文档库 最新最全的文档下载
当前位置:文档库 › 降压型 DCDC 开关稳压电源调节器 AE2596

降压型 DCDC 开关稳压电源调节器 AE2596

降压型 DCDC 开关稳压电源调节器 AE2596
降压型 DCDC 开关稳压电源调节器 AE2596

降压型DC/DC 开关稳压电源调节器

AE2596

◆主要特征 ◆ 概述

– 3.3V,5V,12V 固定输出型和可调输出型 – 可调型输出范围为1.2V ~32V – 内置固定频率为150kHz 的振荡器 – 过热保护电路和限流保护电路 – 输入电压最高到40V – 只需4个外围器件 – 可提供3A 负载电流 – 待机电流80uA – 高效率 ◆ 应用领域

- 简单的高效降压调节器 – 在线开关调节器 – 正、负电压转换器 ◆ 管脚设置

5-LeadTO-220(B) 5-Lead TO-220(T) 5-Lead TO-263(S)

AE2596系列是降压型开关稳压器,具有非常优良的电压调整率和负载调整率。能够提供3A 的负载电流。有3.3V 、5V 、12V 固定输出电压型和可调输出电压(ADJ )型。外围元件少,应用简单,内置频率补偿电路和固定频率振荡器。开关频率为150KHz ,可以使用小尺寸的滤波元件。每种版本都有5-Lead TO-220(T )、5-Lead TO-220(B )与5-Lead TO-263(S )三种封装类型。在额定输入电压和输出负载的条件下,输出电压容差为±4%,振荡频率的容差为±15%。待机电流为80μA(典型值),内置两级过流保护电路和过热保护电路。

◆功能框图

◆ 最大绝对额定值

 

◆ 电气特性

除非特别说明,V IN=12V对应于V OUT=3.3V、5V、ADJ;V IN=24V对应于V OUT=12V。I LOAD=500mA。

注1:最大绝对额定值给器件的正常工作范围做了限制,超过这些条件时器件有可能损坏。

注2:人体放电模式相当于一个100pF的电容通过一个1.5KΩ的电阻向每个管脚放电。

注3:典型数据是指在工作在25℃下,代表最常见的情况。

注4:所有的范围保证在室温和极限温度下,所有室温下的范围都是经过100%测试得出的,所有的极限温度下的参数都可以通过使用相关的标准统计质量控制方法来加以保证。

注5:外部元件为续流二极管、储能电感、输入和输出端电容,输出电压可调型的调整电阻会影响开关调节器的系统性能,AE2596用在如图1所示测试电路中时,其系统性能如电气特性中的系统参数所示。

注6:当第二级电流限制起作用时,开关频率会降低,降低值决定于过流程度。

注7:输出管脚不连接二极管、电感或电容。

注8:把反馈端直接连接到0V电压,强制输出开关管常开启。

注9:把连接在调整器输出脚的反馈端断开,V OUT=3.3V、5V或ADJ型的AE2596反馈端连接12V电压;V OUT=12V的AE2596反馈端连到15V电压,强制输出开关管常关闭。

注10:V IN=40V。

注11:环境热阻(不外加散热片)是指TO-220封装的AE2596垂直焊接在覆盖有铜皮面积约为1平方英寸/盎司的PCB上所对应的热阻。

◆ 典型特性曲线

温度特性 电压调整率

饱和压降 输入输出压差

待机特性 频率特性

AE2596技术说明书 Ver1.0

◆ 测试电路

固定输出型

C IN

D 1 —5A 40V 肖特基整流二极管 IN5825 L 1 —68μH ,L38 注1:反馈线要远离电感,电路中的粗线一定要短,最好用地线屏蔽

可调输出型

V OUT =V REF (1 +

12R ) R 2=R 1(REF

OUT

V - 1) VREF=1.23V 为了使电路稳定/选R1阻值为1K ,误差精度为1%。

C IN —470μF 50V C OUT —220μF 35V (Nichicon PL 系列铝电解电容) R 1 —1K Ω,1%。

D 1 —5A 40V IN5825(肖特基整流二极管) L 1 —68μH C FF —参照应用说明

注1:反馈线要远离电感,电路中的粗线一定要短,最好用地线屏蔽

注2:R2应尽量靠近反馈脚

AE2596技术说明书 Ver1.0

◆应用指南

典型应用电路

管脚描述

V IN—正电源输入端,为减小输入瞬态电压和给调节器提供开关电流,此管脚应接旁路电容。GND—电路地端

Output—开关输出端,输出高电压为(V IN-V SAT),输出低电压为-0.5V。

Feedback—反馈端。

/OFF—待机端,低电平有效。

外部元器件

输入电容C IN ─在输入端和地之间需要加一个具有低等效串联电阻的铝或钽旁路电容, 这个电容可以抑制在输入端出现大的瞬态电压,同时为AE2596在每次开关时提供瞬态电流。

前反馈电容C FF(可调输出电压型)─当输出电压大于10V或输出电容的等效串联电阻很小时,要加一个前馈电容C FF,这个电容是用来对反馈环路进行补偿和增加相位裕量以提高环路的稳定性。输出电容C OUT─这个电容是用来对输出滤波以及提高环路的稳定性,在设计开关调节器的应用中,必须使用小阻抗或低等效串联电阻的电解电容或固态钽电容。输出电容的等效串联电阻值有上下限,如果要得到小的输出纹波电压,则输出电容的等效串联电阻值要小,这个值由可允许的最大纹波电压决定,但是,如果输出电容的等效串联电阻值太小,就有可能使反馈环路不稳定,最终导致输出端振荡。铝电解电容的等效串联电阻值与其电容值和耐压值有关,在许多情况下,耐压值高的电解电容的等效串联电阻就小,通常,在需要小的输出纹波电压、等效串联阻抗低的情况下,要选用耐压值高的电解电容。

续流二极管D─在降压型开关调节器中需要一个续流二极管为关态时的电感电流提供回路,续流二级管必须靠近AE2596、管脚要短、相连接的导线也要短。由于肖特基二极管开关速度快、正向压降小,所以,使用中其性能很好,特别是在输出电压较低的情况(5V或更低)中使用。超快恢复(小于50ns)的整流二极管也是可选的,但是有些在突然关断时,可能会引起不稳定或电磁干扰问题

电感 L ─所有开关调节器都有两种基本的工作方式:连续型和非连续型,两者之间的区别在于流过电感的电流的不同,即电感电流若是连续的为连续型;电感电流在一个开关周期内降到零为非连续型。每一种工作模式都有可以影响开关调节器的性能和要求。当负载电流很小时,在设计中可采用非连续模式。AE2596既可以用于连续型也可以用于非连续型。通常情况下,连续工作模式具有好的工作特性,此模式能提供较大的输出功率、较小的峰峰值电流和较低的纹波电压。一般应用可用下式进行选择:

L=(5~10)I V O O

300(1-V V IN

O )mH

AE2596技术说明书Ver1.0◆ 封装外形图

E1

Dimensions In Millimeters Dimensions In Inches

Symbol Min Max Min Max

A 4.470 4.670 0.176 0.184

A1 2.520 2.820 0.099 0.111

A2 1.170 1.370 0.046 0.054

b 0.710 0.910 0.028 0.036

c 0.310 0.530 0.012 0.021

c1 1.170 1.370 0.046 0.054

D 10.010 10.310 0.394 0.406

E 8.900 9.300 0.350 0.366

E1 12.460 12.860 0.491 0.506

e 1.700TYP 0.220TYP e1 6.700 6.900 0.264 0.272

F 2.590 2.890 0.102 0.114

L1 28.700 29.100 1.130 1.146

L2 13.36 13.76 0.526 0.542

R 0.950 1.050 0.037 0.041

Ф 3.790 3.890 0.149 0.153

降压稳压器架构(COT降压稳压器)

4.4 恒定导通时间(COT) 降压稳压器

恒定导通时间(COT)迟滞稳压器 对于一个给定的V IN ,当负载电流变化时,导通时间是恒定的 Ripple is needed to properly switch the comparator!! R F2 R F1+ -Error Comparator Modulator V REF +- R L R C (ESR) V IN V OUT Power Stage L C One-Shot Inversely Proportional to V IN V FB ?优势 –相对于VIN 的变化频率保持恒定 –可在轻负载下实现高效率 –快速瞬态响应 ?劣势 –在反馈比较器上需要纹波–对输出噪声很敏感 (因为它转换为反馈纹波) 功率管导通时间与Vin 成反比

工作频率(连续) T ON 为导通时间,F S 为工作频率。 恒定导通时间控制器负责设定降压开关的导通时间。 K 是一个常数,R ON 是一个编程 电阻器。V IN 如预期的那样在分母当中,将导通时间设定为与V IN 成反比。 重新整理并将T ON 代入第一个公式,然后求解F S

恒定导通时间可实现接近恒定的频率 开关频率几乎是恒定的;变化是由于R DS-ON 、二极管 电压和R ON 引脚输入阻抗的影响造成的 注:一个连接在V IN 和R ON 之间的电阻器负责设定导 通时间

恒定导通时间稳压器波形(不连续) 对于COT 稳压器,假如电感器电流保持连续,则恒定频率关系式成立。在轻负载条件下,电感器中的电流将变得不连续。这里示出的是在不连续导通模式中采用恒定导通时间控制方法进行控制(这意味着斜坡电感器电流每个周期都恢复至零)的降压稳压器的开关波形。

降压式开关电源

开关电源主电路 第1节开关电源概述 一、开关电源的构成 开关电源采用功率半导体器件(GTR MOSFETIGBT等)作为调整管,通过控制电路控制调整管的导通时间,使输出电压保持稳定。 开关电源的电路构成如图4-1所示。 AC输入DC输出 图4-1开关电源的电路构成 (一)一次整流/滤波电路 将交流输入电压(通常是市电电网的交流电压220V或380V)进行整流滤波,转化成为直流电压(300V或500V),然后将直流电压供给DC/AC变换器。相比与线性直流稳压电源,开关电源在这一环节可以省去工频变压器,消除了工频变压器带来的损耗。(二)D C/AC变换器 DC/AC变换器的主要作用是将一次整流/滤波电路提供的直流电压变换成高频交流电压(一般频率可达到几十KHZ到几百KHZ甚至更高)。 (三)二次整流/滤波电路 将DC/AC变换器变换输出的高频交流电压进行整流滤波,转化成平滑的直流输出电压。 (四)反馈网络

反馈网络包括基准电压、采样电路和比较电路。采样电路把输出电压的一部分或者全部采样回来,采样到的电压和基准电压送入比较电路进行比较,比较的 结果送给控制电路。 (五)控制电路 控制电路根据反馈网络的结果输出占空比可调的控制脉冲去控制调整管的通断时间,这是所谓的“时间控制法”。 (六)辅助电路 开关电源中常见的其它电路主要有软启动电路、输出过压保护电路、输出过流保护电路、驱动电路等等。 二、开关电源的分类 开关电源的分类方式有很多,可以按激励方式、调制方式、调整管类型、输入电压/输出电压大小、调整管的连接方式和储能电感的连接方式等分类方式进行分类。 (一)按激励方式划分 开关电源按激励方式划分可分为自激式开关电源和它激式开关电源。在自激式开关电源中功率开关管既作为调整管,又兼作控制脉冲信号产生的振荡管。在它激式开关电源中则专门设置有产生控制脉冲信号的控制电路。 (二)按调制方式划分 开关电源按调制方式划分可分为脉宽调制型开关电源、脉频调制型开关电源 和混合调制型开关电源。脉宽调制(PWM指的是控制脉冲周期不变,导通时间改变,进而改变占空比的调制方式。脉频调制(PFM指的是控制脉冲导通时间不变,周期(频率)改变,进而改变占空比的调制方式。混合调制指的是控制脉冲导通时间和周期都改变,进而改变占空比的调制方式。 (三)按调整管的类型划分 开关电源根据调整管的类型不同可分为晶体管(GTR开关电源、场效应管 (MOSFET开关电源和绝缘栅双极型晶体管(IGBT开关电源。 (四)按输入/输出电压大小划分

600W半桥型开关稳压电源设计

600W半桥型开关稳压电源设计 600W半桥型开关稳压电源设计 摘要 本次设计主要是设计一个600W半桥型开关稳压电源,从而为负载供 电。 电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源本身消耗的能量低,电源效率比普通线性稳压电源提高一倍,被广泛用于电子计算机、通讯、家电等各个行业。它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。本文介绍了一种采用半桥电路的开关电源,其输入电压为单相170 ~ 260V,输出电压为直流12V恒定,最大电流50A。从主电路的原理与主电路图的设计、控制电路器件的选取、保护电路方案的确定以及计算机仿真图形的绘制与波形分析等方面的研究。 关键词:半桥变换器;功率MOS管;脉宽调制;稳压电源; 第1章绪论1.1 电力电子技术概况 电子技术包括信息电子技术和电力电子技术两大分支。通常所说的模拟电子技术和数字电子技术属于信息电子技术。电力电子技术是应用于电

力领域的电子技术,它是利用电力电子器件对电能进行变换和控制的新兴学科。目前所用的电力电子器件采用半导体制成,故称电力半导体器件。信息电子技术主要用于信息处理,而电力电子技术则主要用于电力变换。电力电子技术的发展是以电力电子器件为核心,伴随变换技术和 控制技术的发展而发展的。 电力电子技术可以理解为功率强大,可供诸如电力系统那样大电流、高电压场合应用的电子技术,它与传统的电子技术相比,其特殊之处不仅仅因为它能够通过大电流和承受高电压,而且要考虑在大功率情况下,器件发热、运行效率的问题。为了解决发热和效率问题,对于大功率的电子电路,器件的运行都采用开关方式。这种开关运行方式就是电力电 子器件运行的特点。 电力电子学这一名词是20世纪60年代出现的,“电力电子学”和“电力电子技术”在内容上并没有很大的不同,只是分别从学术和工程技术这2个不同角度来称呼。电力电子学可以用图1的倒三角形来描述,可以认为电力电子学由电力学、电子学和控制理论这3个学科交叉而形成 的。这一观点被全世界普遍接受。 电力电子技术与电子学的关系是显而易见的。电子学可分为电子器件和电子电路两大部分,它们分别与电力电子器件和电力电子电路相对应。从电子和电力电子的器件制造技术上进两者同根同源,从两种电路的分析方法上讲也是一致的,只是两者应用的目的不同,前者用于电力变换, 后者用于信息处理。

VP2140 40V3A降压稳压器

Features - 8V to 40V Input Voltage Range - Adjustable Output from 1.22V to 24V - Continuous 3A Output Current - Integrated 100m? MOSFET Switch - 1.22V Voltage Reference with ±2% Accuracy - Low 35μA Shutdown Current - Fixed 1.2x Output Over Voltage Protection - Fixed 150kHz Switching Frequency - Programmable CV/CC mode - Rapid Response Current Mode Operation - Over Voltage and Current Limit - Over Temperature Protection - RoHS 2.0 compliant SO-8P Green Package with Exposed Pad General Description The VP2140 is an efficiency and low-cost buck converter with integrated low R DS(ON) high-side 100m? MOSFET switch. It is capable of delivering 3A continuous output current with programmable current limit over a wide range of supplying voltage from 8V to 40V. With a simple voltage divider, the output voltage is easily adjustable from 1.22V to 24V. Other features such as 150kHz PWM frequency, output over-voltage protection, total fault-free protection and low 35μA shutdown current/ 1.2mA quiescent current make VP2140 ideally to be used in application like automotive equipments and networking devices. The VP2140 is available in popular SO-8P green package with exposed pad. Applications - Car Charger - Wireless Communication Device - Networking Device - LCD Monitor/ LCD TV Typical Application 3A/40V/150kHz Buck Converter with CC mode

第三章01-降压型直流变换器.

第二节降压型开关电源 第三章直流变换器 * VT "Ln lk? 第二节降压型开关电源 (&5祥Sfi开关电8电》图 4 0 t ----- t onr- J ???0 ;aa) VT—高频晶体开关管, 工作在:导通饱和状态 ?止状态 起开关作用,可用M OS管和IGBT管代 替; 开关管与负载RL侧电路相率联,VT的反复 周期性导通和《止,控制了U1是否加到负 ?R L的时间比例,起到斩波作用? VD—续流二极管?当开关管VT截止时? VD 提 供一个称为“续流辭电流的通路?使电感电流 不致迅变中断,避免电感感应出高压而将晶体 管击穿损坏-此续流通路也是电感能 量放出到负载的通路? L—储能电感.有两个作用,能a转换和滤波 C—滤波电容,減小负《电压的脉动成分和?小 输出阻抗? R L—等效负我电阻,用电设备.

lk? + vr __________ 95 ttS生开关电源电路图 + Eo U—输入直流电压?该电压大小不穂定或者有纹波卩0?输出直流电压,纹波小,稳定? 将?个直流电压Ui转换成另 4 0 t ■----- t onr- I ?13 Q * hl U L * 、丫〔二二+ 图S MSfi开*??鼻匕1?创6图?个宜流电压Uo, KUo

降压型直流开关稳压电源

降压型直流开关稳压电源(A题) 学校:东北石油大学 参赛选手:卢鑫坡曲记锋宋忠民 指导教师:张明 摘要:本系统以TI公司的LM5117及CSD18532KCS场效应管为核心,设计制作了该降压型开关直流稳压电源。额定输出电压为5V,输出电流最大值为3A。该系统前端是以LM5117为核心构成的DC-DC直流转直流降压电路,从而确定所需的PWM调制方式,经过几级滤波最终去除纹波,完成了总体电路的设计。该作品很好地满足了竞赛题目要求。 关键词:开关电源LM5117 CSD18532KCS场效应管 1.设计任务 1.1基本要求 (1)额定输入电压下,输出电压偏差:; (2)额定输入电压下,最大输出电流:; (3)输出噪声纹波电压峰峰值:; (4)从满载变到轻载时,负载调整率: ; (5)变化到17.6V和13.6V,电压调整率: (6)效率; (7)具有过流保护功能,动作电流;

(8)增加1个二端子端口,即输出控制端口,端口可外接电阻R (1k-10k )。电源输出电压由下式确定: ; (9)尽量减小电源重量,使电源不含负载的重量不大于0.2Kg ; 2.系统方案 2.1方案提出 利用LM5117制作一个恒流稳压器,经查该芯片数据手册知,可以通过调节电流控制,电压控制两部分的开合关系,来实现升压和降压的功能,最终达成DC-DC 变换的目的。 具体电路原理图如后图5-1所示。 2.2系统整体框图 图2-1降压型开关稳压电源设计总体框图 3.电路理论分析 3.1具体实现方法 去耦滤波 消除高频噪音 直流输入部分 负载 RC 滤波 DC-DC 降压部分 5V 、3A 直流输出 去耦滤波 环形路型补偿 仿真电流检测

降压型开关稳压器TPS5410

降压型开关稳压器TPS5410~TPS5450 为了取代降压型线性稳压器,推出新一代开关型降压稳压器系列,其输入电压为5.5V~36V,输出电流分别为1A(TPS5410),2A(TPS5420),3A(TPS5430)及5A(TPS5450)系列,其主要性能及特点: * 宽的输入电压范围从5.5V~36V。 * 高的转换效率,从90%~95%,内部功率开关导通电阻分别为110mΩ的MOSFET开关。 * 输出电压范围从1.22V~35V,精度为1.5%。 * 设置好内部放大器补偿网络,大幅度减少外部元件。 * 固定开关频率在500KHZ,大幅度减小了外部电感电容的体积。 * 好的线性调整率和瞬态响应能力。 * 保护系统包括过流保护和芯片过热保护。 * 工作环境为-40℃~+125℃。 * 采用有散热底板的POWER-SO-8封装。 该器件有广泛的市场空间,如机顶盒,DVD,LCD-TV,工业电子产品,音频系统电源,电池充电,LED驱动,适用于输入电压为24V及12V的电子系统。 其8个引脚功能如下: 1PIN——BOOT,为高边MOSFET驱动用的升压电容接线端,外接0.01μF电容从BOOT 到PH端。 2PIN——NC。 3PIN——NC。 4PIN——VSENSE。反馈输入端,外部用电阻分压器接到输出。 5PIN——ENA,芯片的ON/OFF控制端,其电平在0.5V以下时,器件停止开关,将其浮动时,芯片即使能。 6PIN——GND,IC公共端。 7PIN——VIN,外部电压输入端。紧靠IC外接旁路电容。 8PIN——PH,高边功率开关的源极,接到外部电感及回流二极管。 POWER PAD,封装底部金属板,外接至PGND。 TPS5410~50系列开关稳压器内部等效电路如图1所示,基本应用电路如图2。 图1 TPS5410 系列内部等效方块电路

PT1202-电流模式同步降压型稳压器

Step-Down DC-DC Converter GENERAL DESCRIPTION The PT1202 is a high efficiency monolithic current mode synchronous buck regulator with a constant operation frequency. A main switch and a synchronous switch are integrated in PT1202, the device has high efficiency and no external Schottky diode needed. Supply current is 300uA during operation and drops to ≤1μA in shutdown. The 2.5V to 5.5V input voltage range makes the PT1202 ideally suited for single Li-Ion battery-powered applications. 100% duty cycle provides low dropout operation, extending battery life in portable systems. Automatic skip cycle operation mode at light loads provides very low output ripple for noise sensitive applications. Internal 1.9MHz switching frequency allowing the use of small surface mount inductors and capacitors. Ultra low output voltages are easily available with the 0.6V feedback reference voltage. The PT1202 is offered in a low profile SOT package and is available in an adjustable version and fixed output voltages versions from 0.6v to 1.8v. FEATURES z High Efficiency: Up to 96% z Low Quiescent Current: 300μA z 800mA Output Current z 2.5V to 5.5V Input V oltage Range z 1.9MHz Constant Frequency Operation z Internal integrated main switch and rectifier, no Schottky Diode Required z Low Dropout Operation: 100% Duty Cycle z 0.6V Reference Allows Low Output V oltages z Shutdown Mode Draws ≤1μA Supply Current z Current Mode Operation for Excellent Line and Load Transient Response z Over-temperature Protected z Low Profile SOT Package APPLICATIONS z Cellular and Smart Phones z Personal Information Appliances z Microprocessors and DSP Core Supplies z Wireless and DSL Modems z Digital Still Cameras z MP3 Players and PDAs z Portable Instruments ORDERING INFORMATION PACKAGE TEMPERATURE RANGE ORDERING PART NUMBER TRANSPORT MEDIA MARKING SOT23-5 -40 o C to 85 o C PT1202E23E Tape and Reel 3000 units 1202z TYPICAL APPLICATION CIRCUIT

直流变换器的设计(降压)

直流变换器的设计(降压) 一、设计要求: (1) 二、题目分析: (1) 三、总体方案: (2) 四、原理图设计: (2) 五、各部分定性说明以及定量计算: (5) 六、在设计过程中遇到的问题及排除措施: (6) 七、设计心得体会: (6)

直流变换器的设计(降压) BUCK降压斩波电路就是直流斩波中最基本的一种电路,是用BUCK作为全控型器件的降压斩波电路,用于直流到直流的降压变换。IGBT是MOSFET与双极晶体管的复合器件。它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。所以用BUCK作为全控型器件的降压斩波电路就有了IGBT易驱动,电压、电流容量大的优点。 BUCK降压斩波电路由于易驱动,电压、电流容量大在电力电子技术应用领域中有广阔的发展前景,也由于开关电源向低电压,大电流和高效率发展的趋势,促进了IGBT 降压斩波电路的发展。 一、设计要求: 技术参数:输入直流电压Vin=36V 输出电压Vo=12V 输出电流Io=3A 最大输出纹波电压50mV 工作频率f=100kHz 二、题目分析: 电力电子器件在实际应用中,一般是由控制电路,驱动电路和以电力电子器件为核心的主电路组成一个系统。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断来完成整个系统的功能,当控制电路所产生的控制信号能够足以驱动电力电子开关时就无需驱动电路。 课程设计步骤分析(顺序): 1.设计主电路,主电路为:采用BUCK变换器,主功率管用MOSFET; 2.选择主电路所有图列元件,并给出清单; 3.设计MOSFET驱动电路及控制电路; 4.绘制装置总体电路原理图,绘制: MOSFET驱动电压、BUCK电路中各元件的电压、电流以及输出电压波形; 5.编制设计说明书、设计小结。

单片同步降压型稳压器

ISL8012、ISL8013和ISL8014三款单片同步降压型DC/DC稳压器 消费、计算机、工业及仪器等各种应用迫切需要紧凑而有效的电源解决方案,同时还要满足效率、快速瞬态响应和卓越的环路稳定性等方面的要求。为了应对上述挑战,Intersil公司推出ISL8012、ISL8013和ISL8014三款单片同步降压型DC/DC稳压器。这些效率高达95%以上的器件在执行高效率的DC/DC控制和转换的同时,还分别支持2A、3A和4A连续负载,有助于降低电池供电、计算、工业及通用设计的原材料成本。 这些器件采用强制PWM模式及自动PWM/PFM模式的可选操作模式,可以最大限度地延长便携式和手持式应用的电池使用寿命。轻负载/待机条件下的35 μA至40 μA的低静态电流使该稳压器系列成为了电池供电及其他“绿色电源”应用的理想选择。2.7 V至5.5 V的电源电压范围可以使用单节锂离子电池、三节镍氢电池或3 V/5 V输入。 除集成了一对低导通电阻开关MOSFET,ISL8012/13/14还可以与一个外部时钟(高达4MHz)进行同步,因而可以使用更小的外部元件。内部电流模式补偿可以尽量减少外部元件的数量,同时有助于实现快速瞬态响应和高占空比/低压降操作。利用上电复位(POR)、PGOOD(Power OK)和Enable(EN)等功能可以实现固有的输出电压监控和上电顺序,无需使用额外的分立式IC,就可以实现输出电压监控和上电顺序能力。 ISL8012/13/14还具备低于1μA的逻辑控制关断电流、峰值电流限制和断续模式短路保护,以保证不利条件下的稳定工作。高达4 MHz(ISL8013和ISL8014)的外部同步可以减少系统板上多条电压轨之间的电磁辐射。下图是ISL8012的典型应用框图。 ISL8013和ISL8014引脚兼容,而ISL8012则采用了小25%的3mm×3mm 10引线DFN封装。这些器件是数码相机、媒体播放器、便携式医疗仪器等各种应用,以及服务器、存储驱动、KVM模块、工业可编程逻辑控制器、数据采集系统等各种计算应用的理想电源解决方案。 文档

常用开关电源拓扑结构

开关电源拓扑结构概述(降压,升压,反激、正激) 主回路—开关电源中,功率电流流经的通路。主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。 开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。 开关电源主回路可以分为隔离式与非隔离式两大类型。 1. 非隔离式电路的类型: 非隔离——输入端与输出端电气相通,没有隔离。 1.1. 串联式结构 串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。 串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。例如buck拓扑型开关电源就是属于串联式的开关电源https://www.wendangku.net/doc/c210767118.html,/blog/100019740 上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。其中L 是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输

降压型开关稳压器AP1510及其应用

降压型开关稳压器AP1510及其应用介绍了降压型PWM控制器APl5lO的工作原理,并给出了一个典型应用电路。测试结果验证了它的实用性。 引言 随着信息技术与集成电路的高速发展,电子产品逐渐向智能化、小型化、低功耗方面发展,同时电源必须做到小体积、高效率、低功耗,以适应电子产品的高速发展。因此,高度集成的PWM控制器在电子产品中得到了广泛应用。 易亨(AnachiD)电子公司推出的降压型PWM控制器APl510可以广泛应用于电子产品的电源中。由于APl510芯片内包含基准电压源、振荡电路、误差放大器、内部PMOS 开关管等电路,所以只须外加电感、电容、二极管等少量元器件,便可组成小体积、高效率的降压型开关稳压电源。 l APl5lO的工作原理 APl510的原理框图如图l所示。 1.1 引脚功能及描述 脚1 (FB)反馈端,误差放大器的反相输入,通过分压电阻连接电源输出端。 脚2 (EN)使能端,工作或待机控制,高电平:正常运行,低电平:待机运行。 脚3(OCSET)输出电流设定端,通过外部电阻设定最大输出电流。 脚4 (VCC IC)电源输入正端。 脚5、6 (Output)开关输出端,P沟MOS场效应管漏极,连接外部续流二极管和电感。 脚7、8 (VSS IC)电源输入负端。 1.2 工作原理

由图1可知,APl510由基准电压源、振荡电路、误差放大器、PWM控制器、过热关断控制电路以及P沟MOS场效应管等部件组成。 基准电压源为芯片内部电路提供稳定的供电电压,并为误差放大器的同相输入端提 供0.8V的电压基准。它具有软启动功能,可以防止电源启动时的冲击,它还具有欠压锁定功能,当输入电压低于3.3V时APl510停止工作;当输入电压高于3.5V时,它自动恢复工作。 振荡电路产生300 kHz的振荡波形,当发生过流保护或短路保护时,工作频率将从300 kHz减小到30kHz。 输出电压的取样信号进入误差放大器的反相输入端,经比较后进入PWM控制器,输出占空比变化的方波去驱动内部的P沟M0S管:APl510调节脉冲的占空比可以从O%~100%,这使得APl510可以在很宽的输入电压范围内正常工作。 过热关断电路使芯片结温达到125℃时关断,保护芯片不会因为过热而损坏。其恢复温度为100℃,25℃的温度回差确保芯片过热保护时不会振荡。 APl510内部具有P沟MOS管的限流功能,其计算方法为 式中:ILOAD为内部P沟MOS管设定的工作电流,APl51O中MOS管的最大工作电流为3 A; RDS(ON)为APl510中MOS管的导通电阻,其值为100mΩ; IOCSET为APl5lO中内部恒流源的工作电流,其值为100μA; ROCSET为脚OCSER对地的外接电阻。 APl510的输入电压范围为3.6~23V,由于内置了P沟MOS管,所以只需外加电感、电容、二极管等,便可组成降压型开关稳压电源。由于采用固定频率工作方式,因而内部补偿电路简单,输出纹波低,瞬态响应好,电源的效率也很高。 2 应用电路 图2所示的电路是一个由APl510组成的典型降压型DC/DC变换器,其输入电压为12 V,输出电压为5V。 图2电路中RA、RB为输出电压设定电阻,输出电压VOUT与RA、RB阻值的关系如式(1)所列。

降压型DCDC开关电源的研究与设计

物电学院开关电源技术课程实践报告《降压型DC/DC开关电源的研究与设计》 姓名:刘鹏飞 学号: 131103034 学院:物理与电气工程学院 日期: 2015年12月26日 指导老师:许树玲

降压型DC/DC开关电源的研究与设计 摘要:随着开关电源技术的迅速发展,DC/DC开关电源已在通信、计算机以及消费类电子产品等领域得到了广泛应用。近年来,电池供电便携式设备的需求越来越大,对DC/DC开关电源的需求也日益增大,同时对其性能要求也是越来越高。 本文设计了一款降压型DC/DC开关电源电路。首先详细的分析和阐述了降压型转换器的电路拓扑和工作原理,根据系统性能设计了电路的整体框图。然后对电路的各个模块进行了分析和设计,包括输入电路,降压电路和显示电路。 关键词:开关电源;降压型;DC/DC转换

1 开关电源现状及前景 1.1 国内外开关电源的发展状况 电源管理芯片市场的品牌构成仍是国外厂商处于领先地位,市场排名前十的企业无一例外全部为外资企业,其中美国厂商优势明显。国外开发电源管理芯片的厂商很多,主要有NCP、IR、MAXIM、ST、TI、PI等,他们的产品都已经非常成熟能够提供高质量、全系列的电源管理芯片。在非隔离的DC/DC转换技术中,TI公司的预检测栅驱动技术采用数字技术控制同步BUCK,转换效率高达97%,其中TPS40071等是其代表产品。在电源数字化方面走在前面的公司有TI和Microchip,TI公司已经用TMS320C28F10制成了通讯用的48V输出大功率电源模块,其中PFM和PWM部分完全为数字式控制。 2 DC/DC降压型开关电源设计 本电路主要包括变压器降压,桥式整流电路,滤波电路,降压电路,AD转换电路,和数字显示构成。其中降压电路是一种高效的三增益开关电源DC/DC 降压变换器。从1V起调的稳压电源,电路使用时,只须调节电源电压调节器(可调电阻),即可得到 1V-20V之间所需的电压。系统结构框图如图12所示 图1 DC/DC降压型开关电源的结构框图

降压性开关稳压电源

Hefei University 课程设计报告 课题名称:降压型开关稳压电源 作者姓名: 刘尚阳 1405012027 张颖 1405012028 闫悦悦 1405012029 许特松 1405012043 荚丹丹 1405012030 班级: 电子二班 指导教师:倪敏生 完成时间: 2017年5月24日

摘要 本设计是开关稳压电源,系统由稳压电源、DC-DC变换器、采用LM7812,LM7805稳压芯片,为芯片供电,DC-DC变换器采用TL494产生PWM波,控制开关周期为恒定值,通过调节脉冲宽度来改变占空比,在经过由IR2109构成的驱动电路驱动后级电路,此时引入电压反馈检测电压幅值并反馈给前级保证输出电压稳定,当输入电压超过20V时,控制IR2109片选端,切断电路。 关键字:稳压;DC-DC变换; 目录 1引言 (3) 2方案设计与选择 (3) 2.1总体设计 (3) 2.2各模块方案设计与论证 (3) 2.2.1驱动模块方案设计与选择 (3) 2.2.2稳压电源方案设计与选择 (4) 3硬件设计与实现 (4) 3.1设计思路 (4) 3.2各个模块硬件设计与实现 (5) 3.2.1辅助电源模块 (5) 3.2.2 DC-DC模块 (5) 4理论分析与参数计算 (5) 4.1 DC/DC变换方法 (5) 4.2 稳压控制方法 (6) 4.3 输入过压电路设计 (6) 4.4buck电路参数的计算 (7) 4.4.1电感值的计算 (7) 4.4.2电容的计算 (7) 4.4.3输出电压的计算 (8) 5测试仪器与方法 (8) 5.1输出电压测试 (8) 5.2效率测量 (8) 参考文献 (9)

降压稳压器的效率及尺寸权衡

降压稳压器的效率及尺寸权衡 大家都知道降压稳压器的实施不可避免地要涉及效率与尺寸的权衡,尽管这一原理适用于众多开关模式 DC/DC 拓扑,但当应用需要低输出电压和高输出电流(例如 1V 和 30A)时,这一原理就不一定适用了,因为这需要可平衡效率与尺寸的小型电源解决方案。 高效率是重要的性能基准,不仅可减少功率损耗与组件温度上升,而且还可在给定气流与环境温度条件下带来更多有用功率。从这个观点来看,低开关频率非常具有诱惑力,但同时需要大型滤波器组件来满足输出纹波与瞬态响应等目标规范的要求,因此成本和尺寸会随之增加。 专门用于电源管理的 PCB 面积是系统设计人员所面临的一个巨大制约条件,对于这个问题,我们先来回顾一下高开关频率的各项优势。首先,电感和电容需求会随频率上升而降低,从而可实现更紧凑的 PCB 布局以及更小的尺寸外形。更低的电感不但可实现更快的大型信号电流变化以及更高的控制环路带宽,而且还可实现更快的负载瞬态响应。根据经验,最大环路带宽是开关频率的 20%。最后,在较高频率下组件选择方面会出现一些有趣的选项。 例如,我们可以看看这款稳压器设计,其可通过仔细选择组件实现最佳的效率/尺寸/成本。 (1) 电感器—尽管铁粉芯电感器或组合铁芯电感器可在低频率下提供很好的性能,但更高的铁芯损耗会否定其频率超过 500kHz 左右时的价值定位。在这一点上,超低 DCR 铁氧体磁性材料更容易实现较低的铜损耗和铁芯损耗。注意,铁芯损耗相对来说比较容易测量,只需关注转换器空载输入电流即可。采用单匝订书针形绕组的铁氧体电感器目前提供广泛的现成选项,而如果只需要一个绕组圈数,就很容易实现低于 1mΩ的 DCR! (2) PWM 控制器—现在,如果设计特别需要铁氧体芯电感器的硬饱和特性,那么一定不能超过电感器的饱和电流。这就需要一款可充分利用寄生电路电阻实现精确无损电流传感的 PWM 控制器,其它主要特性包括高效率栅极驱动器、远程 BJT 温度传感以及快速误差放大器等。

降压变换器的基本工作原理

降压变换器的基本工作原理 在汽车中,有些照咖是由单个LED担任的,如顶灯、地图灯、行李箱照明灼。以 及门灯等。一只白光LED的正向压降为3—4V,汽车由蓄电他提供的内部电压,一舱 为12—14V,这就出现了输入电压远远超过LED所需要的情况。如果采用线性稳压器通过降压来驱动L四,必然会出现电源功率转换效率过低的问题。为此,必须采用开 关型DC仍C降压变换器,宅既为LED提供所需的低压电源、恒定的电流,又能有较 高的转换效率。降压变换器(BuCk)又称串联开关稳压器或开关型降压稳压器。下面介 绍降压变换器的基本电路拓扑和它的工作原理。降压变换器的电路形式及工作原理 降压变换器的电路形式如图所示 是开关管,VD是开关二极管,在VT截正期间,为电感电流提供继续流通的通路。由图见,输入和输ABC电子出在电气上是直接相通的,无隔离,属于非隔离型功率变换器。为分析简便起见,在电路的工作频率较高、电感工和电容Co较大时,输出 电压和流过二极管的电流可以视为稳定不变的,艾博希电子分别以定位RO、Jo表尔 当VT导退时,由于假定输入、输出电压是同定的,电感两端电压差RD厂RO也是一 个定值,这样,流过电感L的电流将按线性斤升,由初始的最小位即谷值JV直线上升,到开关管VT导通结束时,达到最大值人MM即峰值JP。 如VT的导通时间为则有:小当VT截女时,电感力图维持其电流不变。在电感 两端将产生感应电动势,极性为右正左负,与VT导通时的极性如图恰好相反。它使二极管w导通,为电感电流提供续流远路,此后,出其最大值/LMM(JP)线性卜降。如 果VT的截止时间为ROR,且在电感电流连续导通模式(CCM)下,则在截止期结束时,电感电流由峰值JP产降到谷值JV,并满足以下关系:价(k丛)RO;生JL=Bp RO;在上面诺式中,7为开关周期,D为开关管的占空IC现货商比,o=RJ厂,其值小于1,D越小,输出电压RO越小。由式(5—4)可见,输出电压RO与占空比D呈线性关系,D大,输出电压亦大;此外,输出电压比输入电压RM低,降压之名即由此而来。 如认为电路中的元件均足理想的、无损耗的,则电路的功率转换效率为1或如可见,输出电流的平均值要比输入电流的平均值大。同样可以证明,在YT截止期间,如 电感电流F降到军,电感电流将表现为不连续的状态(DCM),即每次开关管导通时,

降压型开关稳压电源设计

1 开关电源概述 开关电源是开关稳压电源的简称,一般指输入为交流电压、输出为直流电压的AC/DC变换器。开关电源内部的功率开关管工作在高频开关状态,本身消耗的能量很低,电源效率可达75%-90%,比普通线性稳压电源提高近一倍。 表1.1电源分类 2 降压式开关稳压器原理

2.1 给低通滤波器输入方波 图2.1.1表示给低通滤波器输入方波时的情况。如果一个低通滤波器的截止频率比输入信号频率低很多,当给它输入方波信号时,由于方波被低通滤波器平滑,所以输出信号变成了直流(只有微小的脉流)。(为什么?方波信号相当于一个直流分量加一个交流分量的和,经过低通滤波器后,直流分量通过,交流分量被滤掉,所以只剩下直流分量了,即输出平滑了。如果低通滤波器的截止频率比输入信号频率高,那么交流分量就全部通过了,起不到滤波的作用,所以低通滤波器的截止频率要比输入信号的频率低很多才行。) 降压型开关电源是把输入的直流信号转换成方波,再把这个方波经低通滤波器平滑,又得到直流信号的电路。之所以通过这样复杂的过程来降低电压是为了减少电压变换时的损失。线性稳压电源只所以效率低就因为直接进行电压变换的时候功耗大。 图2.1.1 给低通滤波器输入方波 2.2 开关电路+滤波器=降压型开关电源 降压式开关稳压器的原理如图2.2.1所示,图2.2.2和2.2.3分别是当开关闭合、断开时的电流路径。在实际的电路中,还需要实施反馈使输出电压稳定。一般反馈都集成到电源芯片中。 图2.2.1 简化电路

图2.2.2 开关闭合时的电流路径 图2.2.3 开关断开时的电流路径 (1)当开关闭合时续流二极管VD截至,由于输入电压UI与储能电感L接通,因此输入-输出压差(UI-Uo)就加在L上,使通过L的电流IL线性地增加。(为什么?由公式L*di/dt=U可以看出,U、L不变,则di/dt为常数,即I线性增加。)在此期间除向负载供电外,还有一部分电能储存在L和C中,流过负载RL的电流为Io,参见图2.2.2。 (2)当开关断开时,L与UI断开,但由于电感电流不能在瞬间发生突变,因此在L上就产生反向电动势以维持通过电感的电流不变。此时续流二极管VD 导通,储存在L中的电能就经过由VD构成的回路向负载供电,维持输出电压不变。开关断开时,C对负载放电,这有利于维持Uo和Io不变,参加图2.2.3。(为什么?请看以下图例比较)

降压式变换电路(Buck电路)详解

降压式变换电路(Buck电路)详解 一、BUCK 电路基本结构 开关导通时等效电路开关关断时等效电路 二、等效的电路模型及基本规律 (1)从电路可以看出,电感L 和电容C 组成低通滤波器,此滤波器设计的原则是使us(t)的直流分量可以通过,而抑制us(t) 的谐波分量通过;电容上输出电压uo(t)就是us(t) 的直流分量再附加微小纹波uripple(t) 。 (2)电路工作频率很高,一个开关周期内电容充放电引起的纹波uripple(t) 很小,相对于电容上输出的直流电压Uo 有:电容上电压宏观上可以看作恒定。电路稳态工作时,输出电容上电压由微小的纹波和较大的直流分量组成,宏观上可以看作是恒定直流,这就是开关电路稳态分析中的小纹波近似原理。(3)一个周期内电容充电电荷高于放电电荷时,电容电压升高,导致后面 周期内充电电荷减小、放电电荷增加,使电容电压上升速度减慢,这种过程的延续直至达到充放电平衡,此时电压维持不变;反之,如果一个周期内放电电荷高于充电电荷,将导致后面周期内充电电荷增加、放电电荷减小,使电容电压下降速度减慢,这种过程的延续直至达到充放电平衡,最终维持电压不变。这种过程是电容上电压调整的过渡过程,在电路稳态工作时,电路达到稳定平衡,电容上充放电也达到平衡,这是电路稳态工作时的一个普遍规律。(4)开关S 置于1 位时,电感电流增加,电感储能;而当开关S 置于2 位时,电感电流减小,电感释能。假定电流增加量大于电流减小量,则一个开关周期内电感上磁链增量为:此增量将产生一个平均感应电势:此电势将减小电感电流的上升速度并同时降低电感电流的下降速度,最终将导致一个周期内电感电流平均增量为零;一个开关周期内电感上磁链增量小于零的状况也一样。这种

高频开关电源中隔离降压式DCDC变换器的制作方法.

高频开关电源中隔离降压式DC/DC变换器的制作方 法 方法。按照设计方法,设计出一台高频开关电源变压器,用于输入为48V(36~72V),输出为2.2V、20A的正激变换器。设计出的变压器在实际电路中表现出良好的电气特性。关键词:高频开关电源;正激变换器;开关电源变压器 1引言 电力电子技术中,高频开关电源的设计主要分为两部分,一是电路部分的设计,二是磁路部分的设计。相对电路部分的设计而言,磁路部分的设计要复杂得多。磁路部分的设计,不但要求设计者拥有全面的理论知识,而且要有丰富的实践经验。在磁路部分设计完毕后,还必须放到实际电路中验证其性能。由此可见,在高频开关电源的设计中,真正难以把握的是磁路部分的设计。高频开关电源的磁性元件主要包括变压器、电感器。为此,本文将对高频开关电源变压器的设计,特别是正激变换器中变压器的设计,给出详细的分析,并设计出一个用于输入48V(36~72V),输出2.2V、20A的正激变换器的高频开关电源变压器。 2正激变换器中变压器的制作方法 正激变换器是最简单的隔离降压式DC/DC变换器,其输出端的LC滤波器非常适合输出大电流,可以有效抑制输出电压纹波。所以,在所有的隔离DC/DC变换器中,正激变换器成为低电压大电流功率变换器的首选拓扑结构。但是,正激变换器必须进行磁复位,以确保励磁磁通在每一个开关周期开始时处于初始值。正激变换器的复位方式很多,包括第三绕组复位、RCD复位[1,2]、有源箝位复位[3]、LCD无损复位[4,5]以及谐振复位[6]等,其中最常见的磁复位方式是第三绕组复位。本文设计的高频开关电源变压器采用第三绕组复位,拓扑结构如图1所示。 开关电源变压器是高频开关电源的核心元件,其作用有三:磁能转换、电压变换和绝缘隔离。在开关管的作用下,将直流电转变成方波施加于开关电源变压器上,经开关电源变压器的电磁转换,输出所需要的电压,将输入功率传递到负载。开关变压器的性能好坏,不仅影响变压器本身的发热和效率,而且还会影响到高频开关电源的技术性能和可靠性。所以在设计和制作时,对磁芯材料的选择,磁芯与线圈的结构,绕

相关文档
相关文档 最新文档