文档库 最新最全的文档下载
当前位置:文档库 › CFD松弛因子的解释

CFD松弛因子的解释

CFD松弛因子的解释
CFD松弛因子的解释

1、FLUENT 中关于松弛因子的解释

由于流体力学中要求解非线性的方程,在求解过程中,控制变量的变化是很必要的,这就通过松弛因子来实现的。它控制变量在每次迭代中的变化。也就是说,变量的新值为原值加上变化量乘以松弛因子。

如:

A1=A0+B*DETA

A1 新值

A0 原值

B 松弛因子

DETA 变化量

松弛因子可控制收敛的速度和改善收敛的状况

为1,相当于不用松弛因子

大于1,为超松弛因子,加快收敛速度

小于1,欠松弛因子,改善收敛的条件

一般来讲,大家都是在收敛不好的时候,采用一个较小的欠松弛因子。Fluent里面用的是欠松弛,主要防止两次迭代值相差太大引起发散。松弛因子的值在0~1之间,越小表示两次迭代值之间变化越小,也就越稳定,但收敛也就越慢。

这个1e-3或者1e-4的收敛标准是相对而言的。在FLUENT中残差是以开始5步的平均值为基准进行比较的。如果初值取得好,迭代会很快收敛,但是残差却依然很高;但是当你改变初场到与基准相差很大的值时,残差开始会很大,但随后却可以很快降低到很低的水平。其实两种情况下流场是基本相同的。

2、FLUENT 收敛判断

由此来看,判断是否收敛并不是严格根据残差的走向而定的。可以选定流场中具有特征意义的点,监测其速度,压力,温度等的变化情况。如果变化很小,符合你的要求,即可认为是收敛了。一般来说,压力的收敛相对比较慢一些的。是否收敛不能简单看残差图,还有许多其他的重要标准,比如进出口流量差、压力系数波动等等。尽管残差仍然维持在较高数值,但凭其他监测也可判断是否收敛。最重要的就是是否符合物理事实或试验结论。

残差曲线是否满足只是一个表面的现象,还要看进口和出口总量差不得大于1%,而且即使这样子,收敛解也不一定准确,它和网格划分/离散化误差,以及物理模型的准确性都有关系。所以需要试验数据来验证。

残差的大小不能决定是否收敛,用FLUENT计算时,一般多采用监测一个面的速度(或者是压力、紊动能等参数)基本上不随着计算时间的推移而变化,就认为基本达到收敛据质量守恒,收敛时进、出口的流量数值应大致相等(一般认为进出口质量差值比上入口质量的相对值小于0.5%时收敛,但是对特殊情况可能不同),但符号相反,一般出口流量是负值。

一般在Fluent里可以添加进出口流量监控(print or plot),当残差收敛到一定程度后,还要看进出口流量是否达到稳定平衡,才可以确认收敛与否。

残差在较高位震荡,需要检查边界条件是否合理,其次检查初始条件是否合适,比如在有激波的流场,初始条件不合适,会带来流场的震荡。有时流场可能有分离或者回流,这本身是非定常现象。

计算时残差会在一定程度上发生震荡,这时如果进出口流量是否达到稳定平衡,也可以认为流场收敛了(前提是要消除其他不合理因数)。另外Fluent缺损地采用多重网格,在计算后期,将多重网格设置为零可以避免一些波长的残差在细网格上发生震荡。

初始条件要仔细选择。如果不收敛,还应试验不同的初始条件,甚至逐次改变边界条件最后达到所要求的条件。

3、亚松弛因子的运用

在FLUENT中,所有变量的默认亚松驰因子都是对大多数问题的最优值。这个值适合于很多问题,但是对于一些特殊的非线性问题(如:某些湍流或者高Rayleigh数自然对流问题),在计算开始时要慎重减小亚松驰因子。

使用默认的亚松驰因子开始计算是很好的习惯。如果经过4到5步的迭代残差仍然增长,你就需要减小亚松驰因子。

有时候,如果发现残差开始增加,可以改变亚松驰因子重新计算。在亚松驰因子过大时通常会出现这种情况。最为安全的方法就是在对亚松驰因子做任何修改之前先保存数据文件,并对解的算法做几步迭代以调节到新的参数。最典型的情况是,亚松驰因子的增加会使残差有少量的增加,但是随着解的进行残差的增加又消失了。如果残差变化有几个量级你就需要考虑停止计算并回到最后保存的较好的数据文件。

注意:粘性和密度的亚松驰是在每一次迭代之间的。而且,如果直接解焓方程而不是温度方程(即:对PDF计算),基于焓的温度的更新是要进行亚松驰的。要查看默认的亚松弛因子的值,你可以在解控制面板点击默认按钮。

4、在进行稳态计算时候,开始残差线是一直下降的,可是到后来各种残差线都显示为波形波动,是不是不收敛?

有些复杂或流动环境恶劣情形下确实很难收敛。计算的精度(2阶),网格太疏,网格质量太差,等都会使残差波动。

经常遇到,一开始下降,然后出现波动,可以降低松弛系数,我的问题就能收敛,但如果网格质量不好,是很难的。通常,计算非结构网格,如果问题比较复杂,会出现这种情况,建议作网格时多下些功夫。

理论上说,残差的震荡是数值迭代在计算域内传递遭遇障碍物反射形成周期震荡导致的结果,与网格亚尺度雷诺数有关。例如,通常压力边界是主要的反射源,换成OUTFLOW 边界会好些。

这主要根据经验判断。

网格和边界条件是主要因素。

5、怎样判断计算结果是否收敛

1)观察点处的值不再随计算步骤的增加而变化;

2)各个参数的残差随计算步数的增加而降低,最后趋于平缓;

3)要满足质量守恒(计算中不牵涉到能量)或者是质量与能量守恒(计算中牵涉到能量)。

特别要指出的是,即使前两个判据都已经满足了,也并不表示已经得到合理的收敛解了,因为,如果松弛因子设置得太紧,各参数在每步计算的变化都不是太大,也会使前两个判据得到满足。此时就要再看第三个判据了。

还需要说明的就是,一般我们都希望在收敛的情况下,残差越小越好,但是残差曲线是全场求平均的结果,有时其大小并不一定代表计算结果的好坏,有时即使计算的残差很大,但结果也许是好的,关键是要看计算结果是否符合物理事实,即残差的大小与模拟的物理现象本身的复杂性有关,必须从实际物理现象上看计算结果。比如说最近在算的一个全机模型,在大攻角情况下,解震荡得非常厉害,而且残差的量级也总下不去,但这仍然是正确的,是

因为大攻角下实际流动情形就是这样的,不断有涡的周期性脱落,流场本身就是非定常的,所以解也是波动的,处理的时候取平均就可以。

相关文档