文档库 最新最全的文档下载
当前位置:文档库 › 金属学与热处理第一章概念归纳

金属学与热处理第一章概念归纳

金属学与热处理第一章概念归纳
金属学与热处理第一章概念归纳

第一章金属的晶体结构

名词解释

1.各向异性:晶体在不同的方向上测量其性能(如导磁,导热性,热膨胀性,弹性和强度

等)时,表现或大或小的差异

2.金属键:处于集聚状态的金属原子全部或者大部地把它们的价电子贡献出来,为其整个

原子集体共有——称为电子云或者电子气;这些价电子或者自由电子已经不再是围绕自己的原子核转动,而是和所有价电子一起在原有的原子核周围按照量子力学规律运动着。

贡献出电子的原子则变成正离子,沉浸在电子云中,它们依靠运动于其间的公有化自由电子的静电力作用而结合起来,这种结合方式称为金属键。

3.空间点阵:为了清楚滴表明原子在空间排列的规律性,常常将构成晶体的原子忽略,而

将其抽象为纯粹的几何点,称为阵点;由这些阵点有规律地周期性重复排列所形成的三维空间点阵称为空间点阵

4.晶体结构:晶体中原子有规律周期性的具体排列方式

5.晶胞:从晶格中选取一个能够完全反映晶格特征的最小的几何单元来分析晶体中原子排

列的规律性,这个最小的几何单元称为晶胞。

6.配位数:晶体结构中与任一原子最近邻等距离的原子数目。配位数越大,晶体中的原子

排列越紧密。

7.同素异构转变:大部分金属只有一种晶体结构,但是极少数金属如Fe,Mn,Ti,Be,Sn

等具有两种或者两种以上色晶体结构,即具有多晶型。当外部条件(如温度,压强)改变时候,金属内部由一种金属结构向另一种金属结构的转变称为多晶型转变或同素异构转变

8.肖脱基空位:脱离平衡位置的原子前一到晶体表面所产生的空位。

9.弗兰克空位:脱离平衡位置的原子迁移到晶格空隙所产生的空位。

10.晶格畸变:由于空位的存在,其周围原子失去了一个近邻原子而使相互间的作用失去平衡,

因而它们朝空位方向稍微移动偏离其平衡位置。这就在空位周围出现一个涉及几个原子间距范围的弹性畸变区,简称晶格畸变。

11.位错,晶体中的线缺陷,它是在晶体中某处由一列或若干列原子发僧了有规律的错排现

象,使长度达几百甚至几万个原子间距,宽约几个原子间距范围内的原子离开其平衡位置,发生了有规律的错动。

12.柏氏矢量:描述位错特征的一个重要矢量,用它不但可以表示位错的性质,而且可以表

示晶格畸变的大小和方向,从而使人们在研究位错时能够摆脱位错区域内原子排列具体细节约束。

13.表面能:由于在晶体表面层产生了晶格畸变,所以其能量就要升高,将这种单位面积上

升高的能量称为比表面能,简称表面能。

14.晶界:晶体结构相同但是位向不同的晶粒之间的界面称为晶粒间界

15.堆垛层错:在实际晶体中晶面堆垛顺序发生局部差错而产生的一种晶体缺陷称为堆垛层

错,简称层错,它是一种面缺陷,通常发生在面心立方金属

16.共格晶面:指晶面上原子同时位于两相晶格的结点上,为两种晶格所共有,界面上原子

的排列规律既符合这个相晶粒内的原子排列又符合另一个相晶粒内原子排列的规律。

简答

1.简述金属原子的结构特点。

金属原子的结构特点是:

(1)其最外层电子数很少,一般为1-2个,最多不超过3个

(2)由于这些外层电子与原子核的结合力弱,所以很容易脱离原子核的束缚而变成自

由电子,此时的原子即变成正离子,因此常常将金属元素成为正电性元素。

2.晶体与非晶体原子排列有何不同,有哪些不同特性?

金属学与热处理教学大纲

《金属学与热处理》课程教学大纲 课程名称:金属学与热处理课程代码: 05224040 课程类型:专业必修课程 学分:3 总学时:48 理论学时:32 实验学时:16 先修课程:高等数学材料力学适用专业:材料成型与控制技术、模具设计与制造 一、课程性质、目的和任务 本课程是“材料成型与控制技术、模具设计与制造”专业的专业必修课,是学习材料专业课的技术基础课。它在基础课和专业课之间起桥梁作用。只有在修完本课程之后,才能进入其他专业课的学习。开设该课程的目的主要是向学生阐述金属学与热处理的基础知识,任务是使学生通过该课程的学习,掌握金属材料的成份、组织结构、热处理工艺与性能之间的相互关系及其变化规律,熟悉热处理基本工艺和常用工程材料的种类、成份、组织、性能特点,为后续专业课的学习奠定基础。 二、教学基本要求 1、知识、能力、素质的基本要求 通过本课程的学习,应使学生掌握金属学与热处理的基础知识,即金属及合金的成分、组织、结构与性能之间的相互关系及其变化规律;初步学会使用金相显微镜对金属及合金的组织进行观察及相应的实验能力;具备能用所学理论对金属材料热处理的一些实际工程问题进行分析的素质。 2、教学模式基本要求(课程主要教学环节要求,教学方法及手段要求) 本课程的特点是理论抽象,空间结构多且复杂,理论性叙述多,计算内容少。针对这些特点,在教学时应尽量结合工程实例来加深对基础理论的理解;有关金属组织的认识和识别对初学者来说是难度很大的内容,必须配合实验来加深认识。 三、教学内容及要求 第一章金属的晶体结构 要求学生掌握三种常见金属的晶体结构、晶体学基本概念、实际金属中三类晶体缺陷、合金中的两类基本相。 第二章纯金属金属的结晶 要求学生掌握结晶的规律,结晶基本过程以及结晶后获得细晶粒的方法,了解晶核长大机理、铸锭组织形成过程、铸锭组织结构与性能特点。 第三章二元合金相图 要求学生掌握二元合金相图的建立方法,熟悉匀晶相图.共晶相图、包晶相图的结构,正确地分析相应合金的结晶过程,画出示意图,并能熟练地运用杠杆定律计算相组成物的相

金属学与热处理课后习题问题详解(崔忠圻版)

第十章钢的热处理工艺 10-1 何谓钢的退火?退火种类及用途如何? 答: 钢的退火:退火是将钢加热至临界点AC1以上或以下温度,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。 退火种类:根据加热温度可以分为在临界温度AC1以上或以下的退火,前者包括完全退火、不完全退火、球化退火、均匀化退火,后者包括再结晶退火、去应力退火,根据冷却方式可以分为等温退火和连续冷却退火。 退火用途: 1、完全退火:完全退火是将钢加热至AC3以上20-30℃,保温足够长时间,使 组织完全奥氏体化后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。 其主要应用于亚共析钢,其目的是细化晶粒、消除应力和加工硬化、提高塑韧性、均匀钢的化学成分和组织、改善钢的切削加工性能,消除中碳结构钢中的魏氏组织、带状组织等缺陷。 2、不完全退火:不完全退火是将钢加热至AC1- AC3(亚共析钢)或AC1-ACcm (过共析钢)之间,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。对于亚共析钢,如果钢的原始组织分布合适,则可采用不完全退火代替完全退火达到消除应力、降低硬度的目的。对于过共析钢,不完全退火主要是为了获得球状珠光体组织,以消除应力、降低硬度,改善切削加工性能。 3、球化退火:球化退火是使钢中碳化物球化,获得粒状珠光体的热处理工艺。 主要用于共析钢、过共析钢和合金工具钢。其目的是降低硬度、改善切削加工性能,均匀组织、为淬火做组织准备。 4、均匀化退火:又称扩散退火,它是将钢锭、铸件或锻轧坯加热至略低于固相 线的温度下长时间保温,然后缓慢冷却至室温的热处理工艺。其目的是消除铸锭或铸件在凝固过程中产生的枝晶偏析及区域偏析,使成分和组织均匀化。 5、再结晶退火:将冷变形后的金属加热到再结晶温度以上保持适当时间,然后 缓慢冷却至室温的热处理工艺。其目的是使变形晶粒重新转变为均匀等轴晶粒,同时消除加工硬化和残留应力,使钢的组织和性能恢复到冷变形前的状态。 6、去应力退火:在冷变形金属加热到再结晶温度以下某一温度,保温一段时间 然后缓慢冷却至室温的热处理工艺。其主要目的是消除铸件、锻轧件、焊接件及机械加工工件中的残留应力(主要是第一类应力),以提高尺寸稳定性,减小工件变形和开裂的倾向。 10-2 何谓钢的正火?目的如何?有何应用? 答: 钢的正火:正火是将钢加热到AC3或Accm以上适当温度,保温适当时间进行完全奥氏体化以后,以较快速度(空冷、风冷或喷雾)冷却,得到珠光体类组织的热处理工艺。正火过程的实质是完全奥氏体化加伪共析转变。 目的:细化晶粒、均匀成分和组织、消除应力、调整硬度、消除魏氏组织、带状组织、网状碳化物等缺陷,为最终热处理提供合适的组织状态。

金属学与热处理知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法, 铸锭三晶区

的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,没有过冷度结晶就没有趋动力。根据Rk= 1..,T可知当过冷度T为零时临界晶核半 径R k为无穷大,临界形核功(1订2 )也为无穷大。临界晶核半径R k与临界形核功为无穷大时,无法形核,所以液态金属不能结晶。晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。 细化晶粒的方法:增加过冷度、变质处理、振动与搅拌。 铸锭三个晶区的形成机理:表面细晶区:当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加上模壁可以作为非均质形核的基底,因此在此薄层中立即形成大量的晶核,并同时向各个方向生长,形成表面细晶区。柱状晶区:在表面细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶前沿过冷都很小,不能生成新的晶核。垂直模壁方向散热最快,因而晶体沿相反方向生长成柱状晶。中心等轴晶区:随着柱状晶的生长,中心部位的液体实际温度分布区域平缓,由于溶质原子的重新分配,在固液界面前沿出现成分过冷,成分过冷区的扩大,促使新的晶核形成长大形成等轴晶。由于液体的流动使表面层细晶一部分卷入液体之中或柱状晶的枝晶被冲刷脱落而进入前沿的液体中作为非自发生核的籽晶。 三、二元合金的相结构与结晶 重点内容:杠杆定律、相律及应用。 基本内容:相、匀晶、共晶、包晶相图的结晶过程及不同成分合金在室温下的显微组织。合金、成分过冷;非平衡结晶及枝晶偏析的基本概念。 相律:f = c -p + 1其中,f为自由度数,c为组元数,p为相数。 伪共晶:在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金也可能得到全部共晶组织,这种共晶组织称为伪共晶。 合金:两种或两种以上的金属,或金属与非金属,经熔炼或烧结、或用其它方法组合而成的具有金属特性的物质。 合金相:在合金中,通过组成元素(组元)原子间的相互作用,形成具有相同晶体结构与性质,并以明确界面分开的成分均一组成部分称为合金相。 四、铁碳合金 重点内容:铁碳合金的结晶过程及室温下的平衡组织,组织组成物及相组成物的计算 基本内容:铁素体与奥氏体、二次渗碳体与共析渗碳体的异同点、三个恒温转变。 钢的含碳量对平衡组织及性能的影响;二次渗碳体、三次渗碳体、共晶渗碳体相对量的计算;五种渗碳体的来源及形态。

金属学与热处理复习题

金属学与热处理复习题

第一章复习题 晶向指数相同,符号相反的为同一条直线 原子排列相同但空间位向不同的所有晶向 晶面指数的数字和顺序相同,符号相反则两平面互相平行 晶面的空间位向不同但原子排列相同的所有晶面 当一个晶向[uvw]与一个晶面(hkl)平行时hu+kv+lw=0 当一个晶向[uvw]与一个晶面(hkl)垂直时h=u,K=v,l=w 晶体的各向异性原因: 在不同晶面上的原子紧密程度不同 纯铁冷却时在912 发生同素异晶转变是从结构转变为结构,配位数,致密 度降低,晶体体积,原子半径发 生。 面心立方晶胞中画出) 11晶面和]211[晶向 (2 刃型位错的四个特征(作业) 螺型位错的四个特征(作业) 面心立方(FCC)体心立方(BCC)密排六方(HCP)晶胞原子数

原子半径 配位数 致密度 同素异构转变定义--18页 晶体缺陷的分类: 常见的点缺陷: 常见的面缺陷: 第二章复习题 一、填空 1、金属结晶两个密切联系的基本过程是和 2 、金属结晶的动力学条件为 3 、金属结晶的结构条件为 4 、铸锭的宏观组织包括 5、如果其他条件相同,则金属模浇注的铸件晶粒比砂模浇注的晶粒更细,高 温浇注的铸件晶粒比低温浇注的晶粒粗大,采用振动浇注的铸件晶 粒比不采用振动的晶粒更细,薄铸件的晶粒比厚铸件晶粒更细。 二、问答 1、金属的结晶形核45页 2、金属的长大的要点52页 2、铸锭三晶区名称及形成过程(柱状晶为重点) 3、影响柱状晶生长的因素56-57页 三、名词解释: 1、细晶强化 2、变质处理 3、铸造织构 第三章二元合金的相结构与结晶作业题(复习题) 1、概念 合金、相、固溶体、固溶强化、、离异共晶、伪共晶 2、填空

北京科技大学金属学与热处理期末考试资料

1、热处理的定义:根据钢件的热处理目的,把钢加热到预定的温度,在此温度下保持一定的时间,然后以预定的速度冷却下来的一种综合工艺。钢的热处理是通过加热、保温和冷却的方法,来改变钢内部组织结构,从而改善其性能的一种工艺。凡是材料体系(金属、无机材料)中有相变发生,总可以采用热处理的方法,来改变组织与性能。 2、Ac1、Ac 3、Accm的意义:对于一个具体钢成分来说,A1、A3、Acm是一个点,而且是无限缓慢加热或冷却时的平衡临界温度。加热时的实际临界温度加注脚字母“C”,用Ac1、Ac3、Accm表示;冷却时的实际临界温度加注脚字母“r”,用Ar1、Ar3、Arcm表示。 3、什么是奥氏体化?奥氏体化的四个过程?是什么类型的相恋?将钢加热到AC1点或AC3点以上,使体心立方的α-Fe铁结构转变为面心立方结构的γ-Fe,这个过程就是奥氏体化过程。从铁碳相图可知,任何成分碳钢加热到Ac1以上,珠光体就向奥氏体转变;加热到Ac3或Accm以上,将全部变为奥氏体。这种加热转变称奥氏体化。共析钢的奥氏体化过程包括以下四个过程:形核;长大;残余渗碳体溶解;奥氏体成分均匀化。加热时奥氏体化程度会直接影响冷却转变过程,以及转变产物的组成和性能。是扩散型相变。 4、碳钢与合金钢的奥氏体化有什么区别?为什么?在同一奥氏体化温度下,合金元素在奥氏体中扩散系数只有碳的扩散系数的千分之几到万分之几,可见合金钢的奥氏体均匀化时间远比碳钢长得多。在制定合金钢的热处理工艺规范时,应比碳钢的加热温度高些,保温时间长些,促使合金元素尽可能均匀化。 5奥氏体晶粒的三个概念(初始晶粒、实际晶粒和本质晶粒)?奥氏体的初始晶粒:指加热时奥氏体转变过程刚刚结束时的奥氏体晶粒,这时的晶粒大小就是初始晶粒度。奥氏体实际晶粒:指在热处理时某一具体加热条件下最终所得的奥氏体晶粒,其大小就是奥氏体的实际晶粒度。奥氏体的本质晶粒:指各种钢的奥氏体晶粒的长大趋势。晶粒容易长大的称为本质粗晶粒钢;晶粒不容易长大的称为本质细晶粒钢; 6为什么要研究奥氏体晶粒大小?奥氏体晶粒大小会显著影响冷却转变产物的组织和性能。 7、工厂中对奥氏体晶粒大小的表征方法是什么?本质晶粒度的测试方法?统一采用与标准金相图片比较,来确定晶粒度的级别。生产中为了便于确定钢的本质晶粒度,只需测出930度左右的实际晶粒度,就可以判断。 8过冷奥氏体:奥氏体冷至临界温度以下,牌热力学不稳定状态,称为过冷奥氏体。 9、钢的共析转变?珠光体组织的三种类型?钢的共析转变:钢奥氏体化后,过冷到A1至“鼻尖”之间区域等温停留时,将发生共析转变,形成珠光体组织,其反应如下:γ→P(α+Fe3C)结构:FCC、BCC、正交;含碳:0.77%、0.0218%、6.69%珠光体的三种类型:珠光体,索氏体,屈氏体。 10、什么叫钢的C曲线?如何测定?影响C曲线的因素?过冷奥氏体等温转变曲线,也称TTT曲线。因曲线形状象英文字母“C”,故常称C曲线。在过冷奥氏体的转变过程中有组织(相变)转变和性能变化,因此可用金相法、硬度法、膨胀法或磁性法等来测定过冷奥氏体的等温转变过程,其中金相法是最基本的。金相法测定过冷奥氏体等温转变图---C曲线(基本方法),以共析钢为例:①用共析钢制成多组圆片状试样(φ10×1.5);②取一组试样加热奥氏体化;③迅速转入A1以下一定温度熔盐浴中等温;④各试样停留不同时间后分别淬入盐水中,使未分解的过冷奥氏体变为马氏体;⑤这样在金相显微镜下就可以观察到过冷奥氏体的等温分解过程。钢的成分和热处理条件都会引起C曲线形状和位置的变化1)含碳量的影响2)合金元素的影响3)奥氏体化温度和保温时间的影响 11、什么叫CCT曲线?如何测定?连接冷却曲线上相同性质的转变开始点和终了点,得到钢种的连续冷却转变图称为CCT曲线。与测定C曲线的方法相同,一般也都用膨胀法或金相-硬度法等来测定CCT(Continuous Cooling Transformation)图;在测定时,首先选定一组具有不同冷却速度的方法,然后将欲测试样加热奥氏体化,并以各种冷却速度进行冷却,同时测

金属学与热处理试卷及答案 期末练习题

金属学与热处理期末练习题(含答案) 1、金属的机械性能主要包括强度、硬度、塑性、韧性、疲劳强度等指标,其中衡量金属材料在静载荷下机械性能的指标有____强度_______、_____硬度______、_________塑性__。衡量金属材料在交变载荷和冲击载荷作用下的指标有_______韧性____和____疲劳强度_______。 2、常见的金属晶格类型有___面心立方晶格____ 、___体心立方晶格___ ____和__密棑六方晶格_ ________。 3、常用的回火方法有低温回火、_中温回火__________ 和____高温回火_______ 。 4、工程中常用的特殊性能钢有___不锈钢______、耐热钢_________和耐磨刚。 5、根据铝合金成分和工艺特点,可将铝合金分为__变形铝合金_________和铸造铝合金两大类。 6、按冶炼浇注时脱氧剂与脱氧程度分,碳钢分为_镇静钢________、半镇静钢_________、特殊镇静钢_________和__沸腾钢_______。 7、铸铁中_________碳以石墨形式析出___________________的过程称为石墨化,影响石墨化的主要因素有_化学成分__________ 和冷却速度。 8、分别填写下列铁碳合金组织符号: 奥氏体A、铁素体F、渗碳体fe3c 、 珠光体P 、高温莱氏体ld 、低温莱氏体ld’。 9、含碳量小于%的钢为低碳钢,含碳量为的钢为中碳钢,含碳量大于% 的钢为高碳钢。 10、三大固体工程材料是指高分子材料、复合材料和陶瓷材料。 二、选择题(每小题1分,共15分) ( b )1、拉伸试验时,试样拉断前能承受的最大拉应力称为材料的()。 A 屈服点 B 抗拉强度 C 弹性极限 D 刚度 (b)2、金属的()越好,其锻造性能就越好。 A 硬度 B 塑性 C 弹性 D 强度 ( c )3、根据金属铝的密度,它属于()。 A 贵金属 B 重金属 C 轻金属 D 稀有金属 ( d )4、位错是一种()。

金属材料学总结

第一章 1、为什么钢中的硫和磷一般情况下总是有害的?控制硫化物形态的方法有哪些? 答:S与Fe形成FeS,会导致钢产生热脆;P与形成Fe3P,使钢在冷加工过程中产生冷脆性,剧烈降低钢的韧性,使钢在凝固时晶界处发生偏析。 硫化物形态控制:a、加入足量的锰,形成高熔点MnS;b、控制钢的冷却速度;c、改善其形态最好为球状,而不是杆状,控制氧含量大于0.02%;d、加入变形剂,使其在金属中扩散开防止聚焦产生裂纹。 2、钢的强化机制有哪些?为什么一般钢的强化工艺采用淬火加回火?答:a、固溶强化(合金中形成固溶体、晶格畸变、阻碍位错运动、强化) b、细晶强化(晶粒细化、晶界增多、位错塞积、阻碍位错运动、强化) c、加工硬化(塑性变形、位错缠绕交割、阻碍位错运动、强化) d、弥散强化(固溶处理的后的合金时效处理、脱溶析出第二相、弥散分布在基体上、与位错交互作用、阻碍位错运动、强化) 淬火处理得到强硬相马氏体,提高钢的强度、硬度,使钢塑性降低;回火可有效改善钢的韧性。淬火和回火结合使用提高钢的综合性能。 3、按照合金化思路,如何改善钢的韧性? 答:a、加入可细化晶粒的元素Mo、W、Cr; b、改善基体韧性,加Ni元素;

c、提高冲击韧性,加Mn、Si元素; d、调整化学成分; e、形变热处理; f、提高冶金质量; g、加入合金元素提高耐回火性,以提高韧性。 4、试解释40Cr13属于过共析钢,Cr12钢中已出现共晶组织,属于莱氏体钢。 答、Cr元素使共析点左移,当Cr量达到一定程度时,共析点左移到碳含量小于0.4%,所以40Cr13属于过共析钢;Cr12中含有高于12%的Cr元素,缩小Fe-C平衡相图的奥氏体区,使共析点右移。 5、试解释含Mn钢易过热,而含Si钢高淬火加热温度应稍高,且冷作硬化率高,不利于冷变性加工。 答:Mn在一定量时会促使晶粒长大,而过热就会使晶粒长大。 6、合金钢中碳化物形成规律①②③④⑤⑥⑦ 答:①、K类型:与Me的原子半径有关;②、相似相容原理;③、强碳化物形成元素优先于碳结合形成碳化物;④、NM/NC比值决定了K类型;⑤、碳化物稳定型越好,溶解越难,析出越难,聚集长大也越难。 第二章 1、简述工程钢一般服役条件、加工特点和性能要求。 答:服役条件:静载、无相对运动、受大气腐蚀。 加工特点:简单构件是热轧或正火状态,空气冷却,有焊接、剪切、

《金属学与热处理》(第二版)课后习题答案2

第一章习题 1.作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向 3.某晶体的原子位于正方晶格的节点上,其晶格常数a=b≠c,c=2/3a。今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。 解:设X方向的截距为5a,Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为1/5a,1/2a,1/2a 化为最小简单整数分别为2,5,5 故该晶面的晶面指数为(2 5 5) 4.体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的晶面间距,并指出面间距最大的晶面 解:(1 0 0)面间距为a/2,(1 1 0)面间距为√2a/2,(1 1 1)面间距为√3a/3 三个晶面晶面中面间距最大的晶面为(1 1 0) 7.证明理想密排六方晶胞中的轴比c/a=1.633 证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示 则OD=c/2,AB=BC=CA=CD=a 因△ABC是等边三角形,所以有OC=2/3CE

由于(BC)2=(CE)2+(BE)2 则 有(CD)2=(OC)2+(1/2c)2,即 因此c/a=√8/3=1.633 8.试证明面心立方晶格的八面体间隙半径为r=0.414R 解:面心立方八面体间隙半径r=a/2-√2a/4=0.146a 面心立方原子半径R=√2a/4,则a=4R/√2,代入上式有 R=0.146X4R/√2=0.414R 9.a)设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀。b)经X射线测定,在912℃时γ-Fe的晶格常数为0.3633nm,α-Fe的晶格常数为0.2892nm,当由γ-Fe转化为α-Fe时,求其体积膨胀,并与a)比较,说明其差别的原因。 解:a)令面心立方晶格与体心立方晶格的体积及晶格常数分别为V面、V 踢与a面、a体,钢球的半径为r,由晶体结构可知, 对于面心晶胞有4r=√2a面,a面=2√2/2r,V面=(a面)3=(2√2r)3 对于体心晶胞有4r=√3a体,a体=4√3/3r,V体=(a体)3=(4√3/3r)3 则由面心立方晶胞转变为体心立方晶胞的体积膨胀△V为 △V=2×V体-V面=2.01r3 B)按照晶格常数计算实际转变体积膨胀△V 实 ,有 △V 实=2△V 体 -V面=2x(0.2892)3-(0.3633)3=0.000425nm3 实际体积膨胀小于理论体积膨胀的原因在于由γ-Fe转化为α-Fe时,Fe原子的半径发生了变化,原子半径减小了。 10.已知铁和铜在室温下的晶格常数分别为0.286nm和0.3607nm,求1cm3中铁和铜的原子数。 解:室温下Fe为体心立方晶体结构,一个晶胞中含2个Fe原子,Cu为面心立方晶体结构,一个晶胞中含有4个Cu原子 1cm3=1021nm3 令1cm3中含Fe的原子数为N Fe,含Cu的原子数为N Cu,室温下一个Fe 的晶胞题解为V Fe,一个Cu晶胞的体积为V Cu,则 N Fe=1021/V Fe=1021/(0.286)3=3.5x1018 N Cu=1021/V Cu=1021/(0.3607)3=2.8X1018 11.一个位错环能不能各个部分都是螺型位错或者刃型位错,试说明之。 解:不能,看混合型位错 13.试计算{110}晶面的原子密度和[111]晶向原子密度。 解:以体心立方{110}晶面为例 {110}晶面的面积S=a x √2a {110}晶面上计算面积S内的原子数N=2 则{110}晶面的原子密度为ρ=N/S= √2a-2 [111]晶向的原子密度ρ=2/√3a

金属学与热处理章节重点总结

第1章金属和合金的晶体结构 1.1金属原子的结构特点:最外层的电子数很少,一般为1~2个,不超过3个。 金属键的特点:没有饱和性和方向性 结合力:当原子靠近到一定程度时,原子间会产生较强的作用力。结合力=吸引力+排斥力结合能=吸引能+排斥能(课本图1.2) 吸引力:正离子与负离子(电子云)间静电引力,长程力 排斥力:正离子间,电子间的作用力,短程力 固态金属原子趋于规则排列的原因:当大量金属原子结合成固体时,为使固态金属具有最低的能量,以保持其稳定状态,原子间也必须保持一定的平衡距离。 1.2晶体:基元在三维空间呈规律性排列。晶体结构:晶体中原子的具体排列情况, 也就是晶体中的这些质点在三维空间有规律的周期性的重复排列方式。 晶格:将阵点用直线连接起来形成空间格子。晶胞:保持点阵几何特征的基本单元 三种典型的金属晶体结构(要会画晶项指数,晶面指数) 共带面:平行或相交于同一直线的一组晶面组成一个晶带,这一组晶面叫做共带面 晶带轴:同一晶带中所有晶面的交线互相平行,其中通过坐标原点的那条直线。 多晶型转变或同素异构转变:当外部的温度和压强改变时,有些金属会由一种晶体结构向另一种晶体结构转变。 1.3合金:两种或两种以上金属元素,或金属元素与非金属元素,经熔炼、烧结或其它方法组合而成并具有金属特性的物质。组元:组成合金最基本的独立的物质,通常组元就是组成合金的元素。相:是合金中具有同一聚集状态、相同晶体结构,成分和性能均一,并以界面相互分开的组成部分。固溶体:合金的组元通过溶解形成一种成分及性能均匀的、且结构与组元之一相同的固相,称为固溶体。与固溶体结构相同的组元为溶剂,另一组元为溶质。 固溶体的分类:按溶质原子在溶剂晶格中的位置:置换固溶体与间隙固溶体。按溶质原子在固体中的溶解度:分为有限固溶体和无限固溶体。按溶质原子在固溶体内分布规则:分为有序固溶体和无序固溶体 固溶强化:在固体溶液中,随着溶质浓度的增加,固溶体的强度、硬度提高,塑性韧性下降。 间隙相:当非金属原子半径与金属原子半径的比值小于0.59时,将形成具有简单晶体结构的金属间化合物。间隙化合物:与间隙相相反(比值大于0.59)。 1.4点缺陷:⑴空位⑵间隙原子⑶置换原子。线缺陷:线缺陷就是各种类型的位错。它是指晶体中的原子发生了有规律的错排现象。(刃型位错、螺型位错、混合型位错)滑移矢量:表示位错的性质,晶格畸变的大小的物理量(刃型位错的柏氏矢量与其位错线相垂直;螺形位错的柏氏矢量与其位错线平行。)。 面缺陷:晶体的面缺陷包括晶体的外表面(表面或自由界面)和内界面两类,其中的内界面又有晶界、亚晶界、 小角度晶界、大角度晶界:两相邻晶粒位向差小于或大于10° 相界面的结构有三类:共格界面、半共格界面、非共格界面 习题3 、5做一下 第2章纯金属的结晶 2.1结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 同素异构转变:金属从一种固态过渡为另一种固体晶态的转变 过冷度:理论结晶温度与实际结晶温度之差。过冷是结晶的必要条件。(金属不同过冷度也不同,金属纯度越高过冷度越大。过冷度的速度取决于,冷却速度越大过冷度越大实际洁净无度越低,反之) 金属结晶:孕育—出现晶核—长大—金属单晶体 2.2从液体向固体的转变使自由能下降.液态金属结晶时,结晶过程的推动力是 自由能差降低(△F)是自由能增加,阻力是自身放热

《金属学与热处理》试题库

《金属学与热处理》试题库 一、名词解释 1、铁素体、奥氏体、珠光体、马氏体、贝氏体、莱氏体 2、共晶转变、共析转变、包晶转变、包析转变 3、晶面族、晶向族 4、有限固溶体、无限固溶体 5、晶胞 6、二次渗碳体 7、回复、再结晶、二次再结晶 8、晶体结构、空间点阵 9、相、组织 10、伪共晶、离异共晶 11、临界变形度 12、淬透性、淬硬性 13、固溶体 14、均匀形核、非均匀形核 15、成分过冷 16、间隙固溶体 17、临界晶核 18、枝晶偏析 19、钢的退火,正火,淬火,回火 20、反应扩散 21、临界分切应力 22、调幅分解 23、二次硬化 24、上坡扩散 25、负温度梯度 26、正常价化合物 27、加聚反应 28、缩聚反应 四、简答 1、简述工程结构钢的强韧化方法。(20分)

2、简述Al-Cu二元合金的沉淀强化机制(20分) 3、为什么奥氏体不锈钢(18-8型不锈钢)在450℃~850℃保温时会产生晶间腐蚀?如何防止或减轻奥氏体不锈钢的晶间腐蚀? 4、为什么大多数铸造合金的成分都选择在共晶合金附近? 5、什么是交滑移?为什么只有螺位错可以发生交滑移而刃位错却不能? 6、根据溶质原子在点阵中的位置,举例说明固溶体相可分为几类?固溶体在材料中有何意义? 7、固溶体合金非平衡凝固时,有时会形成微观偏析,有时会形成宏观偏析,原因何在? 8、应变硬化在生产中有何意义?作为一种强化方法,它有什么局限性? 9、一种合金能够产生析出硬化的必要条件是什么? 10、比较说明不平衡共晶和离异共晶的特点。 11、枝晶偏析是怎么产生的?如何消除? 12、请简述影响扩散的主要因素有哪些。 13、请简述间隙固溶体、间隙相、间隙化合物的异同点? 14、临界晶核的物理意义是什么?形成临界晶核的充分条件是什么? 15、请简述二元合金结晶的基本条件有哪些。 16、为什么钢的渗碳温度一般要选择在γ-Fe相区中进行?若不在γ-Fe相区进行会有什么结果? 17、一个楔形板坯经冷轧后得到相同厚度的板材,再结晶退火后发现板材两端的抗拉强度不同,请解释这个现象。 18、冷轧纯铜板,如果要求保持较高强度,应进行何种热处理?若需要继续冷轧变薄时,又应进行何种热处理? 19、位错密度有哪几种表征方式? 20、淬透性与淬硬性的差别。 21、铁碳相图为例说明什么是包晶反应、共晶反应、共析反应。 22、马氏体相变的基本特征?(12分) 23、加工硬化的原因?(6分) 24、柏氏矢量的意义?(6分) 25、如何解释低碳钢中有上下屈服点和屈服平台这种不连续的现象?(8分) 26、已知916℃时,γ-Fe的点阵常数0.365nm,(011)晶面间距是多少?(5分) 27、画示意图说明包晶反应种类,写出转变反应式?(4分) 28、影响成分过冷的因素是什么?(9分) 29、单滑移、多滑移和交滑移的意义是什么?(9分) 30、简要说明纯金属中晶粒细度和材料强度的关系,并解释原因。(6分)

金属学与热处理铸造合金期末考试题答案

本答案非标准答案,仅作参考,祝大家期末取的好成绩! 金属学与热处理铸造合金及其熔炼考试题纲 1.铁碳相图的二重性及其分析 从热力学观点上看,Fe-Fe3C相图只是介稳定的,Fe-C相图才是稳定的;从动力学观点看,在一定条件下,按Fe-Fe3C相图转变也是可能的,因此就出现了二重性。 分析:1)稳定平衡的共晶点C’的成分和温度与C点不同 2)稳定平衡的共析点S’的成分和温度与S点不同 2.稳定态和亚稳定态铁碳相图异同点 稳定平衡态的Fe-C相图中的共晶温度和共析温度都比介稳定平衡的高一点; 在共晶温度时,稳定平衡态的奥氏体的含碳量小于亚稳态平衡下奥氏体的含碳量。 3.用铁碳相图分析铸铁碳钢一二次结晶异同点 一次结晶:铁液降至液相线时,有初析石墨和初析奥氏体析出。温度继续下降,熔体中同时析出奥氏体和石墨,铸铁进入共晶凝固阶段。 当钢液温度降低至液相线时,有高温铁素体析出。温度下降至包晶温度时,发生包晶转变,生成奥氏体。温度继续下降,穿过L+γ区时,又有奥氏体自钢液中析出,此析出过程进行到固相线温度为止。 二次结晶:铸铁的固态相变即二次结晶。继续冷却,奥氏体中的含碳量沿E’S’线减小,以二次石墨的形式析出。当奥氏体冷却至共析温度以下,并达到一定的过冷度,就开始共析转变。两个固体相α与Fe3C相互协同地从第三个固体相长大(成对长大),形成珠光体。当温度下降至GS和PS线之间的区域是,有先共析铁素体α相析出。随着α相的析出,剩余奥氏体的含碳量上升。当温度达到共析转变温度时,发生共析转变,形成珠光体。结晶过程完了后,钢的组织基本上不在变化。 4.分析球状石墨形成过程 目前已基本肯定,球状石墨可以和奥氏体直接从熔体中析出。 在亚共晶或共晶成分的球墨铸铁中,首批小石墨在远高于平衡共晶转变温度就已成形,这是不平衡条件所造成的,但随着温度的下降,有的小石墨球会重新解体,而有的则能长大成球,随着这一温度的进行,又会出现新的小石墨球,说明石墨球的成核可在一定的温度范围内进行。 某些石墨球能在熔体中单独成长至一定尺寸,然后被奥氏体包围,而有的石墨球则很早的就被奥氏体包围,形成奥氏体外壳。总之,石墨球的长大包括;两个阶段,即:1)在熔体中直接析出核心并长大2)形成奥氏体外壳,在奥氏体外壳包围下成长。 5.灰铸铁的金相组织及其性能特点 灰铸铁的金相组织由金属基体和片状石墨所组成,还有少量非金属夹杂物。 特点:强度性能差;硬度特点,同一硬度时,抗拉强度有一个范围,同一强度时,硬度也有一定的范围;较低的缺口敏感性;良好的减震性;良好的减磨性。 6.流动性的概念及其影响因素

(完整word版)金属学与热处理(哈尔滨工业大学_第二版)课后习题答案

第一章 1?作图表示出立方晶系(1 2 3)、(0 -1-2)、(4 2 1)等晶面和[-1 0 2]、 今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。 解:设X方向的截距为5a, Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为 1/5a,1/2a, 1/2a 化为最小简单整数分别为2,5,5 故该晶面的晶面指数为(2 5 5) 4体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1) 晶面的晶面间距,并指出面间距最大的晶面 3?某晶体的原子位于正方晶格的节点上,其晶格常数

解:(1 0 0)面间距为a/2, (1 1 0)面间距为"2a/2, (1 1 1)面间距为"3a/3 三个晶面晶面中面间距最大的晶面为(1 1 0) 7证明理想密排六方晶胞中的轴比c/a=1.633 证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子 与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示 贝卩OD=c/2,AB=BC=CA=CD=a 因厶ABC是等边三角形,所以有OC=2/3CE 由于(BC)2=(CE)2+(BE)2 有(CD)2=(OC)2+(1/2C)2,即 I /T J (CU)(c)2- ' 3 2 因此c/a=V8/3=1.633 8?试证明面心立方晶格的八面体间隙半径为r=0.414R 解:面心立方八面体间隙半径r=a/2-v2a/4=0.146a

面心立方原子半径R二辺a/4,贝卩a=4R/\2,代入上式有 R=0.146X4R/ V2=0.414R 9. a )设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀。b)经X射线测定,在912C时丫-Fe的晶格常数为0.3633nm, a -Fe的晶格常数为0.2892nm,当由丫-Fe转化为a -Fe时,求其体积膨胀,并与a)比较,说明其差别的原因。 解:a)令面心立方晶格与体心立方晶格的体积及晶格常数分别 为V面、V踢与a面、a体,钢球的半径为r,由晶体结构可知,对于面心晶胞有 4r=辺a 面,a 面=2辺/2r, V 面二(a 面)3= (2辺r)3 对于体心晶胞有 4r= \3a 体,a 体=4v3/3r, V 体二(a 体)3= (4\3/3r)3 则由面心立方晶胞转变为体心立方晶胞的体积膨胀厶V为 △V=2X V体-V 面=2.01r3 B)按照晶格常数计算实际转变体积膨胀厶V实,有 △V实=2^ V体-V 面=2x(0.2892)3-(0.3633)3=0.000425nm3 实际体积膨胀小于理论体积膨胀的原因在于由丫-Fe转化为a -Fe时,Fe原子的半径发生了变化,原子半径减小了。 10. 已知铁和铜在室温下的晶格常数分别为0.286nm和0.3607nm,求

金属学与热处理期末复习

历年试题 材料成型与控制专业01级金属学与热处理试题 一. 名词解释(每小题2分,共20分): 1.晶体 2.正火 3.无限固溶体 4. 金属间化合物 5.晶界 6.相起伏 7.共晶转变 8.比重偏析 9.马氏体 10. 同素异构转变 二. 在同一个立方晶胞中画出以下晶面和晶向:(111)、(110)、(122)、[110]、[210]。(5分) 三. 晶粒大小对合金的常温力学性能有何影响?试分析其原因。(15分) 四.T8钢的过冷奥氏体等温冷却曲线如图所示,试分析以图中标明的几种冷却条件冷却之后各得到什么组织?对比这几种组织各具有什么样的力学性能特点.(10分) 五..(15分) 六.冷塑性变形后的金属,在重新加热时其组织结构和力学性能各有何变化?(15分) 七.简述T8钢的奥氏体化过程由哪几个阶段组成?分析其中奥氏体晶核长大机理。(10分) 八.具有网状渗碳体的T12钢要获得回火马氏体,应进行哪些热处理?试说明每种热处理的加热温度和冷却条件。(10分) 02级材料加工各专业金属学与热处理期末考试题B 一. 名词解释(每小题3分,共30分) 1.非自发形核 2.滑移 3.再结晶 4.间隙固溶体 5.铁素体 6.珠光体 7.本质晶粒度 8.淬火 9.各向异性 10.合金

二. 填空(每空1分,共15分) 1.一个体心立方晶胞中包含()个原子,一个面心立方晶胞中包含()个原子,一个密排六方晶胞中包含()个原子。 2. 纯铁在加热时,在912℃纯铁的晶格由()转变为(),在1394℃纯铁的晶格由()转变为()。 3.结晶过程是依靠两个密切联系的基本过程来实现的,这两个基本过程分别是()和()。 4.纯金属的最低再结晶温度和熔点的关系是()。 5.马氏体的显微组织形态主要有()、()两种。其中()的韧性比较好。 6.钢的淬透性越高,则其C曲线位置越靠(),说明临界冷却速度越()。 三. 选择(每题1分,共10分) 1.具有体心立方晶格的金属有() a)Cu b)α-Fe c)γ-Fe 2.具有面心立方晶胞的金属有()个滑移系。 a) 6 b)8 c)12 3.固溶体的晶体结构()。 a) 与溶剂相同 b)与溶质相同 c) 与溶质和溶剂都不相同 4. 铁碳两个元素可能形成的相有()。 a) 间隙固溶体 b)间隙化合物 c) 置换固溶体 5. 下列金属中塑性最好的是() a) α-Fe b)Al c) Mg 6.冷变形金属再结晶后,()。 a) 形成等轴晶,强度升高 b)形成柱状晶,强度升高 c) 形成等轴晶,塑性升高 7.与铁素体相比,珠光体的力学性能特点是()。

最全的金属学与热处理知识总结

钢的热处理总结 晶向指数[UVW],晶向族;晶面指数(hkl),晶面族{hkl};六方晶系晶向指数[uvw]→u=(2U-V)/3,v=(2V-U)/3,t=-(u+v),w=W→[uvtw] 1. 空间点阵和晶体点阵:为便于了解晶体中原子排列的规律性,通常将实体晶体结构简化为完整无缺的理想晶体。若将其中每个院子抽象为纯几何点,即可得到一个由无数几何点组成的规整的阵列,称为空间点阵,抽象出来的几何点称为阵点或结点。由此构成的空间排列,称为晶体点阵;与此相应,上述空间点阵称为晶格。 2. 热过冷:纯全属在凝固时,其理论凝固温度(T m)不变,当液态金属中的实际温度低于T m 时,就引起过冷,这种过冷称为热过冷。 3. 成分过冷:在固液界面前沿一定范围内的液相,其实际温度低于平衡结晶温度,出现了一个过冷区域,过冷度为平衡结晶温度与实际温度之差,这个过冷度是由于界面前沿液相中的成分差别引起的,称为成分过冷。成分过冷能否产生及程度取决于液固界面前沿液体中的溶质浓度分布和实际温度分布这两个因素。 4. 动态过冷度:当界面温度T i

6. 能量起伏:液态金属中处于热运动的原子能量有高有低,同一原子的能量也在随时间不停地变化,时高时低的现象。 7. 均匀形核:液相中各个区域出现新相晶核的几率都是相同的,是液态金属绝对纯净、无任何杂质,喝不喝型壁接触,只是依靠液态金属的能量变化,由晶胚直接生核的理想过程。临界半径 8. 非均匀形核:液态金属中总是存在一些微小的固相杂质点,并且液态金属在凝固时还要和型壁相接触,于是晶核就可以优先依附于这些现成的固体表面上形成,需要的过冷度较小。 临界半径 非均匀形核的临界球冠半径与均匀形核的临界半径是相等的。 晶核长大的微观结构:光滑界面和粗糙界面。 晶粒大小的控制:控制过冷度;变质处理;振动、搅动。 表面细晶区的形成:当液态金属浇入温度较低的铸型中时,型壁附近熔体由于受到强烈的激冷作用,产生很大的过冷度而大量非均质生核。这些晶核在过冷熔体中也以枝晶方式生长,由于其结晶潜热既可从型壁导出,也可向过冷熔体中散失,从而形成了无方向性的表面细等轴晶组织。 柱状晶区的形成:在结晶过程中由于模壁温度的升高,在结晶前沿形成适当的过冷度,使表面细晶粒区继续长大(也可能直接从型壁处长出),又由于固-液界面处单向的散热条件(垂直于界面方向),处在凝固界面前沿的晶粒在垂直于型壁的单向热流的作用下,以表面细等轴晶凝固层某些晶粒为基底,呈枝晶状单向延伸生长,那些主干取向与热流方向相平行的枝晶优先向内伸展并抑制相邻枝晶的生长,在淘汰取向不利的晶体过程中,发展成柱状晶组织。 中心等轴晶的形成:内部等轴晶区的形成是由于熔体内部晶核自由生长的结果。随着柱状晶的发展,熔体温度降到足够低,再加之金属中杂质等因素的作用,满足了形核时的过冷度要求,于是在整个液体中开始形核。同时由于散热失去了方向性,晶体在各个方向上的长大速度是相等的,因此长成了等轴晶。 10. 固溶体与金属化合物的区别:固溶体晶体结构与组成它的溶剂相同,而金属化合物的晶体结构与组成它的组元都不同,通常较复杂。固溶体相对来说塑韧性好,硬度较低,金属化合物硬而脆。 11. 影响置换固溶体溶解度的因素:原子尺寸因素;电负性因素;电子浓度因素;晶体结构因素。

金属学与热处理课后习题答案第六章

第六章金属及合金的塑性变形和断裂 2)求出屈服载荷下的取向因子,作出取向因子和屈服应力的关系曲线,说明取向因子对屈服应力的影响。 答: 1)需临界临界分切应力的计算公式:τk=σs cosφcosλ,σs为屈服强度=屈服载荷/截面积 需要注意的是:在拉伸试验时,滑移面受大小相等,方向相反的一对轴向力的作用。当载荷与法线夹角φ为钝角时,则按φ的补角做余弦计算。 2)c osφcosλ称作取向因子,由表中σs和cosφcosλ的数值可以看出,随着取向因子的增大,屈服应力逐渐减小。cosφcosλ的最大值是φ、λ均为45度时,数值为0.5,此时σs为最小值,金属最易发生滑移,这种取向称为软取向。当外力与滑移面平行(φ=90°)或垂直(λ=90°)时,cosφcosλ为0,则无论τk数值如何,σs均为无穷大,表示晶体在此情况下根本无法滑移,这种取向称为硬取向。 6-2 画出铜晶体的一个晶胞,在晶胞上指出: 1)发生滑移的一个滑移面 2)在这一晶面上发生滑移的一个方向 3)滑移面上的原子密度与{001}等其他晶面相比有何差别 4)沿滑移方向的原子间距与其他方向有何差别。 答: 解答此题首先要知道铜在室温时的晶体结构是面心立方。 1)发生滑移的滑移面通常是晶体的密排面,也就是原子密度最大的晶面。在面心立方晶格中的密排面是{111}晶面。 2)发生滑移的滑移方向通常是晶体的密排方向,也就是原子密度最大的晶向,在{111}晶面中的密排方向<110>晶向。 3){111}晶面的原子密度为原子密度最大的晶面,其值为2.3/a2,{001}晶面的原子密度为1.5/a2 4)滑移方向通常是晶体的密排方向,也就是原子密度高于其他晶向,原子排列紧密,原子间距小于其他晶向,其值为1.414/a。 6-3 假定有一铜单晶体,其表面恰好平行于晶体的(001)晶面,若在[001]晶向

相关文档
相关文档 最新文档