文档库 最新最全的文档下载
当前位置:文档库 › 定时器中断实验——电子钟

定时器中断实验——电子钟

定时器中断实验——电子钟
定时器中断实验——电子钟

计算机科学与技术系

实验报告

专业名称计算机科学与技术

课程名称单片机原理与应用

项目名称定时器/中断实验——电子钟

班级

学号

姓名

同组人员无

实验日期 2016年4月8号

一、实验目的与要求

熟悉MCS51类cpu的定时器、中断系统编程方法、了解定时器的应用、实时程序的设计和调试技巧。

二、实验内容

2.1 实验完成内容

1、编写一个时钟程序,使用单片机定时器1产生一个50ms的定时中断,对定时中断计数,将时、分、秒显示在数码管上。

2、将单片机的P3.5口与独立按键K1相连。要求通过计数器对按键按压次数进行计数,并将计数结果显示在LED上,或者通过外部中断实现按键计数。要求显示范围为0-99。记满后从零开始重新计数。

2.2 芯片选型

ATMEL89C51单片机、LED数码显示管、独立按键

2.3 电路原理图

2.4 关键资源说明(所应用单片机内部资源及外围接口芯片的核心说明)

实验中用到了定时器T0,是由特殊功能寄存器TH0、TL0构成。工作方式寄存器TMOD的低四位用于控制T0的工作方式和启动模式,定时器/计数器控制寄存器TCON的低四位同样用于控制T0的启停和计数溢出标志位。

2.5 程序流程图

三、实验程序

STCP_595 EQU P2.0

SHCP_595 EQU P2.1

DS_595 EQU P2.2

HOUR EQU 30H;存放小时变量MIN EQU 31H;存放分钟变量SEC EQU 32H;存放秒钟变量COUNT EQU 33H;5ms计数加1 ADDR EQU 34H;位选

DAT EQU 35H;段选

KEY EQU 36H;键值

ORG 0000H

LJMP MAIN

ORG 0003H

LJMP X0_INT

ORG 000BH

LJMP T0_INT

ORG 0100H

MAIN:

LCALL UNIT_TIMER

START: ;初始化一次

LCALL DISPLAY

LJMP START

UNIT_TIMER:

MOV TMOD,#01H;定时器0工作方式1

MOV TH0, #60;赋初值

MOV TL0, #176

SETB TR0;启动定时器0

SETB ET0;打开定时器0开关

SETB EX0

SETB IT0

MOV COUNT,#0

MOV SEC, #0

MOV MIN, #0

MOV HOUR,#0

MOV R1, #0

MOV KEY, #0

SETB EA;打开总开关

RET ;返回

T0_INT: ;中断服务程序 (获取时分秒) PUSH ACC;

PUSH PSW

MOV TH0, #60;赋初值

MOV TL0, #176

INC COUNT;每隔50ms加1

POP PSW

POP ACC

RETI

X0_INT:

PUSH ACC

PUSH PSW

LCALL DELAY//延时12ms消抖

LCALL DELAY

JB INT0,RECOVER1;MOV C,F2H;

;CJNE C,#0,RECOVER

INC KEY

MOV A,KEY

CJNE A,#100,RECOVER1 ;CJNE A,#64H,RECOVER MOV KEY,#0

RECOVER1:

POP PSW

POP ACC

RETI

DISPLAY:

MOV A,COUNT

CJNE A,#20,RECOVER

MOV COUNT,#0

INC SEC

MOV A, SEC

CJNE A, #60,RECOVER

MOV SEC,#0

INC MIN

MOV A,MIN

CJNE A,#60,RECOVER

MOV MIN,#0

INC HOUR

MOV A,HOUR

CJNE A,#24,RECOVER

MOV SEC,#0 ;秒钟变量清除为0

MOV MIN,#0 ;分钟变量清除为0

MOV HOUR,#0 ;小时变量清除为0

MOV A,KEY

;CJNE A,#100,RECOVER ;CJNE A,#64H,RECOVER 不能放在这否则出现乱码

MOV KEY,#0

RECOVER: //每时每刻都显示

MOV ADDR,#05H

MOV A,SEC ;显示个位的秒

MOV B,#10 ;出错,与10H区别 10H表示16

DIV AB

MOV R1,A

MOV DAT,B

LCALL SEND_LED

MOV ADDR,#04H ;显示十位的秒

MOV DAT,R1

LCALL SEND_LED

MOV ADDR,#03H ;显示个位的分

MOV A,MIN

MOV B,#10

DIV AB

MOV R1,A

MOV DAT,B

LCALL SEND_LED

MOV ADDR,#02H ;显示十位的分

MOV DAT,R1

LCALL SEND_LED

MOV ADDR,#01H ;显示个位的时 MOV A,HOUR

MOV B,#10 ;有误

DIV AB

MOV R1,A

MOV DAT,B

LCALL SEND_LED

MOV ADDR,#00H ;显示十位的时 MOV DAT,R1

LCALL SEND_LED

MOV ADDR,#07H ;显示个位的按键数 MOV A,KEY

MOV B,#10

DIV AB

MOV DAT,B

MOV R1,A

LCALL SEND_LED

MOV ADDR,#06H ;显示十位的按键数 MOV DAT,R1

LCALL SEND_LED

RET

SEND_LED:

MOV DPTR, #SEG_ADDR

MOV A,ADDR

MOVC A,@A+DPTR

LCALL WR_595

MOV DPTR, #SEG_DAT

MOV A,DAT

MOVC A,@A+DPTR

LCALL WR_595

LCALL OUT_595

RET

OUT_595:

CLR STCP_595 //;存储寄存器输入 NOP

NOP

SETB STCP_595

RET

WR_595:

MOV R5,#8H ;数码管的8位

LOOP1:

RLC A ;带进位位左移

MOV DS_595,C //;送数据进595 //;移位寄存器时钟,根据DATASHEET,送数据进去要一个SCK时钟周期。

CLR SHCP_595

NOP

NOP

SETB SHCP_595

DJNZ R5,LOOP1 //;8位数据是否送完 DJNZ只能处理寄存器和地址

RET

DELAY:;12MS:

MOV R5,#48

DEL:

MOV R6,#250

DJNZ R6,$

DJNZ R5,DEL

RET

/*CLR_595:

MOV A,#0FFH

LCALL WR_595

MOV A,#0FFH

LCALL WR_595

LCALL OUT_595

RET*/

SEG_DAT : DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H

SEG_ADDR: DB 01H,02H,04H,08H,10H,20H,40H,80H

END

四、实验运行效果及说

五、实验分析与小结

实验时,要注意线路的正确连接,要注意定时器T0的工作方式寄存器TMOD 和控制寄存器TCON 的使用方法,有效的启动T0的工作,要明白中断的意义,何时执行中断子程序,并且执行时,要注意堆栈的保护断点和恢复断点的功能,计数时,达到99时,要重新置零;显示定时和计数时,要实时通过SEND_LED 子程

序向LED数码显示管输送数据,并显示出来。通过本次实验,让我对中断和定时器T0的使用有了进一步的认识,并在以后的单片机实验中,要学会正确的使用中断程序和T0定时器,加深对它们的理解。

六、其它

得分(百分制)

定时器中断程序设计实验

实验一定时器/中断程序设计实验 一、实验目的 1、掌握定时器/中断的工作原理。 2、学习单片机定时器/中断的应用设计和调试 二、实验仪器和设备 1、普中科技单片机开发板; 2、Keil uVision4 程序开发平台; 3、PZ-ISP 普中自动下载软件。 三、实验原理 805l 单片机内部有两个 16 位可编程定时/计数器,记为 T0 和 Tl。8052 单片机内除了 T0 和 T1 之外,还有第三个 16 位的定时器/计数器,记为 T2。它们的工作方式可以由指令编程来设定,或作定时器用,或作外部脉冲计数器用。定时器 T0 由特殊功能寄存器 TL0 和 TH0 组成,定时器 Tl 由特殊功能寄存器 TLl 和 TH1 组成。定时器的工作方式由特殊功能寄存器 TMOD 编程决定,定时器的运行控制由特殊功能寄存器 TCON 编程控制。T0、T1 在作为定时器时,规定的定时时间到达,即产生一个定时器中断,CPU 转向中断处理程序,从而完成某种定时控制功能。T0、T1 用作计数器使用时也可以申请中断。作定时器使用时,时钟由单片机内部系统时钟提供;作计数器使用时,外部计数脉冲由 P3 口的 P3.4(或 P3.5)即 T0(或 T1)引脚输入。 方式控制寄存器 TMOD 的控制字格式如下: 低 4 位为 T0 的控制字,高 4 位为 T1 的控制字。GATE 为门控位,对定时器/计数器的启动起辅助控制作用。GATE=l 时,定时器/计数器的计数受外部引脚输入电平的控制。由由运行控制位 TRX (X=0,1)=1 和外中断引脚(0INT 或 1INT)上的高电平共同来启动定时器/计数器运行;GATE=0时。定时器/计数器的运行不受外部输入引脚的控制,仅由 TRX(X=0,1)=1 来启动定时器/计数器运行。 C/-T 为方式选择位。C/-T=0 为定时器方式,采用单片机内部振荡脉冲的 12 分频信号作为时钟计时脉冲,若采用 12MHz 的振荡器,则定时器的计数频率为 1MHZ,从定时器的计数值便可求得定时的时间。 C/-T=1 为计数器方式。采用外部引脚(T0 为 P3.4,Tl 为 P3.5)的输入脉冲作为计数脉冲,当 T0(或 T1)输入信号发生从高到低的负跳变时,计数器加 1。最高计数频率为单片机时钟频率的 1/24。 M1、M0 二位的状态确定了定时器的工作方式,详见表。

实验4,定时器实验

定时器实验 一、实验目的 1、熟悉使用Keil软件的使用和单片机程序的编写。 2、了解掌握51单片机定时器的结构与工作原理。 3、了解LCD1602的工作原理及程序编写。 4、掌握定时器程序的书写格式及使用方法。 二、实验仪器 1、C51单片机开发板(含LCD1602显示屏) 2、PC机(安装Keil软件及C51烧录软件) 三、实验原理 1、LCD1602显示屏 lcd1602可以显示2行16个字符,有8为数据总线D0-D7,和RS、R/W、EN 三个控制端口,工作电压为5V,并且带有字符对比度调节和背光。其引脚功能 2、定时器工作原理 8051单片机有两个16位定时器T0,T1,有四种工作方式,由TMOD寄存器 TMODE寄存器的低四位为T0的方式字,高四位为T1的方式字。TMOD不能位寻址,必须整体赋值。

C/ T置位时,T0/T1工作在计数器方式,清零时,工作在定时器方式。 GATE位置位时,由外部引脚中断来启动定时器,清零时,仅由TR0,TR1分别启动定时器T0,T1。 定时器若工作于中断方式,则在初始化时应该开放定时器的中断及总中断。注意定时器方式的选择,确定是否要在中断服务程序中置入定时器初值,最后启动定时器(TR0/TR1 = 1)。 四、实验内容 1、用定时器实现流水灯。 用89C51的定时器资源,在定时器中断服务程序中实现流水灯的运行。在中断服务程序中可以使用查表方式依次点亮LED,若采用移位操作,需注意移位逻辑。 2、用定时器和LCD1602制作电子时钟。 1602液晶显示模块的读写操作,屏幕和光标的操作都是通过指令编程来实现的,通过D7~D0的8位数据端传输数据和指令。可以在定时器中断服务程序中进行计时,并将时间显示在LCD1602模块上。 五、预习要求 1、掌握实验原理,了解实验目的,熟悉实验内容。 2、了解LCD1602的工作原理,掌握其显示程序的编写。 3、掌握51单片机定时器的工作原理及过程。 六、思考题 1、用定时器实现延时与用软件延时相比,有什么优点? 2、定时器置入的初值如何计算?

定时器实验报告

电子信息工程学系实验报告 课程名称:单片机原理及接口应用Array实验项目名称:51定时器实验实验时间: 班级:姓名:学号: 一、实验目的: 熟悉keil仿真软件、protues仿真软件的使用和单片机定时程序的编写。了解51单片机中定时、计数的概念,熟悉51单片机内部定时/计数器的结构与工作原理。掌握中断方式处理定时/计数的工作过程,掌握定时/计数器在C51中的设置与程序的书写格式以及使用方法。 二、实验环境: 软件:KEIL C51单片机仿真调试软件,proteus系列仿真调试软件 三、实验原理: 1、51单片机定时计数器的基本情况 8051型有两个十六位定时/计数器T0、T1,有四种工作方式。MCS-51系列单片机的定时/计数器有几个相关的特殊功能寄存器: 方式控制寄存器TMOD; 加法计数寄存器TH0、TH1 (高八位);TL0、TL1 (低八位); 定时/计数到标志TF0、TF1(中断控制寄存器TCON) 定时/计数器启停控制位TR0、TR1(TCON) 定时/计数器中断允许位ET0、ET1(中断允许寄存IE) 定时/计数器中断优先级控制位PT0、PT1(中断优IP) 2、51单片机的相关寄存器设置 方式控制寄存器TMOD: TMOD的低四位为T0的方式字,高四位为T1的方式字。TMOD不能位寻址,必须整体赋值。TMOD各位的含义如下: 1. 工作方式选择位M1、M0 3、51单片机定时器的工作过程(逻辑)方式一 方式1:当M1M0=01时,定时器工作于方式1。

T1工作于方式1时,由TH1作为高8位,TL1作为低8位,构成一个十六位的计数器。若T1工作于定时方式1,计数初值为a,晶振频率为12MHz,则T1从计数初值计数到溢出的定时时间为t =(216-a)μS。 4、51单片机的编程 使用MCS-51单片机的定时/计数器的步骤是: .设定TMOD,确定: 工作状态(用作定时器/计数器); 工作方式; 控制方式。 如:T1用于定时器、方式1,T0用于计数器、方式2,均用软件控制。则TMOD的值应为:0001 0110,即0x16。 .设置合适的计数初值,以产生期望的定时间隔。由于定时/计数器在方式0、方式1和方式2时的最大计数间隔取决于使用的晶振频率fosc,如下表所示,当需要的定时间隔较大时,要采用适当的方法,即将定时间隔分段处理。 计数初值的计算方法如下,设晶振频率为fosc,则定时/计数器计数频率为fosc/12,定时/计数器的计数总次数T_all在方式0、方式1和方式2时分别为213 = 8192、216 = 65536和28 = 256,定时间隔为T,计数初值为a,则有 T = 12×(T_all – a)/fosc a = T_all – T×fosc/12 a = – T×fosc/12 (注意单位) THx = a / 256;TLx = a % 256; .确定定时/计数器工作于查询方式还是中断方式,若工作于中断方式,则在初始化时开放定时/计数器的中断及总中断: ET0 = 1;EA = 1; 还需要编写中断服务函数: void T0_srv(void)interrupt 1 using 1 { TL0 = a % 256; TH0 = a / 256; 中断服务程序段} .启动定时器:TR0(TR1)= 1。 四、实验内容过程及结果分析: 利用protues仿真软件设计一个可以显示秒表时间的显示电路。利用实验板上的一位led数码管做显示,利用中断法编写定时程序,控制单片机定时器进行定时,所定时间为1s。刚开始led数码管显示9,每过一秒数码管显示值减一,当显示到0时返回9,依此反复。然后设计00-59的两位秒表显示程序。 (1)实现个位秒表,9-0

单片机中断实验报告

人的一生要疯狂一次,无论是为一个人,一段情,一段旅途,或一个梦想 ------- 屠呦呦 实验三定时器中断实验 一、实验目的 1、掌握51单片机定时器基本知识; 2、掌握定时器的基本编程方法; 3、学会使用定时器中断。 二、实验内容 1、利用定时器设计一个秒表,计数范围为0—59,并在数码管实时显示。 三、实验设备 PC 机一台、单片机实验箱 主要器件:AT89C52、7SEG-BCD、 四、实验步骤 1、使用Proteus设计仿真原理图; 2、使用Keil设计程序; 3、联合调试仿真。 五、实验流程图 六、实验程序与结果 #include #define uint unsigned int #define uchar unsigned char sbit F=P2^1;

void timer1_init() { TMOD=0x10;//将定时器1设置为工作方式1 TH1=(65536-6000)/256;//定时器每加一时间为1/fsoc,定时时间为1/500 //(1/500)s/(1/3000000)s=6000 TL1=(65536-6000)%256;//fsoc=3000000,所以装入16位定时器中值为65536-6000 EA=1; ET1=1; TR1=1; } void main() { timer1_init(); while(1); } void timer1() interrupt 3 { TH1=(65536-6000)/256;//每次进入中断,重装初值TL1=(65536-6000)%256; F=~F;//每次进入中断P1.1口取反 } #include #define uint unsigned int #define uchar unsigned char sbit F=P2^1; void timer0_init() {TMOD=0x01;//将定时器0设置为工作方式1 TH0=(65536-83)/256;//定时器每加一时间为1/fsoc,定时时间为2Khz,既500us //500us/6us=83.3333 TL0=(65536-83)%256;//fsoc=6000000,所以装入16位定时器中值为65536-83 EA=1; ET0=1; TR0=1; }void main() { timer0_init(); while(1); } void timer0() interrupt 1 { TH0=(65536-83)/256;//每次进入中断,重装初值 TL0=(65536-83)%256; F=~F;//每次进入中断P1.1口取反,表示定时时间到 } #include // 包含51单片机寄存器定义的头文件 #define seg_data P1 #define seg_data2 P3 #define uint unsigned int sbit D1=P2^0; //将D1位定义为P2.0引脚 uint counter=0; unsigned int unit=0,decade=0,avs=0;//time=0;

定时器中断实验

实验四定时器中断实验 一、实验目的 (1)深刻理解对MCS-51单片机定时/计数器内部结构、工作原理和工作方式。(2)掌握定时/计数器工作在定时和计数两种状态下的编程方法。 (3)掌握中断服务程序设计方法。 二、实验设备 计算机 操作系统:Windows 98/2000/XP 应用软件:WAVE 6000或其他。 三、实验内容 设单片机的时钟频率为12MHz,要求在P1.0脚上输出周期为2ms的方波。四、实验原理 周期为2ms的方波要求定时间隔为1ms,每次时间到将P1.0取反。定时计数器频率为f osc/12,T cy=12/f osc=1us。每个机器周期定时计数器加1,1ms=1000us,需技术次数为1000/(12/f osc)=1000。由于加1计数器向上计数,为得到1000个计数之后的定时器溢出,必须给加1计数器赋初值65536-1000。 五、实验源程序 ORG 0000H AJMP START ORG 001BH AJMP T1INT ORG 0030H START: SETB TR1 SETB ET1 SETB EA MOV SP,#60H MOV TMOD,#10H MOV TH1,#0FCH MOV TL1,#18H MAIN: AJMP MAIN T1INT: CPL P1.0 MOV TH1,#0FCH MOV TL1,#18H RETI END

六、实验结果 七、实验心得 通过这次实验,我对MCS-51单片机定时/计数器内部结构、工作原理和工作方式有了更加深刻的理解,同时也掌握了定时/计数器工作在定时和计数两种状态下的编程方法以及中断服务程序设计方法。在今后的学习中,要更加注重实践,通过动手来增强自己解决问题的能力。

单片机中断实验报告

实验三定时器中断实验 一、实验目的 1、掌握51单片机定时器基本知识; 2、掌握定时器的基本编程方法; 3、学会使用定时器中断。 二、实验内容 1、利用定时器设计一个秒表,计数范围为0—59,并在数码管实时显示。 三、实验设备 PC 机一台、单片机实验箱 主要器件:AT89C52、7SEG-BCD、 四、实验步骤 1、使用Proteus设计仿真原理图; 2、使用Keil设计程序; 3、联合调试仿真。 五、实验流程图 六、实验程序与结果 #include #define uint unsigned int #define uchar unsigned char sbit F=P2^1; void timer1_init() 开始 设置显示初值启动定时器 判断是否到59 继续 是 否

{ TMOD=0x10;//将定时器1设置为工作方式1 TH1=(65536-6000)/256;//定时器每加一时间为1/fsoc,定时时间为1/500 //(1/500)s/(1/3000000)s=6000 TL1=(65536-6000)%256;//fsoc=3000000,所以装入16位定时器中值为65536-6000 EA=1; ET1=1; TR1=1; } void main() { timer1_init(); while(1); } void timer1() interrupt 3 { TH1=(65536-6000)/256;//每次进入中断,重装初值TL1=(65536-6000)%256; F=~F;//每次进入中断P1.1口取反 } #include #define uint unsigned int #define uchar unsigned char sbit F=P2^1; void timer0_init() {TMOD=0x01;//将定时器0设置为工作方式1 TH0=(65536-83)/256;//定时器每加一时间为1/fsoc,定时时间为2Khz,既500us //500us/6us=83.3333 TL0=(65536-83)%256;//fsoc=6000000,所以装入16位定时器中值为65536-83 EA=1; ET0=1; TR0=1; }void main() { timer0_init(); while(1); } void timer0() interrupt 1 { TH0=(65536-83)/256;//每次进入中断,重装初值 TL0=(65536-83)%256; F=~F;//每次进入中断P1.1口取反,表示定时时间到 } #include // 包含51单片机寄存器定义的头文件 #define seg_data P1 #define seg_data2 P3 #define uint unsigned int

4实验四 单片机定时器的使用

姓名:学号:日期: 实验四单片机定时器的使用 一、实验名称:单片机定时器的使用 二、实验目的 1.掌握在Keil环境下建立项目、添加、保存源文件文件、编译源程序的方法; 2.掌握运行、步进、步越、运行到光标处等几种调试程序的方法; 3.掌握在Proteus环境下建立文件原理图的方法; 4.实现Proteus与Keil联调软件仿真。 三、使用仪器设备编号、部件及备件 1.实验室电脑; 2.单片机实验箱。 四、实验过程及数据、现象记录 1.在Proteus环境下建立如下仿真原理图,并保存为文件; 原理图中常用库元件的名称: 无极性电容:CAP 极性电容:CAP-ELEC 单片机:AT89C51 晶体振荡器:CRYSTAL 电阻:RES 按键:BUTTON 发光二极管:红色LED-RED 绿色LED-GREEN 蓝色LED-BLUE 黄色LED-YELLOW 2.在Keil环境下建立源程序并保存为.ASM文件,生成.HEX文件; 参考程序如下: ORG 0000H LJMP MAIN ORG H ;定时器T0的入口地址 LJMP TIMER0 MAIN: MOV TMOD,#01H

MOV R0,#05H MOV TH0,# H ;定时器的初值 MOV TL0,# H SETB ;开定时器T0的中断 SETB ;开CPU的中断 SETB ;启动定时器T0 MOV A,#01H LOOP: MOV P1,A RL A CJNE R0,#0,$ MOV R0,#05H SJMP LOOP TIMER0: DEC R0 MOV TH0,# H ;重装初值 MOV TL0,# H ;重装初值 RETI END 将以上程序补充完整,流水时间间隔为250ms。 3.将.HEX文件导入仿真图,运行并观察结果; 4.利用Keil软件将程序下载至实验箱,进行硬件仿真,观察实验结果。 五、实验数据分析、误差分析、现象分析 现象:实现流水灯,时间间隔250ms,由定时器实现定时250ms。 六、回答思考题 1.定时器由几种工作模式,各种模式的最大定时时间是多少? 2.各种模式下初值怎么计算?

嵌入式定时器基本功能(定时器中断)c语言代码

定时器基本功能实验(定时器中断) 1.实验内容 使用定时器0 实现1 秒定时,控制蜂鸣器蜂鸣。采用中断方式实现定时控制。 备注:EasyARM2131实验板上的系统时钟默认为11.0592MHz;系统中已定义了符号常量Fpclk = 11059200 ; 2.实验步骤 ①启动ADS 1.2,使用ARM Executable Image for lpc2131工程模板建立一个工程 TimeOut_C。 ②在user 组中的main.c 中编写主程序代码。 ③主程序中使用IRQEnable( )使能IRQ 中断。 ④选用DebugInExram 生成目标,然后编译连接工程。 ⑤将LPC2131实验板上的Beep跳线短接到P0.7。 ⑥选择【Project】->【Debug】,启动AXD 进行JTAG 仿真调试。 ⑦全速运行程序,蜂鸣器会响一秒,停一秒,然后再响一秒……依次循环。 3.实验参考程序 程序清单错误!文档中没有指定样式的文字。-1 定时器实验参考程序 #include "config.h" #define BEEP 1 << 7 /* P0.7控制BEEP,低电平蜂鸣 */ /***************************************************************************************** ** 函数名称:IRQ_Timer0() ** 函数功能:定时器0中断服务程序,取反LED9控制口。 ** 入口参数:无 ** 出口参数:无 ****************************************************************************************** */ void __irq IRQ_Timer0 (void) { if ((IO0SET & BEEP) == 0) IO0SET = BEEP; /* 关闭BEEP */ else IO0CLR = BEEP; T0IR = 0x01; /* 清除中断标志*/ VICVectAddr = 0x00; /* 通知VIC中断处理结束*/ } /* ***************************************************************************************** ** 函数名称:main()

实验四 定时器中断实验

实验四 定时器中断实验 一:实验目的 1.熟悉定时器初始化的步骤; 2.熟悉定时器控制寄存器(TCR )的含义和使用; 3.熟悉定时器的原理和应用。 二:实验内容 本实验要求编写一个简单的定时器中断程序,设置一定的周期控制与XF 引脚相连的LCD 指示灯。当定时器中断产生时可以观察到LCD 周期性闪烁。 三:实验原理 1.定时器 .C54xx 系列的DSP 都具有一个或两个预定标的片内定时器,这种定时器是一个倒数定时器,它可以被特定的状态位实现停止、重启动、重设置或禁止。定时器在复位后就处于运行状态,为了降低功耗可以禁止定时器工作。应用中可以用定时器来产生周期性的CPU 中断或脉冲输出。定时器的功能方框图如图9.1所示,其中有一个主计数器(TIM )和一个预定标计数器(PSC )。TIM 用于重装载周期寄存器PRD 的值,PSC 用于重装载周期寄存器TDDR 的值。 图5.1信号,是在器件复位时,DSP 向外围电路(包括定时器)发送的一个信号,此信号将在定时器上产生以下效果:寄存器TIM 和PRD 装载最大值(0FFFFH );TCR 的所有位清0;结果是分频值为0,定时器启动,TCR 的FREE 和SOFT 为0。

定时器实际上是有20bit 的周期寄存器。它对CLKOUT 信号计数,先将PSC (TCR 中的D6~D9位)减1,直至PSC 为0,然后把TDDR (TCR 中的低4位)重新装载入PSC ,同时将TIM 减1,直到TIM 减为0。这时CPU 发出TINT 中断,同时在TOUT 引脚输出一个脉冲信号,脉冲宽度与CLKOUT 一致,然后将PRD 重新装入TIM ,重复下去直到系统或定时器复位。 定时器产生中断的计算公式如下: TINT t c 为 CLKOUT 的周期) 定时器由三个寄存器组成:TIM 、PRD 、TCR 。 TIM :定时器寄存器,用于装载周期寄存器值并自减1。 PRD :周期寄存器,用于装载定时器寄存器。 TCR :定时器控制寄存器,包含定时器的控制状态位。 定时器是一个片内减计数器,用于周期地产生发,后者每个CPU 时钟周期减1,当计数器减至0周期计数器被定时周期值重新装载。 在正常操作模式下,当TIM 自减至0时,TIM 将被PRD 内的数值重装载。在硬件复位或定时器单独复位(TCR 中TRB 位置1)的情况下,主定时器模块输出的是定时器中断(TINT )信号。该中断被发送至CPU ,同时由TOUT 引脚输出。TOUT 脉冲的宽度等于CLKOUT 的时钟宽度。 预定标模块由两个类似TIM 和PRD 的单元构成。它们是预定标计数器(PSC )和定时器分频寄存器(TDDR )。PSC 、TDDR 是RCR 寄存器的字段。在正常操作时PSC 自减为0,TDDR 值装入PSC ,同样在硬件复位或定时器单独复位的情况下,TDDR 也被装入PSC 。PSC 被CPU 时钟定时,即每个CPU 时钟使PSC 自减1。PSC 可被TCR 读取,但不能直接写入。 当TSS 置位时,定时器停止工作。若不需要定时器,终止定时操作,可使芯片工作在低功耗模式,并且可以使用与定时器相关的两个寄存器(TIM 和PRD )作为通用的存储器单元,可以在任意周期对它们进行读或写操作。 TIM 的当前值可被读取,PSC 也可以通过TCR 读取。因为读取这两个存储器需要两个指令,而在两次读取之间因为自减,数值可能改变,因此,PSC 两次读的结果可能有差别,不够准确。若要准确测量时序,在读这两个寄存器值之前可先中止定时器,对TSS 置1和清0后,可重新开始定时。 通过TOUT 信号或中断,定时器可以用于产生周边设备的采样时钟,如模拟接口。对于有多个定时器的DSP ,由寄存器GPIOCR 中的第15位控制使用某一个定时器产生的TOUT 信号。 2.定时器初始化 (1)定时器初始化步骤 ●TCR 的TSS 位写1,定时器停止工作; ●装载TRD ;

定时器工作原理

定时器工作原理 通电延时型。只要在定时的时间段内(即1分钟)定时器一直得电,则常开触电就会闭合,只要定时器不断电常开触电就会一直闭合。定时器断电则常开触电断开 1,定时器/计数器的结构与功能 主要介绍定时器0(T0)和定时器1(T1)的结构与功能。图6.1是定时器/计数器的结构框图。由图可知,定时器/计数器由定时器0、定时器1、定时器方式寄存器TMOD和定时器控制寄存器TCON组成。 定时器0,定时器1是16位加法计数器,分别由两个8位专用寄存器组成:定时器0由TH0和TL0组成,定时器1由TH1和TL1组成。 图6.1 定时器/计数器结构框图 TL0、TL1、TH0、TH1的访问地址依次为8AH~8DH,每个寄存器均可单独访问。定时器0或定时器1用作计数器时,对芯片引脚T0(P3.4)或T1(P3.5)上输入的脉冲计数,每输入一个脉冲,加法计数器加1;其用作定时器时,对内部机器周期脉冲计数,由于机器周期是定值,故计数值确定时,时间也随之确定。 TMOD、TCON与定时器0、定时器1间通过内部总线及逻辑电路连接,TMOD 用于设置定时器的工作方式,TCON用于控制定时器的启动与停止。 6.1.1 计数功能 计数方式时,T的功能是计来自T0(P3.4)T1(P3.5)的外部脉冲信号的个数。 输入脉冲由1变0的下降沿时,计数器的值增加1直到回零产生溢出中断,表示计数已达预期个数。外部输入信号的下降沿将触发计数,识别一个从“1”到“0”的跳变需2个机器周期,所以,对外部输入信号最高的计数速率是晶振频率的1/24。若晶振频率为6MHz,则计数脉冲频率应低于1/4MHz。当计数器满后,再来一个计数脉冲,计数器全部回0,这就是溢出。 脉冲的计数长度与计数器预先装入的初值有关。初值越大,计数长度越小;初值越小,计数长度越大。最大计数长度为65536(216)个脉冲(初值为0)。 6.1.2 定时方式 定时方式时,T记录单片机内部振荡器输出的脉冲(机器周期信号)个数。 每一个机器周期使T0或T1的计数器增加1,直至计满回零自动产生溢出中断请求。 定时器的定时时间不仅与定时器的初值有关,而且还与系统的时钟频率有关。在机器周期一定的情况下,初值越大,定时时间越短;初值越小,定时时间越长。最长的定时时间为65536(216)个机器周期(初值为0)。

单片机定时器实验报告

XXXX大学信息工程与自动化学院学生实验报告 (2009 —2010 学年第二学期) 课程名称:单片机开课实验室: 2010年 5月14日 一.实验目的: 掌握定时器T0、T1的方式选择和编程方法,了解中断服务程序的设计方法,学会实时程序的调试技巧。 二.实验原理: MCS-51单片机内设置了两个可编程的16位定时器T0和T1,通过编程,可以设定为定时器和外部计数方式。T1还可以作为其串行口的波特率发生器。 定时器T0由特殊功能寄存器TL0和TH0构成,定时器T1由TH1和TL1构成,特殊功能寄存器TMOD控制定时器的工作方式,TCON控制其运行。定时器的中断由中断允许寄存器IE,中断优先权寄存器IP中的相应位进行控制。定时器T0的中断入口地址为000BH,T1的中断入口地址为001BH。 定时器的编程包括: 1)置工作方式。 2)置计数初值。 3)中断设置。 4)启动定时器。 定时器/计数器由四种工作方式,所用的计数位数不同,因此,定时计数常数也就不同。

在编写中断服务程序时,应该清楚中断响应过程:CPU执行中断服务程序之前,自动将程序计数器PC内容(即断点地址)压入堆栈保护(但不保护状态寄存器PSW,更不保护累加器A和其它寄存器内容),然后将对应的中断矢量装入程序计数器PC使程序转向该中断矢量地址单元中以执行中断服务程序。定时器T0和T1对应的中断矢量地址分别为000BH 和001BH。 中断服务程序从矢量地址开始执行,一直到返回指令“RETI”为止。“RETI”指令的操作一方面告诉中断系统该中断服务程序已经执行完毕,另一方面把原来压入堆栈保护的断点地址从栈顶弹出,装入到程序计数器PC,使程序返回到被到中断的程序断点处,以便继续执行。 因此,我们在编写中断服务程序时注意。 1.在中断矢量地址单元放一条无条件转移指令,使中断服务程序可以灵活地安排在64K 字节程序存储器的任何空间。 2.在中断服务程序中应特别注意用软件保护现场,以免中断返回后,丢失原寄存器、累加器的信息。 3.若要使执行的当前中断程序禁止更高优先级中断,可以先用软件关闭CPU中断,或禁止某中断源中断,在返回前再开放中断。 三.实验内容: 编写并调试一个程序,用AT89C51的T0工作方式1产生1s的定时时间,作为秒计数时间,当1s产生时,秒计数加1;秒计数到60时,自动从0开始。实验电路原理如图1所示。 计算初值公式 定时模式1 th0=(216-定时时间) /256 tl0=(216-定时时间) mod 256

单片机实验 中断、定时器

大连理工大学实验报告(模板) 实验时间:年月日星期时间::~ : 实验室(房间号):实验台号码:班级:姓名: 指导教师签字:成绩: 实验三外部中断/INT0实验 一、实验目的和要求 学习、掌握单片机的中断原理。正确理解中断矢量入口、中断调用和中断返回的概念及物理过程。学习编写“软件防抖”程序,了解“软件防抖”原理。 对/int0、/int1两个外部中断进行编程,其中: ●主程序的功能:LDE灯“全亮”、“全灭”交替进行 --------(状态2); ●Int0中断服务程序功能:2个相邻的LED灯被点亮且循环左移(状态0); ●Int1中断服务程序功能:1个LED灯被点亮且循环右移 ---(状态1);【注意】:实验仪上的LED灯物理位置最左侧为d0;最右侧为d7。 二、实验算法 1 在主程序中利用CPL P3.3的指令驱动其电平不断地转换(由逻辑笔电路做程序状态监视)。 2 在中断服务程序中将P3.3置位(P3.3=1),实现对计数器“加1”并(通过P1口)显示的功能。 3 中断结束后回到主程序,程序继续对P3.3的电平不断取反。 三、实验电路图

四、实验流程图 主程序入口INT0入口 设置中断允许P3.2置1 设置中断优先级调用延时子程序 设TCON 计数器加一并显示 CLR A开中断 (P0)—(A) P3.2=0? 调用延时子程序调用延时子程序 (A)—(A) RETI INT1同理 五、程序清单 ORG 0000H LJMP START ORG 0003H LJMP INT_0 ORG 0013H LJMP INT_1 ORG 0100H ;主程序 START: MOV SP,#60H MOV IE,#85H

外部中断,定时器与串行口综合实验

硬件实验八外部中断,定时器与串行口综合实验 一.实验目的 1.进一步巩固外部中断,定时计数器和串行口的原理 2.进一步巩固外部中断,定时计数器使用和编程方法 3.进一步巩固串行口与PC机通信的实现方法 二.实验内容 独立按键按下后,单片机每隔3s将内部的RAM60H开始的存储单元中的数据发送到串行口,并在PC上的串行调试助手上显示。再次按下,则停止传送。若继续按下,则继续传送。以此类推。 三.实验连线 用杜邦线将P3.0口和独立按键连接起来 四.实验说明 本实验结合外部中断,定时计数器和串行口的知识,实现数据定式传输。独立按键的按下将产生从高到低的电平变化,可作为外部中断的输入信号。 主程序中,应首先对外部中断,定时计数器和串行口进行初始化。在外部中断程序中判断是发送还是停止发送,若需要发送数据则开启定时器,若停止发送数据则关闭定时器。在定时器中断服务程序中发送数据。 五.实验代码及其现象 程序代码: #include

#define uchar unsigned char #define uint unsigned int char code table[]="communication engineering kingsam 1006052150"; char *p; uint i; int k=0; char overtime,flag; void init() //初始化函数 { TMOD=0x21; //置工作方式 TH0=(65536-50000)/256; TL0=(65536-50000)%256; TH1=0xfd; TL1=0xfd; EA=1; EX0=1; ET0=1; IT0=1; ES=1; TR1=1; //启动定时器R1 SCON=0x40; p=0x60;

定时器基本功能实验(定时器中断)

实验二、定时器基本功能实验(定时器中断) 班级: 学号: 姓名:

一、实验目的 熟悉LPC2000 系列ARM7 微控制器的定时器0的基本设置及定时中断应用。二、实验设备 硬件:PC 机、LPC2131 教学实验开发平台 软件:Windows98/XP系统,ADS 1.2 集成开发环境 三、实验内容 使用定时器 0 实现1 秒定时,控制蜂鸣器蜂鸣。采用中断方式实现定时控制。备注:EasyARM2131 实验板上的系统时钟默认为11.0592MHz;系统中已定义了符号常量Fpclk = 11059200。 四、实验步骤 1、启动 ADS 1.2,使用ARM Executable Image for lpc2131 工程模板建立一个工程TimeOut_C; 2、在 user 组中的main.c 中编写主程序代码; 3、主程序中使用IRQEnable( )使能IRQ 中断; 4、选用 DebugInExram 生成目标,然后编译连接工程; 5、将 LPC2131 实验板上的Beep 跳线短接到P0.7; 6、选择 -> ,启动AXD 进行JTAG 仿真调试; 7、全速运行程序,蜂鸣器会响一秒,停一秒,依次循环。 五、实验参考程序 #include "config.h" #define BEEP 1 << 7 /* P0.7 控制BEEP,低电平蜂鸣 */ /* ********************************************************************* ** 函数名称:IRQ_Timer0() ** 函数功能:定时器 0 中断服务程序,取反LED9 控制口。 ** 入口参数:无 ** 出口参数:无 ********************************************************************* */ void __irq IRQ_Timer0 (void) { if ((IO0SET & BEEP) == 0) IO0SET = BEEP; /* 关闭BEEP */

定时器中断原理

定时器中断原理#define _1231_C_ #include "reg51.h" //sbit OE=P2^3; unsigned int SystemTime; void timer0(void) interrupt 1 using 3 //中断部分代码,见下文的释疑 { TH0 = 0xdb; TL0 = 0xff; // TF0 = 0; SystemTime++; } void main() { TMOD &= 0xF0; TMOD |= 0x01; //TMOD的值表示定时器工作方式选择 TH0 = 0xdb; //写入初始值,初始值可以决定定时多久 TL0 = 0xff; //根据下文的木桶比喻的话,如果TH0 = 0x00;TL0 = 0x00;则表示从桶底开始装水。 //TH0 = 0xdb;TL0 = 0xff;可以这样子理解相当于木桶里已经有部分液铅在里面, //TH0和TL0这个两个值表示木桶里液铅的高度,即此时桶里只能从液铅的高度以上开始装水, //TH0 = 0xff;TL0 = 0xff;即表示桶的最高位置.

TF0 = 0; //计数到时TF0为1,即当TH0 = 0xff;TL0 = 0xff;再运行一步TF0 = 1; TR0 = 1; //开始计数,从这时起,每运行一步TH0和TL0都会增加,直到TH0 = 0xff;TL0 = 0xff; //相当于开水龙头,如TR0=0则TH0和TL0不变 ET0 = 1; //允许定时器0中断 EA=1; //开总中断 //下面是个死循环,程序里每运行一步TH0和TL0都会增加,当增加到TH0 = 0xff;TL0 = 0xff; //单片机会从死循环里退出,去执行中断部分的代码,即开始运行void timer0(void) interrupt 1 using 3{} //运行完中断部分的代码后,接着继续执行死循环里的代码。 //注意:当TH0 = 0xff;TL0 = 0xff;再运行,TF0并没有从0变为1,个人猜测TF0=1;时触发了中断,并重新被置零。 //如把ET0 = 1;和EA=1;注释掉,当TH0 = 0xff;TL0 = 0xff;再运行,TF0会变为1,此时不会再执行中断部分代码。 while(1) { if ((SystemTime%100)<50) //SystemTime除以100,余数小于50为真 { …………; } else { …………; } };

DSP实验定时器中断实验精

实验四定时器中断实验 一:实验目的 1.熟悉定时器初始化的步骤; 2.熟悉定时器控制寄存器(TCR)的含义和使用; 3.熟悉定时器的原理和应用。 二:实验内容 本实验要求编写一个简单的定时器中断程序,设置一定的周期控制与XF引脚相连的LCD指示灯。当定时器中断产生时可以观察到LCD周期性闪烁。 三:实验原理 1.定时器 SRESET .C54xx 系列的 DSP 都具有一个或两个预定标的片内定时器,这种定时器是一个倒数定时器,它可以被特定的状态位实现停止、重启动、重设置或禁止。定时器在复位后就处于运行状态,为了降低功耗可以禁止定时器工作。应用中可以用定时器来产生周期性的 CPU 中断或脉冲输出。定时器的功能方框图如图 9.1 所示,其中有一个主计数器( TIM )和一个预定标计数器( PSC )。 TIM 用于重装载周期寄存器 PRD 的值, PSC 用于重装载周期寄存器 TDDR 的值。 图5.1中有一个信号,是在器件复位时,DSP向外围电路(包括定时器)发送的一个信号,此信号将在定时器上产生以下效果:寄存器TIM和PRD装载最大值(0FFFFH);TCR的所有位清0;结果是分频值为0,定时器启动,TCR的FREE 和SOFT为0。 图5.1定时器的功能方框图 定时器实际上是有20bit的周期寄存器。它对CLKOUT信号计数,先将PSC(TCR 中的D6~D9位)减1,直至PSC为0,然后把TDDR(TCR中的低4位)重新装载入PSC,同时将TIM减1,直到TIM减为0。这时CPU发出TINT中断,同时在TOUT引脚输出一个脉冲信号,脉冲宽度与CLKOUT一致,然后将PRD重新装入TIM,重复 TSS 下去直到系统或定时器复位。

定时器工作原理

定时器工作原理 Revised as of 23 November 2020

定时器工作原理 通电延时型。只要在定时的时间段内(即1分钟)定时器一直得电,则常开触电就会闭合,只要定时器不断电常开触电就会一直闭合。定时器断电则常开触电断开 1,定时器/计数器的结构与功能 主要介绍定时器0(T0)和定时器1(T1)的结构与功能。图是定时器/计数器的结构框图。由图可知,定时器/计数器由定时器0、定时器1、定时器方式寄存器TMOD 和定时器控制寄存器TCON组成。 定时器0,定时器1是16位加法计数器,分别由两个8位专用寄存器组成:定时器0由TH0和TL0组成,定时器1由TH1和TL1组成。 图定时器/计数器结构框图 TL0、TL1、TH0、TH1的访问地址依次为8AH~8DH,每个寄存器均可单独访问。定时器0或定时器1用作计数器时,对芯片引脚T0()或T1()上输入的脉冲计数,每输入一个脉冲,加法计数器加1;其用作定时器时,对内部机器周期脉冲计数,由于机器周期是定值,故计数值确定时,时间也随之确定。 TMOD、TCON与定时器0、定时器1间通过内部总线及逻辑电路连接,TMOD用于设置定时器的工作方式,TCON用于控制定时器的启动与停止。 计数功能 计数方式时,T的功能是计来自T0T1的外部脉冲信号的个数。 输入脉冲由1变0的下降沿时,计数器的值增加1直到回零产生溢出中断,表示计数已达预期个数。外部输入信号的下降沿将触发计数,识别一个从“1”到“0”的跳变需2个机器周期,所以,对外部输入信号最高的计数速率是晶振频率的1/24。若晶振频率为6MHz,则计数脉冲频率应低于1/4MHz。当计数器满后,再来一个计数脉冲,计数器全部回0,这就是溢出。 脉冲的计数长度与计数器预先装入的初值有关。初值越大,计数长度越小;初值越小,计数长度越大。最大计数长度为65536(216)个脉冲(初值为0)。 定时方式 定时方式时,T记录单片机内部振荡器输出的脉冲(机器周期信号)个数。 每一个机器周期使T0或T1的计数器增加1,直至计满回零自动产生溢出中断请求。 定时器的定时时间不仅与定时器的初值有关,而且还与系统的时钟频率有关。在机器周期一定的情况下,初值越大,定时时间越短;初值越小,定时时间越长。最长的定时时间为65536(216)个机器周期(初值为0)。 定时器/计数器控制寄存器 与对定时器/计数器有关的控制寄存器共有4个:TMOD、TCON、IE、IP。IE、IP 已在中断一节中介绍,这里不再赘述。

实验七:定时器中断实验

微控制器 综合设计与实训实验名称:实验七定时器中断实验

实验七:定时器中断实验 1 实训任务 (1) 设置定时器时钟,自动重装载值,分频系数和计数方式; (2) 设置定时器中断优先级; (3) 通过编写延时函数实现定时器中断。 1.1 实验说明 STM32的通用定时器是由一个通过可编程预分频器(PSC)驱动的16位自动装载计数器(CNT)构成。STM32的通用定时器的用途:测量输入信号的脉冲长度(输入捕获)或者产生输出波形(输出比较和PWM)等。使用定时器预分频器和RCC时钟控制器预分频器,可以使脉冲长度和波形周期在几个微秒到几个毫秒间调整。 STM32F10x的通用TIMx(TIM2、TIM3、TIM4和TIM5)定时器功能包括: (1)6位向上、向下、向上/向下自动装载计数器(TIMx_CNT)。 (2) 16位可编程(可以实时修改)预分频器(TIMx_PSC),计数器时钟频率的分频系数为1~65535之间的任意数值。 (3) 4个独立通道(TIMx_CH1~4),这些通道可以用来作为: A.输入捕获 B.输出比较 C.PWM生成(边缘或中间对齐模式) D.单脉冲模式输出 (4) 可使用外部信号(TIMx_ETR)控制定时器和定时器互连(可以用1个定时器控制另外一个定时器)的同步电路。 (5) 如下事件发生时产生中断/DMA: A.更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发) B.触发事件(计数器启动、停止、初始化或者由内部/外部触发计数) C.输入捕获

D.输出比较 E.支持针对定位的增量(正交)编码器和霍尔传感器电路 F.触发输入作为外部时钟或者按周期的电流管理 定时器的时钟来源有4个: (1)内部时钟(CK_INT) (2) 外部时钟模式1:外部输入脚(TIx) (3)外部时钟模式2:外部触发输入(ETR) (4) 内部触发输入(ITRx):使用A定时器作为B定时器的预分频器(A为B 提供时钟)。 这些时钟,具体选择哪个可以通过TIMx_SMCR寄存器的相关位来设置。这里的CK_INT时钟是从APB1倍频来的,除非APB1的时钟分频数设置为1,否则通用定时器TIMx的时钟是APB1时钟的2倍,当APB1的时钟不分频的时候,通用定时器TIMx的时钟就等于APB1的时钟。这里还要注意的就是高级定时器的时钟不是来自APB1,而是来自APB2。 本实验使用定时器3产生溢出中断,在中断服务函数里面翻转LED上的电平,来指示定时器中断的产生。定时器相关的库函数主要集中在固件库文件stm32f10x_tim.h和stm32f10x_tim.c文件中。 1.2 实验步骤 (1) 在实训平台上将PE4和PE5分别连接LED灯; (2) 复制上一个实验工程修改名称并保存为定时器中断实验; (3) 新建timer.c和timer.h文件,添加至工程中; (4) 编写timer.h文件,声明定时器3初始化函数; (5) 编写timer.c文件,编写定时器3初始化函数,设置分频系数、计数方式、自动重装载计数周期值和时钟分频因子; (6) 编写main函数,程序编译正确;

相关文档
相关文档 最新文档