文档库 最新最全的文档下载
当前位置:文档库 › IEC反时限曲线

IEC反时限曲线

IEC反时限曲线
IEC反时限曲线

IEC A级:C1 (标准反时限)IEC B级:C2(强反时限)

tp = TD*( 0.14/( M0.02-1)) tp = TD*(13.5/(M-1))

tr = TD*(13.5/(1-M2)) tr = TD*(47.3/(1 -M2))

IEC C级:C3 (极度反时限)IEC长时反时限:C4

tp = TD*(80.0/( M2-1)) tp = TD*(120.0/(M-1))

tr = TD*(80.0/(1-M2)) tr =TD*(120.0/(1-M) ]

IEC 短时反时限:C5

tp = TD*(0.05/( M0.04-1))

tr = TD*(4.85/(1-M2))

I.E.C A级曲线(标准反时限): C1 I.E.C B级曲线(强反时限): C2

I.E.C C 级曲线(极度反时限): C3

I.E.C 长时反时限曲线: C4

I.E.C 短时反时限曲线: C5

浅谈反时限保护的适用范围及整定方案

浅谈反时限保护的适用范围及整定方案 张克平 摘要:白银电网负荷大部分是工业和电力提灌负荷,因此网内存在着大量的大型高压电动机。相当一部分配网线路的定时限过流保护定值须躲电机启动电流,导致过电流定值很大,甚至有超限时速断电流定值的情况,而此时低电压及负序电压对线末没有灵敏度。电网的快速发展,使保护配合的级数增加,部分配网及用户变电所时间级差已非常紧张。因此,寻找能很好躲电机启动电流及缓解时间级差的保护类型显得尤为迫切,而反时限保护能很好的躲电机启动电流——只要选择适当的曲线类型和时间常数;同时其动作时限与故障电流的大小成反比,上下级保护之间只需一个时间级差配合,缓解时间级差效果明显。 一、定时限过流保护陷入窘境的几个案例 ㈠ 王岘水泥厂117水泥磨线过电流保护 YJV-2×(3×120)/0.7 117 水泥磨线 K1 0.0556 0.64441.373王岘水泥厂 5.75 1#4.6%0.8MVA 5.75 2#4.6%0.8MVA K2 K3 R:2800kW +560kW 0.4kV:1377kW 保护型号:PMC-651F 装置版本号:V1.60.00 1、 参数计算 1)电缆YJV-3×120/10,r=0.158Ω/㎞ x=0.0755Ω/㎞ Z=0.1751Ω/㎞ Z*=0.1588 2)短路电流: A I 7857)3(K1 = )(1538) 3(K2并列A I = A I 3334)2(K1 = A I 663)2(K2 = A I 3469 )) 2((=小首 A I 7391)2() (=大首 2、保护主要功能:1)瞬时电流速断;2)复压(方向)限时电流速断;3)复压(方向)定限时限过流;4)相电流加速;5)反时限过流;6)过负荷保护;7)零序过流;8)重合闸;9)低周、低

浅谈反时限保护的适用范围及整定方案

浅谈反时限保护的适用范围及整定方案 摘要:白银电网负荷大部分是工业和电力提灌负荷,因此网内存在着大量的大型高压电动机。相当一部分配网线路的定时限过流保护定值须躲电机启动电流,导致过电流定值很大,甚至有超限时速断电流定值的情况,而此时低电压及负序电压对线末没有灵敏度。电网的快速发展,使保护配合的级数增加,部分配网及用户变电所时间级差已非常紧张。因此,寻找能很好躲电机启动电流及缓解时间级差的保护类型显得尤为迫切,而反时限保护能很好的躲电机启动电流——只要选择适当的曲线类型和时间常数;同时其动作时限与故障电流的大小成反比,上下级保护之间只需一个时间级差配合,缓解时间级差效果明显。 一、定时限过流保护陷入窘境的几个案例 ㈠ 王岘水泥厂117水泥磨线过电流保护 YJV-2×(3×120)/0.7 117 水泥磨线 K1 0.0556 0.64441.373王岘水泥厂 5.75 1#4.6%0.8MVA 5.75 2#4.6%0.8MVA K2 K3 R:2800kW +560kW 0.4kV:1377kW 保护型号:PMC-651F 装置版本号:V1.60.00 1、 参数计算 1)电缆YJV-3×120/10,r=0.158Ω/㎞ x=0.0755Ω/㎞ Z=0.1751Ω/㎞ Z*=0.1588 2)短路电流: A I 7857) 3(K1= )(1538) 3(K2并列A I = A I 3334)2(K1 = A I 663)2(K2 = A I 3469)) 2((=小首 A I 7391)2() (=大首 2、保护主要功能:1)瞬时电流速断;2)复压(方向)限时电流速断;3)复压(方向)定限时限过流;4)相电流加速;5)反时限过流;6)过负荷保护;7)零序过流;8)重合闸;9)低周、低

反时限特性曲线

反时限特性曲线: I I 曲线可视为两段定时限加一段反时限,只讨论两段定时限之间的反时限特性的微机实现方法,表达式如下: ()1 2 1 max A e K t I I -> 其中:e I ,发电机额定电流;发电机发热同时的散热效应系数1A ,一般整定为1;发电机定子绕组热容量常数1K ,机组容量MVA S n 1200≤时,1K 整定为37.5(当有制造厂家提供的参数时,以厂家参数为准)。 反时限继电器 根据被保护设备提供的反时限特性曲线,实现与其相应的保护。本继电器要求整定的项目有:电流启动定值及与其对应的动作延时。考虑到曲线的复杂性和便于实现,以下参数事先以表格形式存储于EPROM 中:即从1.1倍至2.0倍启动电流对应的时延(级差0.1倍),从2.0倍至10.0倍启动电流对应的时延(级差1.0倍),若精度等有特殊要求可调整级差和电流倍数范围。这些点选定后由保护装置用线性插值进行曲线拟合,级差较小时拟合的曲线将更为光滑。 法一: 考虑实时计算中电流的变化(继电器的动态特性),定义一个综合过流倍数n M [3],它不仅能反映当前的过流程度,也能计及从故障起始整个过程的过流程度,其定义为: ∑∑=== M k M k k k k M t t n n 1 1 2/ 或 ∑∑=== M k M k k k k M t t n n 1 1 / 式中 n k 为k 时刻过流倍数 t k 为与n k 相对应的持续时间 k=1,2,…,M M 为累计计算次数 前者反映的是过流倍数的方均根值,而后者反映的是加权平均值,可分别应用于不同场合。由于微机保护实现时是等间隔计算,故可分别简化为 ∑== M K k M n M n 1 21 或 ∑==M K k M n M n 1 1 继电器实时计算中,当电流大于启动电流后,每次均计算得到一个M n 。设M n 落在事先输入的数据表格,x1,x2内,得到对应的y1,y2,如图1所示。应用线性插值得到动作

各种反时限特性曲线

反时限特性曲线的应用 反时限电流保护概念也十分简单,但是选择曲线、确定待定参数,存在一定的技巧和方法。 目前,国内外常用的反时限保护的通用数学模型的基本形式为: 式中:t为动作延时;K是设计的常数;M是由用户整定的时间常数,一般由上下级保护动作时间的正确配合要求决定;I为保护测量电流;Ip为基准电流,一般取被保护设备的额定电流;a是曲线水平移动常数,反应了反时限保护动作能够动作的电流相对于Ip的倍数,一般取;n是曲线形状常数,通常在0~2之间取值。n越大曲线形状越陡,即保护动作时间随电流增大而减小的越快。 根据n的取值范围不同,反时限保护可以分为以下几类: 当n<1时,称为普通反时限; 当n=1时,称为非常反时限; 当n>1时,称为超反时限。 为了规范应用,IEEE225-4 标准推荐了五条反时限曲线供用户选择使用:

以上各式中:tp 为时间常数;Ipe故障前绕组电流。 以上式(1)、(2)和(3)主要应用于线路保护。对比这三种反时限曲线:超反时限特性保护,微小的电流差别足以引起保护动作时间上的差异,以牺牲时间换取选择性。普通反时限则相反。一般在被保护线路首端和末端短路时电流变化较小的情况下,常采用定时限过流保护。定时限可以认为是一种特殊的反时限特性,即r=0;通常输电线路采用普通反时限特性,即0

反应过热状态的过流保护,则采用特别反时限特性,即r=2。以上式(4)、(5)主要应用于诸如电动机等元件地热过载保护。式(4)忽略了被保护对象故障发生以前负荷电流的发热,而式(5)则计及了故障发生以前负荷电流的发热。因此式(5)较式(4)对元件的热过载保护而言更加合理。

反时限特性

2-6 画出三相五柱电压互感器的Y0/Y0/Δ接线图,并说明其特点。 答:三相五柱式电压互感器有五个铁芯柱,给零序磁通提供了闭合磁路。增加了一个二次辅助绕组,接成开口三角形,获得零序电压。接线图如图2-3所示。 电网正常运行时,三相电压对称,开口三角绕组引出端子电压 mn U为三相二次绕组电压 相量和,其值为零。但实际上由于漏磁等因素影响, mn U一般不为零而有几伏数值的不平衡 电压 unb U b。 当电网发生单相接地故障时,TV一次侧零序电压要感应到二次侧,因三相零序电压大小相等,相位相同,故三角形绕组输出电压U mn=3U0/K TV(K TV为电压互感器额定电压变比)。 (1)这种接线用于中性点不直接接地电网中,在电网发生单相接地时,开口三角形绕组两端为3倍零序电压,U mn= =3U0,为使U mn=100V,开口三角形绕组每相电压为100/3V, 因此,TV 100 / 3 V(U N为一次绕组的额定线电压,kV)。 (2)这种接线用于中性点直接接地电网中,在电网发生单相接地故障时,故障相电压为零,非故障相电压大小、相位与故障前相同不改变,开口三角绕组两端的3倍零序电压U mn 为相电压,为使此时U mn=100V,TV/100 V。 图2-3 三相五柱式TV的磁路及接线 (a) 磁路;(b)接线

原理接线如图3-1所示。反时限过电流保护原理接线如图3-2所示。 图3-1 定时限过电流保护原理接线 图3-2 反时限过电流保护原理接线图 (一)定时限过电流保护的工作原理及动作过程 用图3-3说明定时限过流保护装置的工作原理。当线路WL3上k1点发生短路时,短路电流由电源S经过WLl,WL2,WL3流经k1点,过电流保护1、2、3同时启动,根据选择性要求,保护3动作,3QF跳闸切除故障线路WL3。而保护2、3在故障切除后立即返回,所以要求各保护装置的整定时限不同。越靠近电源侧则时限越长。 图3-3 定时限过流保护装置的工作原理说明

2021年各种反时限特性曲线

反时限特性曲线的应用 欧阳光明(2021.03.07) 反时限电流保护概念也十分简单,但是选择曲线、确定待定参数,存在一定的技巧和方法。 目前,国内外常用的反时限保护的通用数学模型的基本形式为: 式中:t为动作延时;K是设计的常数;M是由用户整定的时间常数,一般由上下级保护动作时间的正确配合要求决定;I为保护测量电流;Ip为基准电流,一般取被保护设备的额定电流;a是曲线水平移动常数,反应了反时限保护动作能够动作的电流相对于Ip的倍数,一般取1.0;n是曲线形状常数,通常在 0~2之间取值。n 越大曲线形状越陡,即保护动作时间随电流增大而减小的越快。 根据n的取值范围不同,反时限保护可以分为以下几类: 当n<1时,称为普通反时限; 当n=1时,称为非常反时限; 当n>1时,称为超反时限。 为了规范应用,IEEE225-4 标准推荐了五条反时限曲线供用户选择使用:

以上各式中:tp 为时间常数;Ipe故障前绕组电流。 以上式(1)、(2)和(3)主要应用于线路保护。对比这三种反时限曲线:超反时限特性保护,微小的电流差别足以引起保护动作时间上的差异,以牺牲时间换取选择性。普通反时限则相反。一般在被保护线路首端和末端短路时电流变化较小的情况下,常采用定时限过流保护。定时限可以认为是一种特殊的反时限特性,即 r=0;通常输电线路采用普通反时限特性,即0反应过热状态的过流保护,则采用特别反时限特性,即r=2。以上式(4)、(5)主要应用于诸如电动机等元件地热过载保护。式(4)忽略了被保护对象故障发生以前负荷电流的发热,而式(5)则计及了故障发生以前负荷电流的发热。因此式(5)较式(4)对元件的热过载保护而言更加合理。

各种反时限特性曲线

各种反时限特性曲线 反时限特性曲线的应用 反时限电流保护概念也十分简单,但是选择曲线、确定待定参数,存在一定的技巧和方法。 目前,国内外常用的反时限保护的通用数学模型的基本形式为: 式中:t为动作延时;K是设计的常数;M是由用户整定的时间常数,一般由上下级保护动作时间的正确配合要求决定;I为保护测量电流;Ip为基准电流,一般取被保护设备的额定电流;a是曲线水平移动常数,反应了反时限保护动作能够动作的电流相对于Ip的倍数,一般取1.0;n是曲线形状常数,通常在 0,2之间取值。n 越大曲线形状越陡,即保护动作时间随电流增大而减小的越快。根据n的取值范围不同,反时限保护可以分为以下几类: 当n<1时,称为普通反时限; 当n=1时,称为非常反时限; 当n>1时,称为超反时限。 为了规范应用,IEEE225-4 标准推荐了五条反时限曲线供用户选择使用:

以上各式中:tp 为时间常数;Ipe故障前绕组电流。 以上式(1)、(2)和(3)主要应用于线路保护。对比这三种反时限曲线:超反时限特性保护,微小的电流差别足以引起保护动作时间上的差异,以牺牲时间换取选择性。普通反时限则相反。一般在被保护线路首端和末端短路时电流变化较小的情况下,常采用定时限过流保护。定时限可以认为是一种特殊的反时限特性,即r=0;通常输电线路采用普通反时限特性,即0 反应过热状态的过流保护,则采用特别反时限特性,即r=2。以上式(4)、(5)主要应用于诸如电动机等元件地热过载保护。式(4)忽略了被保护对象故障发生以前负荷电流的发热,而式(5)则计及了故障发生以前负荷电流的发热。因此式(5)较式(4)对元件的热过载保护而言更加合理。

反时限过负荷保护电流时间特性对照表(精)

反时限过负荷保护电流时间特性对照表 曲线系数K=10-1200 过载倍数动作时间(秒) 按上表,当用户选择曲线速率K为60时,如过负荷电流是三倍额定电流,则对应的反时限动作时间是7.50秒。 反时限曲线时值示意图

10000 5000 1000 500 100 50 10 5 时间 1 0.5 0.1 1 2 3 4 5 6 7 8 9 10 额定电流倍数 四、 外形尺寸 160*80型仪表外型尺寸图 五、安装及接线 启动失败 不平衡

●标准智能电动机保护器160*80;采用面板卡式安装。开孔尺寸:152*76。 ●将电动机三相电流互感器的次级分别接至电动机保护器的相应输入端子。(详见产品接线图) ●将高压电动机三相电压互感器的次级分别接至电动机保护器的相应输入端子(低压电机可直接接入,详 见产品接线图) ●四组输出继电器,分别用于报警、前级跳闸和启动/停止A、启动/停止B,不用悬空即可。 ●无源触点“启动A”、“启动B”、“停止/复位”用于电动机的正常启动和停止;“紧急停止”是现场使用 的非正常停止按钮;“A反馈”、“B反馈”为接触器动作信号,通常与常开辅助接点相连;“断路器状态” 是前级开关送电信号,如不使用前级跳闸功能,此接点短路即可;“远程控制”是现场控制权转移开关,接点闭合时,可通过RS485远程启动/停止电机保护器。 ●保护控制器电源最好不与电机使用同一条线,否则将影响“晃电”功能的使用;若必须与电机使用同一 电源时,请选择具有电源保持功能的保护控制器。 ●“变送输出”、“通讯”和“漏电CT”端子,使用时连接,不使用时悬空。 HD5200电机保护器接线端子定义

反时限过电流保护原理及常闭式反时限过电流保护特点

反时限过电流保护原理及常闭式反时限过电流保护特点 当通过线路的电流大于继电器的动作电流时,保护装置启动,并用时限保证动作的选择性,这种继电保护装置称为过电流保护。由于采用的继电器不同,其时限特性有两种:由电磁式电流继电器等构成的定时限过电流保护和由感应式电流继电器构成的反时限过电流保护。 继电保护的动作时间(时限)固定不变,与短路电流的数值无关,称为定时限过电流保护。定时限过电流保护的时限是由时间继电器获得的,时间继电器在一定的范围内连续可调,使用时可根据给定时间进行调整。而反时限过电流保护则是指继电保护的动作时间与短路电流的大小成反比,即短路电流越大,保护动作的对间越短;短路电流越小,则保护动作的时间就越长。定时限和反时限的时限特性曲线如图8-2所示。 图8-2中的曲线2实际上是由两部分组成的,即A点以前的反时限部分和A点以后的定时限部分。这种反时限特性称为有限反时限。感应型继电器,如GL型就属于此种类型。 常闭式反时限过电流保护原理。正常运行情况下,电流互感器TA的二次电流经过继电器的线圈KA及其常闭(动断)触头KA1回到互感器的负极,断路器的跳闸线圈YA 被KA1短接。当被保护设备发生故障时,短路电流流经继电器的线圈KA,若达到它的整定值时,继电器开始动作,常开(动合)触头KA2先闭合,常闭触头KA1后打开,短路电流通过跳闸线圈YA,使断路器跳闸,切除故障。 常闭式保护的特点是,接线简单、动作可靠、节省了速饱和变流器,其常闭触头KA1是在常开触头KA2闭合后才打开,因此不容易烧坏,但跳闸线圈需承受短路电流。

常闭式反时限保护一般采用GL-15型过电流继电器。它具有一对常开和一对常闭触头,触头容量较大。

反时限过流保护

目录: 一、概述 1、现有的反时限特性曲线的数学模型 2、标准反时限SIT 3、非常反时限VIT或LTI 4、超反时限UIT 5、极端反时限EIT 6、热过载(无存储)反时限 7、热过载(有存储)反时限 二、各种反时限介绍 三、反时限的实现 1、基于硬件电路实现 1)反时限过流保护定时电路的原理讲解 2)反时限过流保护定时电路的工作过程 2、基于固件的实现 1)直接数据存储法 2)曲线拟合法 ---------------------------------------------------------------------------------------------------------- 一、概述 反时限过电流保护在原理上和很多负载的故障特性相接近,因此保护特性更为优越。反时限电流保护在国外应用较为广泛,尤其在英、美国家应用更为广泛。实际上,许多工业用户要求保护为反时限特性,而且对于不同的用户(负荷),所需的反时限特性并不相同。反时限在控制器里一般做在三段电流保护的第Ⅲ段,如下图。 ---------------------------------------------------------------------------------------------------------- 二、各种反时限介绍 1、现有的反时限特性曲线的数学模型 目前,国内外常用的反时限保护的通用数学模型的基本形式为: 动作时间t是输入电流I的函数 式中,I——故障电流(值越大,时间越短); Ip——保护启动电流(设定值); r——常数,取值通常在0-2之间(也有大于2的情况); k——常数,其量纲为时间。

相关文档
相关文档 最新文档