文档库 最新最全的文档下载
当前位置:文档库 › 液位控制GE-PLC程序

液位控制GE-PLC程序

液位控制GE-PLC程序
液位控制GE-PLC程序

#FST_SCN

Set to 1

when the

current

sweep is ...

LD Block,'_MAIN': NOCON 00001, 00014;

Q00007 %Q00007

LD Block,'_MAIN': SETCOIL 00002; RESETCOIL 00001, 00003; NOCON 00004, 00006;

I00001

M00001

启动按钮

LD Block,'_MAIN': NOCON 00002;

Q00002 %Q00002

LD Block,'_MAIN': RESETCOIL 00003; SETCOIL 00002;

M00001 %M00001

LD Block,'_MAIN': NOCON 00002;

Q00007 %Q00007

LD Block,'_MAIN': SETCOIL 00002; RESETCOIL 00001, 00003; NOCON 00004, 00006; Q00003 %Q00003

LD Block,'_MAIN': SETCOIL 00003; RESETCOIL 00002;

I00002

M00002

停止按钮

LD Block,'_MAIN': NOCON 00003;

Q00003 %Q00003

LD Block,'_MAIN': SETCOIL 00003; RESETCOIL 00002;

M00002 %M00002

LD Block,'_MAIN': NOCON 00003;

Q00002 %Q00002

LD Block,'_MAIN': RESETCOIL 00003; SETCOIL 00002;

Q00007 %Q00007

LD Block,'_MAIN': SETCOIL 00002; RESETCOIL 00001, 00003; NOCON 00004, 00006; Q00008 %Q00008

LD Block,'_MAIN': SETCOIL 00004; RESETCOIL 00003, 00006; NOCON 00005;

Q00007

变频器上电

LD Block,'_MAIN': SETCOIL 00002; RESETCOIL 00001, 00003; NOCON 00004, 00006; R00200 %R00200

LD Block,'_MAIN': TMR_SEC 00004;

Q00008 %Q00008

LD Block,'_MAIN': SETCOIL 00004; RESETCOIL 00003, 00006; NOCON 00005;

Q00008

MOVE INT

50

1

IN Q AQ0007

变频器频率

LD Block,'_MAIN': SETCOIL 00004; RESETCOIL 00003, 00006; NOCON 00005;

AQ0007 %AQ0007

LD Block,'_MAIN': MOVE_INT 00005, 00018;

6

Q00007

变频器上电

当前测量液位

液位设定

LD Block,'_MAIN': SETCOIL 00002; RESETCOIL 00001, 00003; NOCON 00004, 00006; AI0013 %AI0013

LD Block,'_MAIN': SUB_INT 00010; PID_ISA 00015; MOVE_INT 00019; GE_INT 00006; Q00008 %Q00008

LD Block,'_MAIN': SETCOIL 00004; RESETCOIL 00003, 00006; NOCON 00005;

R00050 %R00050

LD Block,'_MAIN': SUB_INT 00010; PID_ISA 00015; GE_INT 00006;

8

M00022 %M00022

LD Block,'_MAIN': PTCOIL 00008; NCCON 00008; NOCON 00015;

R000208

LD Block,'_MAIN': TMR_SEC 00008;

9

LD Block,'_MAIN': SUB_INT 00010; PID_ISA 00015; GE_INT 00006;

R00051 %R00051

LD Block,'_MAIN': SUB_INT 00010; MOVE_INT 00019; GT_INT 00010;

M00023 %M00023

LD Block,'_MAIN': NCCON 00011; NOCON 00012; COIL 00010;

AI0013 %AI0013

LD Block,'_MAIN': SUB_INT 00010; PID_ISA 00015; MOVE_INT 00019; GE_INT 00006;

11

M00023

MOVE INT MOVE INT MOVE INT

600

1

IN Q R004000

1

IN Q R0040150

1

IN Q R00402

LD Block,'_MAIN': NCCON 00011; NOCON 00012; COIL 00010;

R00400 %R00400

LD Block,'_MAIN': MOVE_INT 00011, 00012, 00013;

R00401 %R00401

LD Block,'_MAIN': MOVE_INT 00011, 00012, 00013;

R00402 %R00402

LD Block,'_MAIN': MOVE_INT 00011, 00012, 00013;

12

M00023M00024

MOVE INT MOVE INT MOVE INT

2000

1

IN Q R00400100

1

IN Q R0040120

1

IN Q R00402

LD Block,'_MAIN': NCCON 00011; NOCON 00012; COIL 00010; M00024 %M00024

LD Block,'_MAIN': NCCON 00012, 00013;

R00400 %R00400

LD Block,'_MAIN': MOVE_INT 00011, 00012, 00013;

R00401 %R00401

LD Block,'_MAIN': MOVE_INT 00011, 00012, 00013;

R00402 %R00402

LD Block,'_MAIN': MOVE_INT 00011, 00012, 00013;

M00024

MOVE INT MOVE INT MOVE INT

R00400

1

IN Q R00605R00401

1

IN Q R00606R00402

1

IN Q R00607

LD Block,'_MAIN': NCCON 00012, 00013;

R00400 %R00400

LD Block,'_MAIN': MOVE_INT 00011, 00012, 00013; R00605 %R00605

LD Block,'_MAIN': MOVE_INT 00013;

R00401 %R00401

LD Block,'_MAIN': MOVE_INT 00011, 00012, 00013; R00606 %R00606

LD Block,'_MAIN': MOVE_INT 00013;

R00402 %R00402

LD Block,'_MAIN': MOVE_INT 00011, 00012, 00013; R00607 %R00607

LD Block,'_MAIN': MOVE_INT 00013;

14

#FST_SCN

Set to 1

when the

current

sweep is ...DATA INIT

INT

35

Q R00600

LD Block,'_MAIN': NOCON 00001, 00014;

R00600 %R00600

LD Block,'_MAIN': DATA_INIT_INT 00014; PID_ISA 00015;

M00022

PID ISA

R00050液位设定

R00600

SP CV R00500

AI0013

当前测量液位

PV

M00025

MAN

M00025

UP

M00025

DN

LD Block,'_MAIN': PTCOIL 00008; NCCON 00008; NOCON 00015;

R00600 %R00600

LD Block,'_MAIN': DATA_INIT_INT 00014; PID_ISA 00015;

R00050 %R00050

LD Block,'_MAIN': SUB_INT 00010; PID_ISA 00015; GE_INT 00006;

R00500 %R00500

LD Block,'_MAIN': INT_TO_REAL 00017; PID_ISA 00015;

AI0013 %AI0013

LD Block,'_MAIN': SUB_INT 00010; PID_ISA 00015; MOVE_INT 00019; GE_INT 00006; M00025 %M00025

LD Block,'_MAIN': NOCON 00015, 00015, 00015;

16MOVE INT INT TO

REAL

1

IN Q R00510R00510IN Q AQ0001

LD Block,'_MAIN': INT_TO_REAL 00016; MOVE_INT 00016; AQ0001 %AQ0001

LD Block,'_MAIN': INT_TO_REAL 00016;

INT TO REAL MUL REAL REAL TO

INT

R00500IN Q IN1Q IN Q R00507

0.1IN2

LD Block,'_MAIN': INT_TO_REAL 00017; PID_ISA 00015;

R00507 %R00507

LD Block,'_MAIN': REAL_TO_INT 00017; ABS_INT 00018;

ABS INT MOVE INT

R00507IN Q R00508R00508

1

IN Q AQ0007

变频器频率

LD Block,'_MAIN': REAL_TO_INT 00017; ABS_INT 00018; R00508 %R00508

LD Block,'_MAIN': ABS_INT 00018; MOVE_INT 00018; AQ0007 %AQ0007

LD Block,'_MAIN': MOVE_INT 00005, 00018;

MOVE INT

AI0013当前测量液位

1

IN Q R00051

LD Block,'_MAIN': SUB_INT 00010; PID_ISA 00015; MOVE_INT 00019; GE_INT 00006; R00051 %R00051

LD Block,'_MAIN': SUB_INT 00010; MOVE_INT 00019; GT_INT 00010;

基于PLC的液位控制系统设计论文

题目:基于PLC的液位控制系统设计姓名: 学号: 系别: 专业: 年级班级: 指导教师: 2013年5月18日

毕业论文(设计)作者声明 本人郑重声明:所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。矚慫润厲钐瘗睞枥庑赖。 本人完全了解有关保障、使用毕业论文的规定,同意学校保留并向有关毕业论文管理机构送交论文的复印件和电子版。同意省级优秀毕业论文评选机构将本毕业论文通过影印、缩印、扫描等方式进行保存、摘编或汇编;同意本论文被编入有关数据库进行检索和查阅。聞創沟燴鐺險爱氇谴净。 本毕业论文内容不涉及国家机密。 论文题目: 作者单位: 作者签名: 年月日

目录 摘要............................................................................................................. 1残骛楼諍锩瀨濟溆塹籟。引言............................................................................................................. 1酽锕极額閉镇桧猪訣锥。 1.研究现状分析 ................................................................................... 2彈贸摄尔霁毙攬砖卤庑。 1.1题研究背景、意义和目的 ...................................................... 2謀荞抟箧飆鐸怼类蒋薔。 1.2液位控制系统的发展状况 ...................................................... 3厦礴恳蹒骈時盡继價骚。 1.3课题研究的主要内容................................................................ 4茕桢广鳓鯡选块网羈泪。 2.控制方案设计 ................................................................................... 4鹅娅尽損鹌惨歷茏鴛賴。 2.1系统设计 ...................................................................................... 4籟丛妈羥为贍偾蛏练淨。 2.2单容水箱对象特性 .................................................................... 6預頌圣鉉儐歲龈讶骅籴。 3.硬件配置 .............................................................................................. 8渗釤呛俨匀谔鱉调硯錦。 3.1控制单元 ...................................................................................... 8铙誅卧泻噦圣骋贶頂廡。 3.2检测单元 ...................................................................................... 9擁締凤袜备訊顎轮烂蔷。 3.3执行单元 ...................................................................................... 9贓熱俣阃歲匱阊邺镓騷。 4.软件设计 .............................................................................................. 9坛摶乡囂忏蒌鍥铃氈淚。 4.1STEP 7-Micro/WIN编程软件简介 ........................................ 9蜡變黲癟報伥铉锚鈰赘。 4.2参数设定及I/O分配 .............................................................. 10買鲷鴯譖昙膚遙闫撷凄。 5.程序编程和系统仿真.................................................................. 12綾镝鯛駕櫬鹕踪韦辚糴。 5.1程序设计 .................................................................................... 12驅踬髏彦浃绥譎饴憂锦。 5.2程序仿真和分析....................................................................... 13猫虿驢绘燈鮒诛髅貺庑。 6.结论....................................................................................................... 16锹籁饗迳琐筆襖鸥娅薔。参考文献................................................................................................ 17構氽頑黉碩饨荠龈话骛。附录........................................................................................................... 19輒峄陽檉簖疖網儂號泶。致谢........................................................................................................... 22尧侧閆繭絳闕绚勵蜆贅。

储罐液位控制系统设计.

储 罐 液 位 控 制 系 统 设 计 学号:000000000 姓名: 0000000

目录 设计任务与要求--------------------------------------------------------------3 一、本课程设计系统概述-------------------------------------------------------4 1、系统原理--------------------------------------------4 2、系统结构图---------------------------------------------------------------4 3、控制方案说明------------------------------------------------------------5 4、系统组成及原理--------------------------------------5 二、硬件设计-----------------------------------------------------------------------6 1、单片机最小系统电路设计------------------------------6 2、水位检测传感器的选用------------------------------------------------8 3、稳压电路的设计---------------------------------------------------------8 4、光报警电路的设计------------------------------------9 5、水泵的介绍-----------------------------------------10 6、继电器控制水泵加水电路-----------------------------14 7、电源电路-------------------------------------------16 8、看门狗技术-------------------------------------------------------------16 三、软件设计---------------------------------------------------------------------19 1、系统总流程图----------------------------------------------------------19 2、系统总程序-----------------------------------------20 四、小结---------------------------------------------------------------------------22 五、参考文献---------------------------------------------------------------------23

卧式储罐不同液位下的容积(质量)计算

卧式储罐不同液位容积(质量)计算椭圆形封头卧式储罐图 参数: l:椭圆封头曲面高度(m); l i:椭圆封头直边长度(m); L:卧罐圆柱体部分长度(m); r:卧式储罐半径(d/2,m); d:卧式储罐内径,(m) h:储液液位高度(m); V:卧式储罐总体积(m3); ρ:储液密度(kg/m3) V h:对应h高度卧罐内储液体积(m3); m h:对应h高度卧罐内储液重量(kg); 椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。简化模型图如下。

以储罐底部为起点的液高 卧式储罐内储液总体积计算公式: ()()()? ???????? ? ?++??? ??+=2----arcsin 3212 222πr h r r r h r r h Lr L r V h 若密度为ρ,则卧式储罐内储液总重量为: h h V m ρ= 表1 卧式储罐不同液位下容积(重量)

该计算公式推导过程如下 卧式储罐不同液位 下的容积简化计算公 椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。 以储罐中心为起点的液高

(1)椭圆球体部分 该椭圆球体符合椭圆球体公式: 2222221x y z a b c ++= 其中a=b=r ,则有222 221x y z a c ++= 垂直于y 轴分成无限小微元,任一微元面积为: 22()yi c S a y a π= - 当液面高度为h 时,椭圆球体内液氨容积为 V1=h yi a S dy -? 2 2 ()h a c a y dy a π-=-?33 2 2()33c h a a h a π=-+ (2)直段筒体部分: 筒体的纵断面方程为222x y a += 任一微元的面积为 yj S = 则筒体部分容积为: 2h yj a V S -=?h a L -=?2 (arcsin )2 h La a π =+ (arcsin )2 2 h a π π- ≤≤ (3)卧式储罐储液总体积 总容积为V=V1+V2,

罐区液位计和紧急切断阀的设置及联锁要求规范合集

罐区液位计和紧急切断阀的设置及联锁要求规范合集 01 GB50074-2014《石油库设计规范》 设置要求: 15.1 自动控制系统及仪表 15.1.1容量大于100m3的储罐应设液位测量远传仪表,并应符合下列规定: 1 液位连续测量信号应采用模拟信号或通信方式接入自动控制系统; 2 应在自动控制系统中设高、低液位报警; 3 储罐高液位报警的设定高度应符合现行行业标准《石油化工储运系统罐区设计规范》SH/T 3007的有关规定; 4 储罐低液位报警的设定高度应满足泵不发生汽蚀的要求,外浮顶储罐和内浮顶储罐的低液位报警设定高度(距罐底板)宜高于浮顶落底高度0.2m 及以上。

15.1.4用于储罐高高、低低液位报警信号的液位测量仪表应采用单独的液位连续测量仪表或液位开关,并应在自动控制系统中设置报警及联锁。 联锁要求: 15.1.2 下列储罐应设高高液位报警及联锁,高高液位报警应能同时联锁关闭储罐进口管道控制阀: 1 年周转次数大于6次,且容量大于或等于10000m3的甲B、乙类液体储罐; 2 年周转次数小于或等于6次,且容量大于20000m3的甲B、乙类液体储罐; 3 储存I、II级毒性液体的储罐。 15.1.3 容量大于或等于50000m3的外浮顶储罐和内浮顶储罐应设低低液位报警。低低液位报警设定高度(距罐底板)不应低于浮顶落底高度,低低液位报应能同时联锁停泵。 15.1.4用于储罐高高、低低液位报警信号的液位测量仪表应采用单独的液位连续测量仪表或液位开关,并应在自动控制系统中设置报警及联锁。 条文说明: 15.1.4 “单独的液位连续测量仪表或液位开关”是指,除了“应设液位测量远传仪表”外,还需设置一套专门用于储罐高高、低低液位报警及联锁的液位 测量仪表。 " 设置及联锁要求: 15.1.2 下列储罐应设高高液位报警及联锁,高高液位报警应能同时联锁关闭储罐进口管道控制阀; 15.1.7 一级石油库的重要工艺机泵、消防泵、储罐搅拌器等电动设备和控制阀门除应能在现场操作外,尚应能在控制室进行控制和显示状态。二级石油库的重要工艺机泵、消防泵、储罐搅拌器等电动设备和控制阀门除应能在现场操作外,尚宜能在控制室进行控制和显示状态。 15.1.11 一级石油库消防泵的启停、消防水管道及泡沫液管道上控制阀的开关均应在消防控制室实现远程启停控制,总控制台应显示泵运行状态和控制阀的阀位信号。" 条文说明: 15.1.7 这样规定可以实时监测电动设备状态,及时处理异常情况。 15.1.11 本条规定是为了保证快速启动消防系统,及时对火灾实施扑救。

基于智能仪表和PLC系统的液位控制系统设计

本科生毕业论文(设计) 题目:基于智能仪表和PLC的液位控制系统设计 院系: 专业: 学生姓名: 学号: 指导教师: (职称)

摘要 微电子技术和计算机技术的不断发展,引起了仪表结构的根本性变革,以微型计算机(单片机)为主体,将计算机技术和检测技术有机结合,组成新一代“智能化仪表”,在测量过程自动化、测量数据处理及功能多样化方面与传统仪表的常规测量电路相比较,取得了巨大进展。智能仪表不仅能解决传统仪表不易或不能解决的问题,还能简化仪表电路,提高仪表的可靠性,更容易实现高精度、高性能、多功能的目的。 可编程控制器(Programmable Logic Controller---PLC)是一种应用广泛非常的自动控制装置,它将传统的继电器控制技术、计算机技术和通讯技术融为一体,具有控制能力强、操作灵活方便、可靠性高、适宜长期连续工作的特点,非常适合液位控制的要求。 本文介绍了基于智能仪表、西门子S7-300型可编程控制器(PLC)、组态软件的液位控制系统的设计方案。系统采用PID算法,实现液位的自动控制。利用组态软件设计人机界面,通过串行口和可编程控制器通信,实现控制系统的实时监控、现场数据的采集与处理。 实验证明,控制系统效果比较令人满意,具有较大的工程实用价值。 关键词:液位控制;智能仪表;可编程控制器;PID;人机界面

Abstract Nowadays intelligent measuring appliance is improving more and more quickly.It has been used in more an more place of our life.It can make Electric circuit much easier than before.And the control can be realized much more precise and convenient. Microelectronics and computer technology continues to develop, led to fundamental changes in the structure of instruments to micro-computer (single chip) as the main body, the computer technology and the organic integration of detection technology to form a new generation of "smart meters" in Measurement of process automation, measurement data processing and functional diversification of the traditional instrument, compared to conventional measuring circuit, tremendous progress has been made. PLC is a very useful control installment . It is widely used in a lot of control system in ourlives. It is the product of the computer,control,communication technology.It can make Electric circuit much easier than before.And the control can be realized much more precise and convenient.It very suits the control of water level. It will relay the traditional control technology, computer and communication technologies together with the control, and operation of flexible convenient, high reliability, suitable for continuous long-term characteristics of the work, very suitable for liquid level control requirements. This thesis mainly introduces a design of water level control system with intelligent measuring appliance,SIMATIC programmable logic controller (PLC) and configuration soft. This system adopts increment type Proportional-Integral-Differential arithmetic to realize the water level automation. For convenience to monitor the system and process data in actual time, we have designed Human Machine Interface(HMI)with configuration soft. The result of experimentation indicates that this system could run quickly, accurately and stably which accords with our aim perfectly. This system has been used widely in the temperature control system field for its low cost and high stabilization advantages.Experiment proved that the control system more satisfactory results, with more practical engineering value. Keywords: Water Level Control;Intelligent measuring appliance;PLC;PID;HMI

基于PLC的液位控制系统设计

毕业论文(设计)题目:基于PLC控制的高精度液位控制系统的设计 姓名:濮孝金 学号: 专业:机械电子工程 年月

摘要 在工农业生产过程中,经常需要对水位进行测量与控制,而日常生活中应用 到的水位控制也相当广泛。在以往水塔液位控制系统中,常规继电器的频繁操作容易导致机械磨损,不方便更新和维护,不能满足人们的实际需求;另外,随着人口的递增和生活条件的提高,人们用水的需求量也日益增加。 为了提高液位控制系统的质量和效率,节约能源,本次模拟水塔液位控制系统的装置考虑结合可编程逻辑控制器,继电器和传感器等技术,实现液位控制系统的自动控制。本设计使用西门子S7-300 PLC可编程控制器作为液位控制系统的核心,配合硬件与软件实现液位控制池液位动态平衡,过高、过低水位报警等功能。主要 的实验方法是在水箱上安装一个自动水位测量装置,通过水位变送器检测水箱实际液位并将该液位反馈到PLC控制器,经A/D转换后,所得数据与PLC内部设定数据进行比较,控制器处理数据并发送相应指令改变电机的转速从而控制抽 水速率,改变进水量,使水位稳定地保持在设定值附近。此外,通过液位标定计算出控制器输出PIW数值与实际水位的关系,就可以在触摸屏上直观显示实时水位情况。实验结果表明本设计能较好地完成自动液位控制的功能。 关键词:水塔液位控制,水位控制,继电器,PLC Abstract In the course of routine industrial and agricultural production we the need to measure the water level and

control it. Furthermore everyday level control applications are quite extensive , such as hydropower , water towers and other water control . According to the water supply system in the past, frequent operation towers will produce mechanical wear of conventional relay convenient maintenance and updates, that means it can not meet the actual needs of the people, and with Gradual growth of population and living conditions, the demand for water is also increasing .In order to improve the quality of the water supply system, energy conservation, so I considered use a programmable logic controller, relay and sensor technology, with hardware and software to achieve low water level alarm, warning switch between work and procedures manual / automatic to design practical level control tower scheme. I completed the set up of this simulation using the tank water tower , based on Siemens S7-300 PLC programmable controller tank water level control system as the core .I completed a water tank to

储罐保温计量监控系统设计----储罐液位控制

西安石油大学 课程设计 题目储罐保温计量监控系统设计----储罐液位控制 学院电子工程学院 班级自动化1002班 学号 学生 指导老师阮岩 二零一三年六月 目录 一.课程设计任务书 (3) 二.基本工艺流程 (4) 三.组态软件及发展历史 (4) 四.仪表选型 (5) 五.系统分析和方框流程图 (6) 六.PID参数的整定 (6) 七.组态软件运行画面............................................ . (7)

八.设计体会 (10) 九.参考资料 (10) 《自动化仪表和过程控制》 课程设计任务书 题目储罐保温计量监控系统设计----储罐液位控制 学生姓名学号314 专业班级自1002 设计内容和要求 本次课程设计的目的是熟悉过程控制系统的组态和调试,掌握自动化仪表和过程控制的基本使用,加深和巩固本课程及相关课程的知识,要求完成如下内容: 1.熟悉储罐保温系统的工艺流程,并在其工艺流程图上标注储 罐液位控制,液位高报警(SP=2.85m) 2.依据工艺流程和基本数据, 对所用仪表作出选型; 3.对控制回路画出方框图,写出所选控制规律,及参数整定方法; 4.了解组态软件的历史、发展及国内外现状,熟悉组态软件的使用,利用力控组态软件做出储罐保温计量监控系统的组态设计,并在报告中写出组态过程如:I/O端口分配、I/O点组态参数说明、控制回路组态说明等。最终要求做出工艺流程画面、趋势画面、报警画面,并利用软件提供的模拟对象,实现系统的自动控制。5.完成课程设计报告。 起止时间2013年 6 月17 日至2013 年 6 月23 日指导教师签名2013年6月26日系(教研室)主任签名2013年6月28日

PLC水箱水位控制

自动化系统集成与调试实训报告 自动化系统集成与调试 实训报告 本课程为自动化集成与调试,实际上就是让我们用PLC控制水箱打水。由于实训前接触过类似的程序与硬件,所以做起来相对简单。第一周实训,一开始长江老师让我们重新复习之前所学。我们组并没有急着开始做项目,而是认真的检查电源,传感器,变频器等硬件是否完好。然后再由徐同学与李同学完成硬件的接线,张组长则与吴同学完成程序的编写。 一、接线图: S7-300模拟量输入输出模块、S7-300数字量输入输出模块、传感器以及变频器的接线(注意:用灰色细线将变频器3号端子接PLC数字量输出端子,变频器7号端子接PLC的M端,变频器9号端子接PLC模拟量输出端子,变频器10号端子接PLC模拟量COM端;用红、蓝、黑三种粗线将水箱抽水泵和变频器的U、V、W、PE端子对应接好)。 二、项目要求: 我们所做的项目如下 (一)项目一、PLC控制变频器打水 本项目总任务是通过PLC、变频器控制水泵打水。 任务一、G110变频器参数设置及快速调试 任务二、PLC控制变频器打水的组态、编程及仿真 任务三、S7-300模拟量输出模块与接线 任务四、现场实际调试与运行

(二)项目二、水箱液位的测量 本项目总任务是通过PLC、变频器控制实现水箱液位的测量 任务一、水箱液位测量的组态、编程及仿真 任务二、现场接线 任务三、现场实际调试与运行 (三)项目三、水箱液位两位式调节 本项目总任务是通过PLC、变频器、传感器监测水位控制水泵打水,当测量值大于高限值,变频器停止,水泵停止打水;当测量值小于低限值,变频器启动,水泵打水,当测量值在高限值与低限值之间时,变频器保持原状态。 任务一、水箱液位两位式调节的组态、编程及仿真运行 任务二、水箱液位两位式调节现场实际调试与运行 (四)项目四、水箱液位PID控制 总任务是调用PID模块使变频器的频率自动调节 任务一、了解PID调节的原理 任务二、水箱液位PID控制的组态、编程及仿真 任务三、水箱液位PID控制的现场接线 任务四、箱液位PID控制的现场调试与运行 (五)项目五水箱液位的WinCC监控 通过WinCC的新建变量与PLC S7-300的程序地址的连接,达到用WinCC监控水箱水位的目的。任务一、WINCC的新建工程及项目组态 一、创建新项目 二、组态变量 任务二、创建过程画面并运行调试 第一阶段:WinCC控制变频器打水 第二阶段:两位控制 第三阶段:PID控制 第四阶段:变量记录 一、过程值归档 二、输出过程值归档 第五阶段:报警记录 一、组态报警 二、组态模拟量报警 (六)项目六、反馈控制系统 1、负反馈控制系统: 由信号正向通路和反馈通路构成闭合回路的自动控制系统,又称反馈控制系统。 反馈控制系统是基于反馈原理建立的自动控制系统。所谓反馈原理,就是根据系统输出变化的信息来进行控制,即通过比较系统行为(输出)与期望行为之间的偏差,并消除偏差以获得预期的系统性能。在反馈控制系统中,既存在由输入到输出的信号前向通路,也包含从输出端到输入端的信号反馈通

储罐控制系统

毕业论文 题目:基于组态王6.5 的串级PID 液位控制系统设计学院:东北石油大学秦皇岛分校 专业:生产过程自动化 姓名:李秋峰 指导教师:刘文龙 摘要 开发经济实用的教学实验装置、开拓理论联系实际的实验内容,对提高课程教学实验水平,具有重要的实际意义。就高校学生的实验课程来讲,由于双容水箱液位控制系统本身具有的复杂性和对实时性的高要求,使得在该系统上实现基于不同控制策略的实验内容,需要全面掌握自动控制理论及相关知识。 本文通过对当前国内外液位控制系统现状的研究,选取了PID 控制、串级PID 控制等策略对实验系统进行实时控制,通过对实验系统结构的研究,建立了单容水箱和双容水箱实验系统的数学模型,并对系统的参数进行了辨识,利用工业控制软件组态王6.5,并可通用于ADAM 模块及板卡等的实现方案,通过多种控制模块在该实验装置上实验实现,验证了实验系统具有良好的扩展性和开放性。 关键词:双容水箱液位控制系统串级PID控制算法组态王6.5 智能调节仪 目录 前言 (1) 第一章串级液位控制系统介绍 (2) 1.1 国内外研究现状. (2) 1.1.1 液位控制系统的发展现状 (2) 1.1.2 液位控制系统算法的研究现状 (2) 1.2 PID 控制算法的介绍 (3) 1.2.1 PID 控制算法的历史 (3) 1.2.2 PID 控制各环节作用 (4) 1.3 串级控制系统介绍 (4) 第二章水箱液位控制系统的建模 (5) 2.1 水箱液位控制系统的构成 (6) 2.2 液位控制的实现 (5) 2.3 单容水箱建模............................................................................. (5) 2.4 双容水箱建模 (6) 2.4.1 双容水箱数学模型 (6)

储罐液位控制系统程序

储罐液位控制系统 ——计算机控制技术课程设计 ①核心:单片机89s52 ②片外扩展:8KB RAM存储器6264,I/O口扩展8155 ③转换器:ADC0809,DAC0832 ④锁存器等:74HC373,74H377,74HC245和3-8译码器74HC138 ⑤输入/输出部件:6个LED,4个按键 89S52的RD及PSEN用与门接在一起后送入6264的OE端,使得

6264既可以作为数据存储器,也可以作为程序存储器。 ①液位信号(电压值)从ADC0809的IN0引脚输入,A/D 转换后存储。 ②液位给定值由键盘设定,与液位信号比较得出偏差值。若超限,则报警,LED4现实P,同时以P1.0驱动报警器,以P1.1驱动蜂鸣器。 ③按达林算法计算控制器的输出值。 ④输出值经D/A 转换得到模拟电压值并输出。 ⑤液位信号的电压值经标度转换后,变为液位值存储,送LED 显示。 6

个LED显示如图a所示。LED5显示H或L,LED4为超限指示,LED3~LED0显示液位值,LED1数码管加小数点,显示围为000.0~999.9。 显示器与键盘设置 LED5 LED4 LED3 LED2 LED1 LED0 H 1 9 9. 5 ⑥键盘设定液位的高低报警限。采用4键方式,4个按键的功能如图b所示。显示与键盘循环扫描,无键按下时,LED显示实时液位,右键按下时,进入液位报警限的修改。先按选择键方可进入修改,先按其他3个键无效。进入修改状态后,待修改的显示位LED5闪动,按+或-键可循环选择H或L,同时后4位LED显示对应的液位值。按确认件后调到下一个待修改的显示为LED3并闪动,按+或-键循环修改0~9数字,再按确认键调到下一位置,如此进行,知道4个数字修改完毕后退出修改状态。在修改状态时,若不按确认键,则8秒后退出修改状态。从视觉舒适的角度考虑,数字应为每0.4秒闪动一次。 显示器与键盘设计 选择+ - 确定 ①数据采集:A/D转换,采样周期为10s。

基于PLC的液位控制

摘要 本次课程设计的课题是基于PLC的水箱液位控制系统的设计。涉及到的主要内容包括:水箱的特性确定与实验曲线分析,S7-300可编程控制器的硬件掌握,PID参数的整定及各个参数的控制性能的比较,应用PID控制算法所得到的实验曲线分析,整个系统各个部分的介绍和应用PLC语句编程来控制水箱水位。 关键词:S7-300西门子PLC、控制对象特性、PID控制算法、压力变送器、电动调节阀、变频器,PID指令。 目录

摘要............................................................................................................................................. I 第1章引言 . (1) 1.1 实验目的 (1) 1.2 实验原理 (1) 1.3 设计方案的确定 (2) 第2章系统硬件介绍 (2) 2.1 西门子PLC控制系统简介 (2) 2.3模拟量输入模块 (3) 2.4模拟量输出模块 (3) 2.5 电源模块 (4) 第三章系统硬件控制设计 (5) 3.1 系统设计 (5) 3.2 硬件设计 (6) 3.2.1 检测单元 (6) 3.2.2 执行单元 (7) 第四章软件设计 (8) 4.1 FC105 介绍: (8) 4.2 FC 106 介绍: (8) 4.3 FB41 介绍 (9) 4.4 软件控制流程图: (10) 第五章程序实现 (10) 5.1 step 7 软件编程: (10) 5.2程序调试与结果 (15) 5.3 过程中出现的问题与解决办法 (15) 第6章实验心得与体会 (19) 附录:程序清单 (20) 参考文献 (24)

分离器液位自动控制系统的研制与应用

为了解决零散井站点的天然气和原油在分离过程中,因为不能自动调节和控制分离器内的液位,造成天然气进入储油罐或原油进入气管线的难题,利用分离器现有的部件,通过加装干簧管远传、数显表、记录仪、电磁阀、报警器等仪器,研发制造出了一种分离器液位自动控制系统。该系统具有自动化程度高,实现了分离器自动完成气液分离,连续计量及液位超限报警等功能,避免了现有技术需要人工操作,值班员工24小时盯住液位计进行量油,一旦值班人员精力不集中,将会造成天然气管线内进入液体,储液罐内进入天然气等事故的发生。 关键词:自动控制,信号远传,运行安全,降本增效 在油田开发过程中有大量的区块含油面积小,呈零散分布,区块间生产的油气不能进行汇集处理,只能在井站点自行气液分离,液体进入储液罐,通过罐车外运,天然气除自用外,多余的气量供给附近的用户。 通过人工来调节排液阀门的开度,使分离器进、出液量在相对时间内保持平衡,但因油井生产状态及用户用气量的不同,使分离器进、出液量不平衡,当进液量多,出液量少时,就会发生分离器内的液体进入到天然气管线内,堵塞气线,不但损坏设备造成经济损失,而且降低企业的声誉;当进液量少,出液量多,气、液一同从排液阀中排出,进入到储液罐内,使大量的天然气外泄,既损失了气量又对环境造成污染,还造成了安全隐患。针对以上所述的困难,应研发、设计一种具有高度自动化分离器液位自动控制系统,从而解决现有技术中

的难题。 一、改进思路及方案实施 1.设计思路。 将分离器液体排出阀由普通阀门改为自动控制开关的电磁阀,原来由人工操作控制的分离器液位高度,实现由电信号自动控制,同时该系统具有自动报警功能,在值班室设有报警装置,当分离器计量排液系统不能自动排液,分离器内的液位超过上下警戒位时,报警系统开始启动运行,发出声光警报,提示工人及时进行排除。通过在现有的计量系统基础上进行改动,在实现以上功能的同时,做到既不违反安全规定,又尽量减少投入。 尽量利用分离器现有的磁翻板液位计中的功能,根据磁翻板液位计内的磁浮标随分离器内液位高低发生移动,磁浮标移动到什么位置,就在什么位置发出磁力线的特性,在磁翻板液位计上下计量标高处及在分离器上下液位警戒位处磁感电器元件,当磁浮标达到计量标高时,磁感电器元件在磁浮标磁力线的作用上,通过仪表转换成控制电磁阀的电信号,实现分离器排液阀门根据高度的设定值实现自动开关;如果出现故障不能自行关闭和开启排液阀时,磁浮标将继续上行或下移,到达分离报警高度时,磁感电器元件转变成报警信号,值班室内的警铃或警灯开始运行,警示值班人员去排除故障,故障不排除,警示不停。 2.组成及特征。 分离器液位自动控制系统主要由分离计量系统、信号传输系统、

基于PLC的液位控制系统设计

题目:基于PLC的液位控制系统设计姓名:朱峰 学号:200913010027 系别:物理与电子工程系 专业:电子信息工程 年级班级:2009级1班 指导教师:郭荣艳副教授 2013年5月18日

毕业论文(设计)作者声明 本人郑重声明:所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。 本人完全了解有关保障、使用毕业论文的规定,同意学校保留并向有关毕业论文管理机构送交论文的复印件和电子版。同意省级优秀毕业论文评选机构将本毕业论文通过影印、缩印、扫描等方式进行保存、摘编或汇编;同意本论文被编入有关数据库进行检索和查阅。 本毕业论文内容不涉及国家机密。 论文题目:基于PLC的液位控制系统设计 作者单位:物理与电子工程系 作者签名:(学号:200913010027) 年月日

目录 摘要 (1) 引言 (1) 1.PLC简介与系统方案及原理 (2) 1.1液位控制系统方案 (2) 1.2系统的工作原理 (2) 2.器件的选取及其特点 (3) 2.1西门子S7-200PLC简介 (3) 2.2 NS8触摸屏简介 (4) 2.3浮球式液位变送器简介 (5) 3.硬件电路的设计 (6) 3.1 PLC与触摸屏的连接 (7) 3.2直流电动机控制电路的设计 (7) 3.3控制电路与PLC接线的设计 (8) 3.4液位传感器与PLC的连接 (9) 4.系统软件的设计 (9) 5.软件调试 (10) 6.结束语 (12) 参考文献 (12) 附录 (13) 附录1:硬件电路连接示意图 (13) 附录2:输入/输出元件及控制功能表 (14) 附录3:系统主要程序 (15) 致谢 (17)

传感器储油罐液位检测系统设计

东北石油大学 课程设计 2013年7月16日

任务书 课程传感器课程设计 题目储油罐液位检测系统设计 专业学号 主要容: 本文主要是针对类似油罐等封闭式液体的液位的测量,在考虑了各种液位测量方式后,根据前文所述,决定要超声波作为主要手段,采用脉冲回波测量法。综合运用传感器的基本原理绘出装配草图,选择合适的传感器,设计控制电路。绘出硬件电路图,对参数进行计算,确认元器件的工作电流、电压、频率和功耗等参数能满足电路指标的要求,最终完成对储油罐液位的测量。 基本要求: 1、利用已学不同种类传感器,设计储油罐液位测量电路。 2、最终完成对储油罐液位的测量。 主要参考资料: [1]黄贤武,筱霞.传感器原理与应用[M].:电子科技大学,2004. [2]洋.电子制作—电子电路设计与制作[M].:科学,2005.8. [3]国钧,绍业,王凤翥.图书馆目录[M].:高等教育,1957.8. [4]施文康,余晓芬.检测技术[M].:机械工业,2010. 完成期限2013.7.12—2013.7.16 指导教师 专业负责人 2013年7 月16 日

摘要 超声波液位测量是一种非接触式的测量方式,它是利用超声波在同种介质中传播速度相对恒定以及碰到障碍物能反射的原理研制而成的。与其它方法相比(如电磁的或光学的方法),它不受光线、被测对象颜色的影响,对于被测物处于黑暗、有灰尘、烟雾、电磁干扰、有毒等恶劣的环境下有一定的适应能力。因此,研究超声波在高精度测距系统中的应用具有重要的现实意义。试设计储油罐(圆柱体型)液位、温度的实时监测系统。 对现采用的油罐测量技术作对比,选用合适的测量技术,保证原油储罐的安全,降低劳动强度,取得良好的经济效益。 关键词:储油罐;液位测量;仪表;现状

基于PLC水箱液位控制系统

摘要 本次毕业设计的课题是基于PLC的液位控制系统的设计。在设计中,笔者主要负责的是数学模型的建立和控制算法的设计,因此在论文中设计用到的PID算法提到得较多,PLC方面的知识较少。 本文的主要内容包括:PLC的产生和定义、过程控制的发展、水箱的特性确定与实验曲线分析, FX2系列可编程控制器的硬件掌握,PID参数的整定及各个参数的控制性能的比较,应用PID控制算法所得到的实验曲线分析,整个系统各个部分的介绍和讲解PLC的过程控制指令PID指令来控制水箱水位。 关键词:FX2系列PLC,控制对象特性,PID控制算法,扩充临界比例法,PID指令,实验。 The liquid level control system based on PLC ABSTRACT The subject of graduation design is based on PLC, liquid level control system design. In the design, the author is mainly responsible for the mathematical model and control algorithm design, so the design used in the paper referred to was more PID algorithm, PLC in less knowledge. Main contents of this article: PLC creation and definition, process control, development, and water tanks and experiment to determine the characteristics curve analysis, FX2 series PLC hardware control, PID tuning parameters and various parameters of the control performance comparison, the application PID control algorithm obtained experimental curve analysis, the entire system, introduce and explain the various parts of the PLC process control commands to control the tank level PID instruction. Keywords:FX2 series PLC, the control object characteristics, PID control algorithm, to expand the critical proportion method, PID instruction, experimental.

相关文档
相关文档 最新文档