) 4.4 公众参与调查结果统计分析 (44) 4.5 公众参与小结 (45) 5 结论与建议 (47) 5.1 建设项目概要 (47) 5.2 项目周边环境质量现状 (47) 5.3 工程分析 (47)

5.4 环境影响预测及评价 (47) 5.5 环境风险评价 (49) 5.6 环境保护措施 (49) 5.7 清洁生产 (49) 5.8 污染物总量控制 (50) 5.9 公众参与 (50) 5.10 项目可行性分析 (50) 5.11 总结论 (51) 5.12 建议与要求 (51) 6 联系方式 (52) 6.1 建设单位及其联系方式 ...................................................... 错误!未定义书签。 6.2 环境影响评价单位及联系方式 .......................................... 错误!未定义书签。

碳酸锂深度碳化系统

碳酸锂碳化提纯系统工艺与设备 一、碳酸锂碳化提纯系统工艺简介: 随着新能源汽车的发展,锂电池行业高速发展,同时对碳酸锂的需求量日益增长,应用范围不断扩大,对碳酸锂的纯度越来越高。工业级碳酸锂提纯生产电池级或者高纯碳酸锂势在必行。 工业碳酸锂提纯一般采用碳化分解法。该方法操作简单、提纯效率高、生产成本低、污染小等特点,而且热分解后的母液部分可返回调浆循环利用,有效提高了锂的回收率。 工艺简介:工业级碳酸锂和水(或返回母液)按一定比例进行调浆,并加入一定量的络合剂得到碳酸锂料浆。碳酸锂料浆再经过碳化塔在一定压力和温度下与二氧化碳进行碳化反应得到碳酸氢锂溶液。碳酸氢锂溶液再经过过滤除杂得到净化液,净化液再通过分解塔加热分解得到净化的碳酸锂料浆,热解后的碳酸锂料浆通过增稠器增稠,再经过离心分离、干燥、筛分、除铁、粉碎、混合、包装得到电池级(高纯)碳酸锂。分解的二氧化碳可经过二氧化碳回收系统进行回收利用。 二、碳酸锂碳化提纯系统设备简介: 1、碳化设备可采用连续或者间歇。 连续碳化塔可带机械搅拌,也可不带机械搅拌。碳化系统采用多级串联操作,碳酸锂料浆与二氧化碳气体逆流操作,既增加了碳酸锂的转化率,避免碳酸锂随滤渣损失,又提高了二氧化碳的利用率,大大降低了生产成本。不带搅拌的碳化塔没有传动装置,避免了传动装置泄露污染物料。连续碳化塔的二氧化碳利用率高,系统操作相对简单,自动化程度高,劳动强度低,生产效率高。 间歇碳化塔一般都安装搅拌装置增加物料与二氧化碳的接触面积。间歇碳化系统的二氧化碳利用率低,操作频繁,劳动强度较高,生产效率低。 2、分解系统可采用连续或者间歇。 分解系统设备采用连续分解塔,碳酸氢锂溶液与蒸汽通过间接换热,使碳酸氢锂在一定温度下进行热解。连续热解系统控制关键点首先是如何避免换热面结

关于编制碳酸锂精矿项目可行性研究报告编制说明

碳酸锂精矿项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.wendangku.net/doc/cb10355581.html, 高级工程师:高建

关于编制碳酸锂精矿项目可行性研究报告 编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为碳酸锂精矿形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2本次建设项目发起缘由 (7) 2.3项目建设必要性分析 (7) 2.3.1促进我国碳酸锂精矿产业快速发展的需要 (8) 2.3.2加快当地高新技术产业发展的重要举措 (8) 2.3.3满足我国的工业发展需求的需要 (8) 2.3.4符合现行产业政策及清洁生产要求 (8) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9) 2.3.6增加就业带动相关产业链发展的需要 (9) 2.3.7促进项目建设地经济发展进程的的需要 (10) 2.4项目可行性分析 (10) 2.4.1政策可行性 (10) 2.4.2市场可行性 (10) 2.4.3技术可行性 (11) 2.4.4管理可行性 (11) 2.4.5财务可行性 (11) 2.5碳酸锂精矿项目发展概况 (12)

碳酸锂行业及目标企业介绍

。 ] 碳酸锂行业及目标企业介绍 } 二〇一六年一月二十日 ] 目录 一、碳酸锂产业链分析 (3) 1.碳酸锂行业分析 (3)

2.下游电动汽车发展趋势分析 (6) 《 3.下游锂电池发展趋势分析 (8) 4.上游矿产资源的影响分析 (8) 5.综合分析 (10) 二、标的企业介绍 (10) 1.企业基本情况介绍 (10) 2.公司机构设置及股权结构 (10) 3.公司研发及专利情况 (11) 4.正在进行二期项目和锂矿谈判 (11) < 三、财务状况及盈利预测 (12) 1.基本财务状况 (12) 2.主要资产情况 (12) 3.盈利预测 (13) 四、行业并购案例分析 (14) 1.天齐锂业收购银河锂业 (14) 2.雅化集团收购兴晟锂业 (16) 3.斯太尔控股青海恒信融锂业 (16) | 五、风险和建议 (17) 1.碳酸锂价格大幅波动的风险 (17) 2.行业商业模式的改变 (18) 3.产业链条较短,抗风险能力较差 (18) 4.硫酸、蒸汽、电力等生产资料资源掌握在对方手中 (19) , / 一、碳酸锂产业链分析 1.碳酸锂行业分析 (1)碳酸锂产业链分析

电池级碳酸锂主要应用领域分别为电子消费品、动力电池以及储能电池。电子消费品的增长处于稳定增长状态,储能电池所占比例一直较小,主要是电动汽车的产量暴涨拉动动力电池的需求,从而造成电池级碳酸锂供需不平衡,导致电池级碳酸锂价格在今年出现暴涨。 因为全球金融危机,以及传统落后产能过剩,预计工业级碳酸锂的需求量不会出现大的增长;电子消费品经过这几年的发展,以及国内小米、华为等手机厂商的快速发展,电子消费品的发展趋向成熟,预计所需电池级碳酸锂的量趋向稳步增长。碳酸锂需求量能否实现跨越式增大主要依靠电动汽车即动力电池的需求增长,而目前的电动汽车市场火爆主要来自政策的影响,行业专家预计国家政策的扶持在2020年将会结束。锂电池充电时间和能量密度等技术能否实现突破将会决定电动汽车能否保持快速增长的关键。 :

【CN109650417A】一种电池级碳酸锂的多级浆洗提纯方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910152320.1 (22)申请日 2019.02.28 (71)申请人 长沙有色冶金设计研究院有限公司 地址 410019 湖南省长沙市雨花区木莲东 路299号 (72)发明人 姚腾猛 蔡旺 陈玉萍 金生龙  李伟达 袁爱武  (74)专利代理机构 长沙永星专利商标事务所 (普通合伙) 43001 代理人 何方 (51)Int.Cl. C01D 15/08(2006.01) (54)发明名称一种电池级碳酸锂的多级浆洗提纯方法(57)摘要本发明公开了一种电池级碳酸锂的多级浆洗提纯方法,属于化工材料制备技术领域,该方法包括:采用2~3道浆化洗涤工序,浆洗温度控制均在88~92℃;浆化洗涤工序之间进行浆洗压滤,压滤液返回利用;浆化洗涤完成后,进行离心分离,得到碳酸锂滤饼,离心滤液返回浆化洗涤作为浆洗液,离心过程采用RO水对碳酸锂滤饼进行淋洗,淋洗液返回浆化洗涤作为浆洗液;对淋洗后的碳酸锂滤饼进行干燥、除磁、粉碎处理,即得电池级碳酸锂。本发明电池级碳酸锂的多级浆洗提纯方法,可以实现电池级碳酸锂中的杂质离子进一步脱除,降低蒸汽消耗,提高产品的质量和市场竞争力, 增加企业效益。权利要求书2页 说明书5页 附图3页CN 109650417 A 2019.04.19 C N 109650417 A

权 利 要 求 书1/2页CN 109650417 A 1.一种电池级碳酸锂的多级浆洗提纯方法,其特征在于包括: 采用2~3道浆化洗涤工序,浆洗温度均控制在88~92℃; 浆化洗涤工序之间进行浆洗压滤,压滤液返回利用; 浆化洗涤完成后,进行离心分离,得到碳酸锂滤饼,离心滤液返回浆化洗涤作为浆洗液,离心过程采用RO水对碳酸锂滤饼进行淋洗,淋洗液返回浆化洗涤作为浆洗液; 对淋洗后的碳酸锂滤饼进行干燥、除磁、粉碎处理,即得电池级碳酸锂。 2.根据权利要求1所述的电池级碳酸锂的多级浆洗提纯方法,其特征在于,采用2道浆化洗涤工序,包括以下步骤: 1.1)一级浆化洗涤:将转化沉锂得到的粗碳酸锂与二级浆化的离心滤液进行一级浆化洗涤,一级浆洗料经压滤后得到一级碳酸锂滤饼; 1.2)二级浆化洗涤:将步骤1.1)所得一级碳酸锂滤饼与二级碳酸锂滤饼的淋洗液进行二级浆化洗涤,二级浆洗料经离心分离后得到二级碳酸锂滤饼,二级浆化的离心滤液返回一级浆化洗涤,离心过程采用RO水对二级碳酸锂滤饼进行淋洗,淋洗液返回二级浆化洗涤; 1.3)将步骤1.2)所得淋洗后的二级碳酸锂滤饼进行干燥、除磁、粉碎处理,即得电池级碳酸锂。 3.根据权利要求1所述的电池级碳酸锂的多级浆洗提纯方法,其特征在于,采用3道浆化洗涤工序,包括以下步骤: 2.1)一级浆化洗涤:将转化沉锂得到的粗碳酸锂与二级浆化的压滤液进行一级浆化洗涤,一级浆洗料经压滤后得到一级碳酸锂滤饼; 2.2)二级浆化洗涤:将步骤2.1)所得一级碳酸锂滤饼与三级浆化的离心滤液进行二级浆化洗涤,二级浆洗料经压滤后得到二级碳酸锂滤饼,二级浆化的压滤液返回一级浆化洗涤; 2.3)三级浆化洗涤:将步骤2.2)所得二级碳酸锂滤饼与三级碳酸锂滤饼的淋洗液进行三级浆化洗涤,三级浆洗料经离心分离后得到三级碳酸锂滤饼,三级浆化的离心滤液返回二级浆化洗涤,离心过程采用RO水对三级碳酸锂滤饼进行淋洗,淋洗液返回三级浆化洗涤; 2.4)将步骤2.3)所得淋洗后的三级碳酸锂滤饼进行干燥、除磁、粉碎处理,即得电池级碳酸锂。 4.根据权利要求2所述的电池级碳酸锂的多级浆洗提纯方法,其特征在于,步骤1.1)中,具体为: 转化沉锂料浆经隔膜压滤机压榨和吹扫后得到的一级碳酸锂滤饼; 一级碳酸锂滤饼经料斗进入压滤机下方的一级浆洗槽,浆洗液采用二级浆化的离心滤液,一级浆洗槽达到一定液位后在搅拌下控制浆洗温度维持在88~92℃,一级碳酸锂滤饼与浆洗液发生溶解和重结晶过程,使一级碳酸锂滤饼中的杂质离子进入液相并使碳酸锂充分结晶析出,得到的一级浆洗料经隔膜压滤机压榨和吹扫后得到的一级碳酸锂滤饼,压滤液中溶解的碳酸锂和杂质离子一同返回前端工序利用,以提高碳酸锂的回收率。 5.根据权利要求2所述的电池级碳酸锂的多级浆洗提纯方法,其特征在于,步骤1.2)中,具体为: 一级碳酸锂滤饼经料斗进入二级浆洗槽,浆洗液采用碳酸锂滤饼的淋洗液,在搅拌下控制浆洗温度维持在88~92℃,一级碳酸锂滤饼与浆洗液发生溶解和重结晶过程,使一级 2

相关文档