文档库 最新最全的文档下载
当前位置:文档库 › 水力学实验报告之沿程阻力损失实验

水力学实验报告之沿程阻力损失实验

水力学实验报告之沿程阻力损失实验
水力学实验报告之沿程阻力损失实验

沿程阻力损失实验

1.本实验中,沿程阻力损失就是压差计的压差,如果管道有一定的倾角,压差计的压差是否还是沿程阻力损失?为什么?

现以倾斜等径管道上装设的水银多管压差计为例说明(图中A —A 为水平线): 如图示O —O 为基准面,以1—1和2—2为计算断面,计算点在轴心处,设21v v =,∑=0j h ,由能量方程可得

???

? ??+-???? ??+=-γγ221121p Z p Z h f 1112222

1

6.136.13H H h h H h h H p p +?-?-?+?+?-?+-=γ

γ 112226.126.12H h h H p +?+?+-=γ

∴ ()()122211216.126.12h h H Z H Z h f ?+?++-+=-

)(6.1221h h ?+?=

这表明水银压差计的压差值即为沿程水头损失,且和倾角无关。

2.根据实测m 值判断本实验的流区。

f h l

g ~v lg 曲线的斜率m=1.0~1.8,

即f h 与8.10.1-v 成正比,表明流动为层流(m=1.0)、紊流光滑区和紊流过渡区(未达阻力平方区)。

3.管道的当量粗糙度如何测得?

当量粗糙度的测量可用实验的方法测定λ及e R 的值,然后用下式求解:

(1)考尔布鲁克公式

???

? ??+?-=λλe R d 51.27.3lg 21

莫迪图即是本式的图解。

(2)S .J 公式

()[]29.074.57.ln 325.1e R d +?=

λ

(3)Barr 公式 ???

? ??+?-=89.01286.57.3lg 21e R d λ 其中(3)式精度最高。在反求

d ?时,(2)式开方应取负号。也可直接由λ~

e R 关系在莫迪图上查得d

?,进而得出当量粗糙度?值。 4.实验工程中的钢管中的流动,大多为光滑紊流或紊流过渡区,而水电站泄洪洞的流动,大多数为紊流阻力平方区,其原因何在?

钢管的当量粗糙度一般为0.2mm ,常温下,s cm /01.02=ν,经济流速s cm /300,若实用管径D=(20~100)cm ,其5106?=e R ~6103?,相应的

d

?=0.0002~0.001,由莫迪图可知,流动均处在过渡区。

若需达到阻力平方区,那么相应的610=e R ~6109?,流速应达到(5~9)m/s 。这样高速的有压管流在实际工程中非常少见。

而泄洪洞的当量粗糙度可达(1~9)mm ,洞径一般为(2~3)m ,过流速往往在(5~10)m/s 以上,其e R 大于710,故一般均处于阻力平方区。

沿程阻力系数表

在模型图中可以找到沿管道的阻力系数,即λ、re和K/D的关系曲线,这是液压系统中常用的。K是管内壁的绝对粗糙度。 管道沿线水头损失计算:H=λ(L/D)[v^2/(2G)] 对于管内层流:λ=64/re(雷诺数re=VD/ν) 圆管粗糙过渡区:1/√(λ)=-2*LG[K/(3.7d)+2.51/re√(λ)] 对于管的湍流粗糙区:1/√(λ)=-2*LG[K/(3.7d)]也可用作λ=0.11(K/D)^0.25还有许多经验公式: 例如,钢管和铸铁管的Shevlev公式为:过渡粗糙区(V<1.2m/s):λ=(0.0179/D^0.3)*(1+0.867/V)^0.3;阻力平方面积(V>=1.2m/s):λ=0.21/D^0.3 摩擦阻力:流体流经一定直径的直管时,由于流体的内摩擦而产生阻力。电阻与距离的长度成正比。 简介

在计算管道沿程阻力损失(直管阻力)的公式中,λ-摩擦系数与雷诺数Re和壁面粗糙度ε有关,可以通过实验测量或计算。 层流 如何确定一个通道的阻力系数 对于层流,可以从理论上严格推断。 在工程中,湍流的确定有两种方法:一种是基于湍流半经验理论结合实验结果,另一种是直接根据实验结果综合阻力系数的经验公式。前者具有更一般的含义。 沿途阻力系数变化规律3-8计算沿途水头损失的经验公式3-3--8沿途水头损失的经验公式3-9局部水头损失3-9局部水头损失3-7沿程阻力系数的变化规律可从本章各节中了解。对于层流,沿程阻力系数的规律是已知的。到目前为止,还没有一个沿程阻力系数的理论公式。为了探索沿程阻力系数的变化规律,尼古拉斯进行了一系列实验研究,揭示了沿途水头损失的规律。下面介绍这一重要的实验研究成果。1尼古拉斯试验条件。

流体阻力实验报告

. 北京化工大学化工原理实验报告 实验名称:流体阻力实验 班级:化工11 姓名: 学号:2011011 序号: 同组人: 设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第套实验日期:2013-11-4

一、实验摘要 本实验使用104实验室UPRS Ⅲ型第7套实验设备,测量了水流经不锈钢管、镀锌管、突扩管、阀门、层流管的阻力损失。确定了摩擦系数和局部阻力系数的变化规律和影响因素。该实验提供了一种测量实际管路阻力系数的方法,其结果可为管路实际应用和工艺设计提供重要的参考。 关键词:流量,压降,雷诺数,摩擦系数,局部阻力系数 二、实验目的 1、测量湍流直管道的阻力,确定摩擦阻力系数。 2、测量湍流局部管道的阻力,确定局部阻力系数。 3、测量层流直管道的阻力,确定摩擦阻力系数。 三、实验原理 1、直管道和局部管道阻力损失e f h u p gZ u p gZ h +++-++=)2()2(2 2 22211 1ρρ (1) 其中h e =0,z 1=z 2,所以测出管道上下游截面的静压能、动能,代入方程即可求得阻力。 2、根据因次分析法可得: (1)直管道阻力损失2 2 u d l h f ?=λ……(2)。其中,l 为管道长度,d 为管道内 径,u 为管内平均流速。只要测定l ,d ,u ,和λ,代入方程即可求得阻力h f 。

其中,λ的理论值计算方法为:25 .0Re 3163.0=湍流λ ; Re 64 = 层流λ。 对于水平无变径直管道,根据式(1)、(2)可得到摩擦系数的计算方法 为221) (2u l p p d ??-=ρλ测量。 (2)管道局部阻力损失2 2 1 u h f ?=ζ……(3)。其中,ζ为管道局部阻力系数, u 为平均流速(突扩管对应细管流速u 1)。将ζ和u 代入方程即可求得局部阻力h f 。 其中,ζ的理论值计算方法为:2 2 1)1(A A - =突扩管ζ ;常数截止阀=ζ;常数球阀=ζ。 对于水平放置的管件,根据式(1)、(3)可得到局部阻力系数的计算方 法为2 21) 2u p p ?-=ρζ(阀门;2 1 122 2) (2-1u p p u ρ ζ-+ =突扩管。 四、实验流程和设备

管路沿程水头损失实验

管路沿程水头损失实验 一、实验目的要求 1.加深了解圆管层流和紊流的沿程损失随平均流速变化的规律,绘制 l g V l g f h 曲线; 2.掌握管道沿程阻力系数的量测技术和应用水压差计及电测仪测量压差的方法; 3.将测得的Re-f 关系值与莫迪图对比,分析其合理性,并且与莫迪图比较,进一步提高实验成果分析能力。 二、实验装置 本实验的实验装置,如图1所示。 图1 自循环沿程水头损失实验装置图 1.自循环高压恒定全自动供水器; 2.实验台; 3.回水管; 4.水压差计; 5.测压计; 6.实验管道 8.滑动测量尺; 9.测压点; 10.实验流量调节阀; 11.供水管与供水阀; 12.旁通管路与旁通阀; 13.稳压筒

实验装置配备如下: 1.测压装置:U形管水压差计和电子量测仪。 低压差用U形管水压差计量测,而高压差需要用电子量测仪来量测。电子量测仪(见图2)由压力传感器和主机两部分组成,经由连通管将其接入测点。压差读数(以厘米水柱为单位)通过主机显示。 图2 电子量测仪 1.压力传感器; 2.排气旋钮; 3.连通管; 4.主机 2.自动水泵与稳压器: 自循环高压恒定全自动供水器由离心泵、自动压力开关、气--水压力罐式稳压器等组成。压力超高时能自动停机,过低能自动开机。为避免因水泵直接向实验管道供水而造成的压力波动等影响,离心泵的输水是先进入稳压器的压力罐,经稳压后再送向实验管道。 3.旁通管与旁通阀: 由于本实验装置所采用水泵的特性,在供小流量时有可能时开时停,从而造成供水压力的较大波动。为避免这种情况出现,供水器设有与蓄水箱直通的旁通管,通过分流可使水泵持续稳定运行。旁通管中设有调节分流量至水箱的阀门,即旁通阀。实验流量随旁通阀开度减小(分流量减小)而增大。设计上旁通阀又是本装置用以调节流量的阀门之一。所以调节流量有两种方法:一是调节实验流量调节阀(见图1);二是调节旁通阀。 4.稳压筒: 为了简化排气,并防止实验中再进气,在传感器前连接稳压筒(2只充水不满顶的密封立筒)。

沿程阻力 中国石油大学(华东)流体力学实验报告

实验七、沿程阻力实验 一、实验目的填空 1.掌握测定镀锌铁管管道沿程阻力系数的方法; 2.在双对数坐标纸上绘制λ-Re的关系曲线; 3.进一步理解沿程阻力系数随雷诺数的变化规律。 二、实验装置 在图1-7-1下方的横线上正确填写实验装置各部分的名称 本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。 另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。 F1——文秋利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图1-7-1 管流综合实验装置流程图 三、实验原理在横线正确写出以下公式 本实验所用的管路是水平放置且等直径,因此利用能量方程式可推得管路两点间的沿程水头

损失计算公式: 2 2f L v h D g λ = (1-7-1) 式中: λ——沿程阻力系数; L ——实验管段两端面之间的距离,m ; D ——实验管内径,m ; g ——重力加速度(g=9.8 m/s 2); v ——管内平均流速,m/s ; h f ——沿程水头损失,由压差计测定。 由式(1-7-1)可以得到沿程阻力系数λ的表达式: 2 2f h D g L v λ= (1-7-2) 沿程阻力系数λ在层流时只与雷诺数有关,而在紊流时则与雷诺数、管壁粗糙度有关。 当实验管路粗糙度保持不变时,可得出该管的λ-Re 的关系曲线。 四、实验要求 填空 1.有关常数 实验装置编号:No. 7 管路直径:D = 1.58 cm ; 水的温度:T = 13.4 ℃; 水的密度:ρ= 0.999348g/cm 3; 动力粘度系数:μ= 1.19004 mPa ?s ; 运动粘度系数:ν= 0.011908 cm 2/s ; 两测点之间的距离:L = 500 cm

沿程水头损失实验报告

竭诚为您提供优质文档/双击可除沿程水头损失实验报告 篇一:沿程水头损失实验 沿程水头损失实验 一、实验目的要求 1、加深了解圆管层流和紊流的沿程水头损失随平均流速变化的规律,绘制 lghf~lgv曲线; 2、掌握管道沿程阻力系数的量测技术和应用气—水压差计及电测仪测量压差的方法; 3、将测得的Re~?关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力。二、实验装置 本实验的装置如图7.1所示 图7.1自循环沿程水头损失实验装置图 1.自循环高压恒定全自动供水器;2.实验台;3.回水管;4.水压差计;6.实验管道;7.水银压差计;8.滑支测量尺;9.测压点;10.实验流量调节阀;11.供水管与供水阀;12.旁通管与旁通阀;13.稳压筒。

根据压差测法不同,有两种方式测压差:1、低压差时 用水压差计量测; 2、高压差时用电子量测仪(简称电测仪)量测(但本仪器暂时不能测定高压)。 本实验装置配备有:1、自动水泵与稳压器 自循环高压恒定全自动供水器由离心泵、自动压力开关、气—水压力罐式稳压器等组成。压力超高时能自动停机,过低时能自动开机。为避免因水泵直接向实验管道供水而造成的压力波动等影响,离心泵的输水是先进入稳压器的压力罐,经稳压后再送向实验管道。 2 4 图7.2 1.压力传感器; 2.排气旋钮; 3.连接管; 4.主机 2、旁通管与旁通阀 由于本实验装置所采用水泵的特性,在供小流量时有可能时开时停,从而造成供水压力的较大波动,为了避免这种情况出现,供水器设有与蓄水箱直通的旁通管(图中未标出)。通过分流可使水泵持续稳定运行。旁通管中设有调节分流量至蓄水箱的阀门,即旁通阀,实验流量随旁通阀开度减小(分流量减小)而增大。实际上旁通阀又是本装置用以调节流量的重要阀门之一。

局部阻力损失实验报告

局部阻力损失实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

局部阻力损失实验 前言: 工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。 在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。 摘要: 本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。进而加深对局部阻力损失的理解。 三、实验原理 写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得: 1.突然扩大 采用三点法计算,下式中12 f h -由 23 f h -按流长比例换算得出。 实测 2 2 1 12 21212[()][()]22je f p p h Z Z h g g αυαυγ γ -=+ + -+ + + 理论 212 (1)e A A ζ'=-

管路阻力实验报告

实验三 管路阻力的测定 一、实验目的 1.学习管路阻力损失h f ,管子摩擦系数λ及管件、阀门的局部阻力系数ζ的测定方法,并通过实验了解它们的变化,巩固对流体阻力基本理论的认识; 2.测定直管摩擦系数λ与雷诺数Re 的关系; 3.测定管件、阀门的局部阻力系数。 二、基本原理 流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会产生流体阻力损失。流体在流动时的阻力有直管摩擦阻力(沿程阻力)和局部阻力(流体流经管体、阀门、流量计等所造成的压力损失。 1.λ-Re 关系的测定: 流体流经直管时的阻力损失可用下式计算: 2 2u d L h f ?= λ ;-直管阻力损失,式中:kg J h f / L -直管长度,m ; d -直管内径,m ; u -流体的流速,m/s ; λ-摩擦系数,无因次。 已知摩擦系数λ是雷诺数与管子的相对粗糙度(△/d )的函数,即 λ=(Re ,△/d )。为了测定λ-Re 关系,可对一段已知其长度、管径及相对粗糙度的直管,在一定流速(也就是Re 一定)下测出阻力损失,然后按下式求出摩擦系数λ: 为: 对于水平直管,上式变: 可根据伯努利方程求出阻力损失=2 )(2 22 212 1212 u u p p g Z Z h h u L d h f f f -+ -+ -=?ρ λ ρ 2 1p p h f -= J/kg 其中,21p p -为截面1与2间的压力差,Pa ;ρ流体的密度,kg/m 3。 用U 形管压差计测出两截面的压力,用温度计测水温,并查出其ρ、μ值,即可算出h f ,并进而算出λ。由管路上的流量计可知当时的流速,从而可计算出此时的Re 数;得到一个λ-Re 对应关系,改变

(行业报告)沿程水头损失实验报告(报告范文)

沿程水头损失实验 一、实验目的要求 1、加深了解圆管层流和紊流的沿程水头损失随平均流速变化的规律,绘制v h f lg ~lg 曲线; 2、掌握管道沿程阻力系数的量测技术和应用气—水压差计及电测仪测量压差的方法; 3、将测得的 ~e R 关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力。 二、实验装置 本实验的装置如图7.1所示 图7.1 自循环沿程水头损失实验装置图 1.自循环高压恒定全自动供水器; 2.实验台; 3.回水管; 4.水压差计; 6.实验管道; 7.水银压差计;8.滑支测量尺; 9.测压点; 10.实验流量调节阀; 11.供水管与供水阀; 12.旁通管与旁通阀; 13.稳压筒。 根据压差测法不同,有两种方式测压差: 1、低压差时用水压差计量测;

2、高压差时用电子量测仪(简称电测仪)量测(但本仪器暂时不能测定高压)。 本实验装置配备有: 1、自动水泵与稳压器 自循环高压恒定全自动供水器由离心泵、自动压力开关、气—水压力罐式稳压器等组成。压力超高时能自动停机,过低时能自动开机。为避免因水泵直接向实验管道供水而造成的压力波动等影响,离心泵的输水是先进入稳压器的压力罐,经稳压后再送向实验管道。 4 2 1.压力传感器; 2.排气旋钮; 3.连接管; 4.主机 2、旁通管与旁通阀 由于本实验装置所采用水泵的特性,在供小流量时有可能时开时停,从而造成供水压力的较大波动,为了避免这种情况出现,供水器设有与蓄水箱直通的旁通管(图中未标出)。通过分流可使水泵持续稳定运行。旁通管中设有调节分流量至蓄水箱的阀门,即旁通阀,实验流量随旁通阀开度减小(分流量减小)而增大。实际上旁通阀又是本装置用以调节流量的重要阀门之一。 3、稳压筒为了简化排气,并防止实验中再进气,在传感器前连接由2只充水(不满顶)之密封立筒构成。 4、电测仪由压力传感器和主机两部分组成,经由连通管将其接入测点(图7.2),压差读数(以厘米水柱为单位)通过主机显示。 三、实验原理

局部阻力系数测定实验

局部阻力系数的测定 一、实验目的 1、用实验方法测定两种局部管件(实扩、突缩)在流体流经管路时的局部阻力系数。 2、学会局部水头损失的测定方法。 1、实验原理及实验装置 局部阻力系数测定的主要部件为局部阻力实验管路,它由细管和粗管组成一个突扩和一个突缩组件,并在等直细管的中间段接入一个阀门组件。每个阻力组件的两侧一定间距的断面上都设有测压孔,并用测压管与测压板上相应的测压管相联接。当流体流经实验管路时,可以测出各测压孔截面上测压管的水柱高度及前后截面的水柱高度差 h。实验时还需要测定实验管路中的流体流量。由此可以测算出水流流经各局部阻力组件的水头损失hζ,从而最后得出各局部组件的局部阻力系数ζ。 ①突然扩大:

2 1-A 2 1( )=ζ2g 1 V 2 ( )1 2 A A -1=j h 理论上: 在实验时,由于管径中即存在局部阻力,又含有沿程阻力,当对突扩前后两断面列能量方程式时,可得hw=hj+hf ,其中hw 可由(h 1-h 3)测读,hf 可由(h 2-h 3)测读,按流长比例换算后,hj=hw-h f 。由此得出: 2 h j ζ=② 突然收缩: 理论上,ζ缩=0.5(1-A 2/A 1),实验时,同样,在读得突缩管段的水头损失后,按流长比例换算,分别将两端沿程损失除去,由此得: 缩 缩 2 h j ζ= 二、实验操作 1、实验前的准备 ①熟悉实验装置的结构及其流程。 ②进行排气处理。 ③启动水泵,然后慢慢打开出水阀门时水流经过实验管路。在此过程中(并关闭其他实验管的进水阀和出水阀),观察和检查管路系统和测压管及其导管中有无气泡存在,应尽可能利用试验管路上的放气阀门或用其它有效措施将系统中存在的气体排尽。 2、进行实验,测录数据 ①调节进水阀门和出水阀门,使各组压差达到测压管可测量的最大高度。 ②在水流稳定时,测读测压管的液柱高和前后的压差值。 ③在此工况下测定流量。 ④调节出水阀门,适当减小流量,测读在新的工况下的实验结果。 如此,可做3~5个实验点。(注意:实验点的压差值不宜太接近)。 三、实验数据处理 1、将实验所得测试结果及实验装置的必要技术数据记入如下附表1中。

流体流动阻力的测定实验报告

银纳米粒子制备及光谱和电化学性能表征 - 1 - 流体流动阻力的测定 王晓鸽 一、实验目的 1. 掌握测定流体流经直管、管件和阀门时阻力损失的实验方法。 2. 测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区λ与Re 的关系曲线。 3. 测定流体流经管件、阀门时的局部阻力系数ξ。 4. 学会流量计和压差计的使用方法。 5. 识辨组成管路的各种管件、阀门,并了解其作用。 二、实验原理 流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1.直管阻力摩擦系数 的测定 流体在水平等径直管中稳定流动时,阻力损失为: 即, 式中: —直管阻力摩擦系数,无因次; —直管内径, ; —流体流经 米直管的压力降, ; —单位质量流体流经 米直管的机械能损失, ;

—流体密度,; —直管长度,; —流体在管内流动的平均流速,。 层流流时, 湍流时是雷诺准数和相对粗糙度的函数,须由实验确定。 欲测定,需确定、,测定、、、等参数。、为装置参数(装置参数表格中给出),、通过测定流体温度,再查有关手册而得,通过测定流体流量,再由管径计算得到。可用型管、倒置型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。求取和后,再将和标绘在双对数坐标图上。 2.局部阻力系数的测定 局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。本实验采用阻力系数法。 流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。即: 因此, 式中:—局部阻力系数,无因次; -局部阻力压强降,;(本装置中,所测得的压降应扣除两测压口间直管段的压降,直管段的压降由直管阻力实验结果求取。)—流体密度,; —流体在管内流动的平均流速,。 根据连接阀门两端管径,流体密度,流体温度(查流体物性、),

沿程阻力系数测定-实验报告

沿程水头损失实验 实验人 XXX 合作者 XXX XX 年XX 月XX 日 一、实验目的 1.加深了解圆管层流和紊流的沿程损失随平均流速变化的规律,绘制lgh f ~-lg v 曲线; 2.掌握管道沿程阻力系数的量测技术和应用压差计的方法; 3.将测得的R e -λ关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力。 二、实验设备 本装置有下水箱、自循环水泵、[供水阀、稳压筒、实验管道、流量调节阀]三组,计量水箱、回水管、压差计等组成。实验时接通电源水泵启动,全开供水阀,逐次开大流量调节阀,每次调节流量时,均需稳定2-3分钟,流量越小,稳定时间越长;测流量时间不小于8-10秒;测流量的同时,需测记压差计、温度计[自备,应挂在水箱中]读数。三根实验管道管径不同,应分别作实验。 三、实验原理 由达西公式g v d L h r 22 ??=λ 得2 22422?? ? ??==d Q L gdh Lv gdh f f πλ=K ×h f /Q 2 另有能量方程对水平等直径圆管可得γ 2 1P P h f -= 对于多管式水银压差有下列关系 h f =(P 1-P 2)/γw =(γm /γw -1)(h 2-h 1+h 4-h 3)=12.6△h m Δh m = h 2-h 1+h 4-h 3 h f —mmH 2O 四、实验结果与分析 实验中,我们测量了三根管的沿程阻力系数,三根管的直径分别为10mm ,14mm ,20mm 。对每根管进行测量时,我们通过改变水的流速,在相距80cm 的两点处分别测量对应的压强。

得到表1至表3中的实验结果。 相关数据说明: 水温29.4℃,对应的动力学粘度系数为2 0.01/cm s ν= 流量通过水从管中流入盛水箱的体积和时间确定。水箱底面积为2 202 0S cm =?,记录水箱液面升高12h cm =(从5cm 到17cm 或者从6cm 到18cm )的时间t ,从而计算出流量 34800(/)() Sh Q cm s t t s = =; 若管道直径为D ,则水流速度为2 4Q v D π= ; 对三根管进行测量时,测量的两点之间距离均为80L cm =; 雷诺数Re vD ν = ;计算沿程阻力系数:层流164Re λ= ;紊流0.25 20.316R e λ-= 测量沿程阻力系数:2/f Kh Q λ=,其中25K /8gD L π=,29.8/g m s = 第一根管 表-1(52 1110,15.113/D mm K cm s ==)

实验四 摩擦系数和局部阻力系数的测定

汕 头 大 学 实 验 报 告 学院:工学院系:机电系年级:2014级 姓名:成吉祥学号:2014124089 成绩: 实验四 摩擦系数和局部阻力系数的测定 一、实验目的 摩擦系数和局部阻力系数是管道系统设计中用以计算能量损耗的重要参数,它的数值大小,遵循着一定的规律,实验的目的是通过测定,了解和掌握这些系数的规律。 二、实验原理 流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会引起流体压力损失。流体在流动时所产生的阻力有直管摩擦阻力和局部阻力。 1、直管阻力 流体流过直管时的摩擦系数与阻力损失之间的关系可用下式表示 2 2 u d l h f ??=λ 式中:f h :直管阻力损失,J/kg ; l :直管长度,m ; d :直管内径,m ; u :流体的速度,m/s ; λ:摩擦系数。 在一定的流速和雷诺数下,测出阻力损失,按下式即可求出摩擦系数λ。 2 2 u l d h f ? ?=λ 阻力损失f h 可通过对两截面间作机械能衡算求出 2 )(2 2 21 2 121u u p p g z z h f -+-+ -=ρ 对于水平等径直管21z z =,21u u =,上式可简化为 ρ 2 1p p h f -=

式中:f h :两截面的压强差,N/m2; ρ:流体的密度,kg/m3。 只要测出两截面上静压强的差即可算出f h 。两截面上静压强的差可用U 形管或倒U 型管压差计测出。流速由流量计测得,在已知d 、u 的情况下只需测出流体的温度t ,查出该温度下流体的ρ、μ,则可求出雷诺数Re ,从而得出流体流过直管的摩擦系数λ与雷诺数Re 的关系。 2、局部阻力 流体流过阀门、扩大、缩小等管件时,所引起的阻力损失可用下式计算 )2 (2 u h f ζ=(J/kg ) (5) 式中z 为局部阻力系数, z 的值一般都由实验测定。计算局部阻力系数时应注意扩大、缩小管件的阻力损失f h 的计算。 三、实验注意事项 1、各自循环供水实验均需注意:计量后的水必须倒回原实验装置的水斗内,以保持自循环供水(此注意事项后述实验不再提示)。 2、稳压筒内气腔越大,稳压效果越好。但稳压筒的水位必须淹没连通管的进口,以免连通管进气,否则需拧开稳压筒排气螺丝提高筒内水位;若稳压筒的水位高于排气螺丝口,说明有漏气,需检查处理。 3、传感器与稳压筒的连接管要确保气路通畅,接管及进气口均不得有水体进入,否则需清除。 四、实验原始数据记录 1、2 号测头距离0.25米,3、4号测头距离0.5米,规格:大管内径:21.2mm , 水温:20℃,零流速水位:580.0mm ,左小管内径12.9mm ,右小管内径:13.4mm 序号 各测点水位(mm ) 流量 流量(升/秒) 1 2 3 4 5 6 体积(升) 时间(秒) 1 541.9 526.0 529.5 527.8 516.5 474.0 1.05 16.09 0.0653 2 529.6 510.0 515.7 513.0 498.0 444.5 1.15 15.56 0.0739 3 505.5 482.0 489.4 486.6 464.0 389.3 1.15 12.90 0.0891 4 495.0 465.0 475.0 470.1 445.0 357.5 1.10 11.24 0.0979 5 484.4 452.0 462.0 458.1 427.8 331.2 1.20 11.80 0.1017 6 438.0 394.0 420.0 412.1 357.5 223.0 1.15 9.40 0.1223

实验报告:管路沿程水头损失实验

实验报告:管路沿程水头损失实验 一、实验目的 1、掌握管道沿程阻力系数的测量技术及电测仪测量压差的方法。 2、掌握沿程阻力系数 λ 与雷诺数Re 等的影响关系。 二、实验原理 由达西公式 g d L h 22 f υλ= 2f 2 2f 2f /4212Q h K Q d L gdh L gdh =?? ? ??= =πυλ (1) L gd K 8/5 2π= 式中:h f 为管流沿程水头损失;d 为实验管段内径;L 为管段长度;υ为断面平 均流速;g 为重力加速度;Q 为过流流量;λ 为沿程阻力系数。 另由能量方程应用于水平等直径圆管可得 2121f /h h P P h -=-=γ)( (2) 式中:P 1、P 2为实验管段起点、终点处压强;h 1、h 2为研究管段起点、终点处测 压管水头高度。压差可用压差计或电测。由上述(1)、(2)两式可求得管流在不同流量状态下的水头损失系数 λ 值。 雷诺数: υ vd R e = 其中 24d Q v π= 式中:Re 为雷诺数;v 为断面平均流速;d 为实验管道内径;υ 为流体运动 粘度; Q 为过流流量。 三、实验装置 实验装置为自循环水流系统,水泵2将蓄水箱1中的水抽出,沿上水管3流入实1—蓄水箱; 2—水泵; 3—上水管; 4—实验管道; 5—回水管; 6—回水通道; 7—差压计; 8—量水箱; 9—秒表; 10—活动接头; 11—水位计; 12—底阀; 13—分流管; 14—分流及流量调节阀; 15—实验管道阀门。

验管段4,经回水管5通过回水通道6又流回蓄水箱1。差压计7用作测量沿程水头损失,量水箱8和秒表9用作测量流量。 四、实验步骤 1、记录有关实验常数。测定并记录水的温度。 2、将所选实验管路的阀15开到最大,同时关闭其它实验管路的阀门,然后接通电源,启动水泵。 3、流量调节通过阀14(注意实验过程中不再旋动其它阀门),顺时针旋动阀14流量增大,逆时针旋阀流量减小。当流量调至一定时,开始测定流量Q 及沿程水头损失h f 。 Q 的测定为体积法(t V Q =),它的测量由量水箱8及秒表9实现,先通过量水 箱的水位计记录量水箱内的起始水位,然后将活动接头10拨至量水箱,同时用秒表记录下接水的时间,读取接水的终了水位,就可计算流量Q 。 同时读取差压计7的读数1h 、2h ,以计算沿程水头损失f h 。 4、改变流量重复步骤3,需测定10组以上数据。 5、测定结束再测记水的温度,两次水温的平均值用作计算运动粘度。 6、关闭仪器及电源。 五、实验原始记录 1、记录有关常数 管径d = 1.0 cm 测量段长度L = 160 cm 水温1t = 22.9 ?C 2t = 23.4 ?C 运动粘度2 000221.00337.0101775.0t t ++= υ= 9.349×10-3 cm 2/s , 式中221t t t +== 23.15 ?C 常数K=π2gd 5/8L = 7.54876 cm 5/s 2 2、记录测量值 测 次 水箱水位高度 时间 / s 水银柱高度 h 1 / ㎝ h 2 / ㎝ 水位高度差/ Δh/cm h 3 / ㎝ h 4 / ㎝ 水银柱高度差/ Δh '/cm 1 7.3 13.5 6. 2 4.9 16.9 63.9 47 2 13.5 21.0 7.5 6. 3 19 61.7 42.7 3 3.7 8.5 4.8 4.3 21. 4 59.1 37.7 4 8. 5 13. 6 5.1 4.8 23.3 57.2 33.9 5 13.6 18.3 4. 7 4. 8 24. 9 55.5 30.6 6 18.3 22.9 4.6 4.7 26.1 54.1 28 7 22.9 27.1 4.2 5 30.1 50.2 20.1 8 7.8 12.6 4.8 5.8 29.4 50.9 21.5 9 12.6 16.1 3.5 4.6 31 49.4 18.4 10 16.1 21.2 5.1 7.1 31.7 48.4 16.7

局部阻力损失实验报告

局部阻力损失实验 前言: 工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。 在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。 摘要: 本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。进而加深对局部阻力损失的理解。 三、实验原理 写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得: 1.突然扩大 采用三点法计算,下式中12 f h -由 23 f h -按流长比例换算得出。 实测 2 2 1 12 21212[()][()]22je f p p h Z Z h g g αυαυγ γ -=+ + -+ + + 理论 212 (1)e A A ζ'=- 2.突然缩小 采用四点法计算,下式中B 点为突缩点,4f B h -由 34 f h -换算得出, 5 fB h -由 56 f h -换算 得出。 实测 2 2 5 54 44455[()][()]22js f B fB p p h Z h Z h g g αυαυγ γ --=+ + --+ + +

沿程阻力的实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期:成绩: 班级:学号::教师: 同组者: 实验七、沿程阻力实验 一、实验目的 1.掌握测定镀锌铁管管道沿程阻力系数的方法。 2.在双对数坐标纸上绘制λ-Re关系曲线。 3.进一步理解沿程阻力系数随雷诺数的变化规律。 二、实验装置 本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。 另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。 F1——文丘利流量计; F2——孔板流量计;F3——电磁流量计; C——量水箱; V——阀门; K——局部阻力试验管路 图7-1 管流综合实验装置流程图

三、实验原理 本实验所用的管路水平放置且等直径,因此利用能量方程可以推导出管路两点间的沿程水力损失计算公式为: g v D L H f 22 ? =λ (1-7-1) 式中 λ——沿程阻力系数; L ——实验管段两端面之间的距离,m ; D ——实验管径,m ; g ——重力加速度(g=9.8 m/s 2); v ——管平均流速,m/s ; h f ——沿程水头损失(由压差计测定),m 。 由式(1-7-1)可以得到沿程阻力系数λ的表达式: 22v h L D g f ?=λ (1-7-2) 沿程阻力系数λ在层流时只与雷诺数有关,在紊流时与雷诺数、管壁粗糙度都有关。 当实验管路粗糙度保持不变时,可以得到该管的λ-Re 关系曲线。 四、实验要求 1.有关常数 实验装置编号:No. 4 管路直径:D =21058.1-?m ;水的温度:T = 20.0 ℃; 水的密度:ρ= 998.23 kg/m 3;动力粘度系数:μ= 101.055-3? Pa ?s ; 运动粘度系数:ν=610007.1-? m 2/s ; 两测点之间的距离:L = 5 m 2.实验数据记录及处理见表7-1和表7-2

化工原理流体阻力实验报告北京化工大学

化工原理-流体阻力实验报告(北京化工大学)

————————————————————————————————作者:————————————————————————————————日期: ?

北京化工大学 化工原理实验报 告 实验名称: 流体阻力实验 班级:化工1305班 姓名:张玮航 学号: 2013011132 序号: 11 同组人:宋雅楠、陈一帆、陈骏 设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第4套实验日期:2015-11-27

一、实验摘要 首先,本实验使用U PRS Ⅲ型第4套实验设备,通过测量不同流速下水流经不锈钢管、镀锌管、层流管、突扩管、阀门的压头损失来测定不同管路、局部件的雷诺数与摩擦系数曲线。确定了摩擦系数和局部阻力系数的变化规律和影响因素,验证在湍流区内λ与雷诺数Re 和相对粗糙度的函数。该实验结果可为管路实际应用和工艺设计提供重要的参考。 结果,从实验数据分析可知,光滑管、粗糙管的摩擦阻力系数随Re 增大而减小,并且光滑管的摩擦阻力系数较好地满足Bl asui s关系式:0.25 0.3163Re λ= 。 突然扩大管的局部阻力系数随Re 的变化而变化。 关键词:摩擦系数,局部阻力系数,雷诺数,相对粗糙度 二、实验目的 1、掌握测定流体流动阻力实验的一般实验方法: ①测量湍流直管的阻力,确定摩擦阻力系数。 ②测量湍流局部管道的阻力,确定摩擦阻力系数。 ③测量层流直管的阻力,确定摩擦阻力系数。 2、验证在湍流区内摩擦阻力系数λ与雷诺数Re 以及相对粗糙度的关系。 3、将实验所得光滑管的λ-Re 曲线关系与B lasiu s方程相比较。 三、实验原理 1、 直管阻力 不可压缩流体在圆形直管中做稳定流动时,由于黏性和涡流的作用会产生摩擦阻力(即直管阻力);流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然变化,会产生局部阻力。由于分子的流动过程的运动机理十分复杂,目前不能用理论方法来解决流体阻力的运算问题,必须通过实验研究来掌握其规律。为了减少实验的工作量、化简工作难度、同时使实验的结果具有普遍的应用意义,应采用基于实验基础的量纲分析法来对直管阻力进行测量。 利用量纲分析的方法,结合实际工作经验,流体流动阻力与流体的性质、流体流经处的几何尺寸、流体的运动状态有关。可表示为:()u l d f p ,,,,,μρε=?。 通过一系列的数学过程推导,引入以下几个无量纲数群:

沿程水头损失实验

§3-4 沿程水头损失实验 一、实验目的 1加深了解圆管层流和紊流的沿程损失随平均流速变化的规律,绘制~曲线; 2掌握管道沿程阻力系数的量测技术和应用气—水压差计及电测仪测量压差的方法; 3将测得的~关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力。 二、实验装置 本实验的装置如图4.1所示。 图4.1自循环沿程水头损失实验装置图 1.自循环高压恒定全自动供水器;2.实验台;3.回水管;4.水压差计;5.测压计;6.实验管道;7.电子量测仪;8.滑动测量尺;9.测压点;10.实验流量调节阀;11.供水管与供水阀;12.旁通管与旁通阀;13.稳压管。 根据压差测法不同,有两种型式: 形式 I 压差计测压差。低压差仍用水压差计量测;高压差用水银多管式压差计量测。装置简图如图4.1所示。 形式 II 电子量测仪测压差。低压差仍用水压差计量测;而高压差用电子量测仪(简称电测仪)量测。与型式I 比较,该型唯一不同在于水银多管式压差计被电测仪(图4.2)所取代。 本实验装置配备有: 1.自动水泵与稳压器 自循环高压恒定全自动供水器由离心泵、自动压力开关、气—水压力罐式稳牙器等组成。压f h lg υlg e R λ

力超高时能自动停机,过低时能自动开机。为避免因水泵直接向实验管道供水而造成的压力波动等影响,离心泵的输水是先进入稳压器的压力罐,经稳压后再送向实验管道。 图4.2 1.压力传感器;2.排气旋钮;3.连通管;4.主机 2.旁通管与旁通阀 由于本实验装置所采用水泵的特性,在供小流量时有可能时开时停,从而造成供水压力的较大波动。为了避免这种情况出现,供水器设有与蓄水箱直通的旁通管(图中未标出),通过分流可使水泵持续稳定运行。旁通管中设有调压分流量至蓄水箱的阀门,即旁通阀,实验流量随旁通阀开度减小(分流量减小)而增大。实际上旁通阀又是本装置用以调节流量的重要阀门之一。 3.稳压筒 为了简化排气,并防止实验中再进气,在传感器前连接由2只充水(不满顶)之密封立筒构成。 电测仪 由压力传感器和主机两部分组成。经由连通管将其接入测点(图4.2)。压差读数(以厘米水柱为单位)通过主机显示。 三、实验原理 由达西公式 得 (7.1) 另由能量方程对水平等直径圆管可得 (7.2) 压差可用压差计或电测。 四、实验方法与步骤 准备I 对照装置图和说明,搞清各组成部件的名称、作用及其工作原理;检查蓄水箱水位g d L h f 22 υλ=2222)/4(212Q h K Q d L gdh L gdh f f f === πυλL gd K 852π=γ)(21p p h f -=

管路沿程水头损失实验

管路沿程水头损失实验 一、实验目的要求 1.加深了解圆管层流和紊流的沿程损失随平均流速变化的规律,绘制h曲线; l g V l g f 2.掌握管道沿程阻力系数的量测技术和应用水压差计及电测仪测量压差的 方法; 3.将测得的Re-f关系值与莫迪图对比,分析其合理性,并且与莫迪图比较,进一步提高实验成果分析能力。 二、实验装置 本实验的实验装置,如图1所示。 图1自循环沿程水头损失实验装置图 1.自循环高压恒定全自动供水器; 2.实验台; 3.回水管; 4.水压差计; 5.测压计; 6.实验管道 8.滑动测量尺; 9.测压点; 10.实验流量调节阀; 11.供水管与供水阀; 12.旁通管路与旁通阀; 13.稳压筒

实验装置配备如下: 1.测压装置:U形管水压差计和电子量测仪。 低压差用U形管水压差计量测,而高压差需要用电子量测仪来量测。电子量测仪(见图2)由压力传感器和主机两部分组成,经由连通管将其接入测点。压 差读数(以厘米水柱为单位)通过主机显示。 图2 电子量测仪 1.压力传感器; 2.排气旋钮; 3.连通管; 4.主机 2.自动水泵与稳压器: 自循环高压恒定全自动供水器由离心泵、自动压力开关、气--水压力罐式稳压器等组成。压力超高时能自动停机,过低能自动开机。为避免因水泵直接向实验管道供水而造成的压力波动等影响,离心泵的输水是先进入稳压器的压力罐, 经稳压后再送向实验管道。 3.旁通管与旁通阀: 由于本实验装置所采用水泵的特性,在供小流量时有可能时开时停,从而造成供水压力的较大波动。为避免这种情况出现,供水器设有与蓄水箱直通的旁通管,通过分流可使水泵持续稳定运行。旁通管中设有调节分流量至水箱的阀门, 即旁通阀。实验流量随旁通阀开度减小(分流量减小)而增大。设计上旁通阀又是本装置用以调节流量的阀门之一。所以调节流量有两种方法:一是调节实验流量调节阀(见图1);二是调节旁通阀。 4.稳压筒: 为了简化排气,并防止实验中再进气,在传感器前连接稳压筒(2只充水不满顶的密封立筒)。

化工原理实验流体流动阻力系数的测定实验报告

流体流动阻力系数的测定实验报告 一、实验目的: 1、掌握测定流体流动阻力实验的一般实验方法。 2、测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力 系数ξ。 3、验证湍流区内摩擦阻力系数λ为雷诺系数Re和相对粗糙度的 函数。 4、将所得光滑管的λ—Re方程与Blasius方程相比较。 二、实验器材: 流体阻力实验装置一套 三、实验原理: 1、直管摩擦阻力 不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性和涡流的作用产生摩擦阻力;流体在流过突然扩大、弯 头等管件时,由于流体运动的速度和方向突然变化,产生局部 阻力。影响流体阻力的因素较多,在工程上通常采用量纲分析 方法简化实验,得到在一定条件下具有普遍意义的结果,其方 法如下。 流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为 △P=f (d, l, u,ρ,μ,ε) 引入下列无量纲数群。

雷诺数Re=duρ/μ 相对粗糙度ε/ d 管子长径比l / d 从而得到 △P/(ρu2)=ψ(duρ/μ,ε/ d, l / d) 令λ=φ(Re,ε/ d) △P/ρ=(l / d)φ(Re,ε/ d)u2/2 可得摩擦阻力系数与压头损失之间的关系,这种关系可 =△P/ρ=λ(l / d)u2/2 用试验方法直接测定。h f ——直管阻力,J/kg 式中,h f l——被测管长,m d——被测管内径,m u——平均流速,m/s λ——摩擦阻力系数。 当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。根据伯努利方程找出静压强差和摩擦阻力系数的关系式,即可求出摩擦阻力系数。改变流速可测出不同Re下的摩擦阻力系数,这样就可得出某一相对粗糙度下管子的λ—Re关系。 (1)、湍流区的摩擦阻力系数 在湍流区内λ=f(Re,ε/ d)。对于光滑管,大量实验

相关文档
相关文档 最新文档