文档库 最新最全的文档下载
当前位置:文档库 › 锅炉并汽的操作步骤

锅炉并汽的操作步骤

锅炉并汽的操作步骤
锅炉并汽的操作步骤

锅炉并汽的操作步骤

一、并汽的条件

1、设备运行正常,燃烧稳定。

2、主汽压力低于母管压力0.1-0.2MPa。

3、主汽温度低于额定温度30-50℃。

4、汽包水位在-50mm。

5、蒸汽品质合格。

6、煤仓内有足够的燃料。

二、并汽操作方法

1、并汽前应打开炉顶主汽旁路门及18米主汽门前疏水暖管,暖管结束后全开炉顶主汽门。

2、开并汽阀门(18米主汽门),注意锅炉汽温及汽机汽温没有下降过多的反映。同时蒸汽管道无振动及水冲击,并汽炉逐渐加强燃烧,开大并汽阀至全开,关闭主汽门前疏水。

3、若运行炉需停炉检修,并汽阀全开后逐渐关闭运行炉主汽门并减弱燃烧,直到运行炉主汽门全关后按停炉操作票执行。

三、并汽的注意事项

1、并汽时,应注意保持汽压、汽温、水位,并缓慢增加蒸发量,并列后至满负荷的时间不少于60分钟,以防赶火过急,引起故障。

2、并汽时值长、专工应在现场。

3、并汽时若发现影响运行系统的一切故障时,应停止并汽。

4、并汽过程中应加强与邻炉的联系,并注意保持汽温,汽压及水位,

并缓慢增加蒸发量,根据蒸汽流量及时调整燃烧,及时调整水位,保持水位正常变化。在并汽过程中,如引起汽水共腾,汽机汽温急剧下降或发生蒸汽管道水冲击等不正常现象时立即停止并汽,加强疏水,恢复正常后重新并汽。

锅炉课程设计说明书模板

课程设计说明书 学生姓名:学号: 学院: 班级: 题目: 指导教师:职称: 指导教师:职称: 年月日

绪论 一、锅炉课程设计的目的 锅炉课程设计《锅炉原理》课程的重要教学实践环节。通过课程设计来达到以下目的:对锅炉原理课程的知识得以巩固、充实和提高;掌握锅炉机组的热力计算方法,学会使用热力计算标准方法,并具有综合考虑锅炉机组设计与布置的初步能力;培养对工程技术问题的严肃认真和负责的态度。 二、锅炉校核计算主要内容 1、锅炉辅助设计:这部分计算的目的是为后面受热面的热力计算提供必要的基本计算数据或图表。 2、受热面热力计算:其中包含为热力计算提供结构数据的各受热面的结构计算。 3、计算数据的分析:这部分内容往往是鉴定设计质量等的主要数据。 三、整体校核热力计算过程顺序 1、列出热力计算的主要原始数据,包括锅炉的主要参数和燃料特性参数。 2、根据燃料、燃烧方式及锅炉结构布置特点,进行锅炉通道空气量平衡计算。 3、理论工况下(a=1)的燃烧计算。 4、计算锅炉通道内烟气的特性参数。 5、绘制烟气温焓表。 6、锅炉热平衡计算和燃料消耗量的估算。 7、锅炉炉膛热力计算。 8、按烟气流向对各个受热面依次进行热力计算。 9、锅炉整体计算误差的校验。 10、编制主要计算误差的校验。 11、设计分析及结论。 四、热力校核计算基本资参数 1) 锅炉额定蒸汽量De=220t/h 2)给水温度:t GS=215℃ 3)过热蒸汽温度:t GR=540℃ 4)过热蒸汽压力(表压)P GR= 5)制粉系统:中间储仓式(热空气作干燥剂、钢球筒式磨煤机) 6)燃烧方式:四角切圆燃烧 7)排渣方式:固态 8)环境温度:20℃ 9)蒸汽流程:一次喷水减温二次喷水减温 ↓↓

锅炉动态特性与调节答案

锅炉动态特性与调节 一、 填空题(每空1分,共20分) 1、按传热方式,过热器大体可分为(对流式过热器),辐射式过热器,(半辐射式过热器)。 2、空气预热器的作用是利用锅炉 ( 尾部烟气的余热 ) 加热燃烧所用的 ( 空气)。 3、表示灰渣熔融特性的三个温度分别叫(变形温度),(软化温度),(熔化温度)。 4、安全门是锅炉的重要 (保护设备),必须在 ( 热态下进行调试才能保证其动作准确可靠)。 5、冷炉上水时,一般水温高于汽包壁温,因而汽包下半部壁温( 高于) 上半部壁温,当点火初期燃烧很弱时汽包下半部壁温很快( 低于) 上半部壁温。 6、当汽包上半部壁温高于下半部壁温时,上半部金属受(轴向压应力),下半部金属受(轴向拉应力)。 7、锅炉点火初期,加强水冷壁下联箱放水,其目的是促进(水循环),使受热面受热( 均匀),以减少汽包壁( 温差)。 8、转动机械轴承温度,滑动轴承不高于(700℃),滚动轴承不高于(800℃)。 9、影响锅炉受热面积灰的因素主要有:烟气流速,飞灰颗粒度,(管束的结构特性),烟气与管子的流向。 10、虚假水位现象是由于负荷突变,造成压力变化,引起(锅炉水状态发生改变)而引起的。 二、判断题(每题1分,共20分) 1、 金属在一定温度和应力作用下逐渐产生塑性变形的现象就是蠕变。(√) 2、 在正常情况下,送风量过大会使过热蒸汽温度上升,送风量过小会使 第1页(共 5页)

过热蒸汽温度降低。(√) 3、主蒸汽管道保温后,可以防止热传递过程的发生。(×) 4、锅炉是火力发电厂三大主要设备之一。(√) 5、锅炉蒸发设备的主要任务是吸收燃料燃烧放出的热量,将水加热成过 热蒸汽。(×) 6、下降管一般布置在炉外,不受热,并加以保温。(√) 7、为了保证水循环的安全可靠,循环倍率的数值不应太小。(√) 8、蒸汽中的盐分主要来源于锅炉给水。(√) 9、锅炉排污可分为定期排污和连续排污两种。(√) 10、过热器各并排管蒸汽吸热不匀的现象叫做过热器的热偏差。(√) 11、管式空气预热器,管内走空气,管外走烟气。(×) 12、影响锅炉管子外部磨损的主要因素是飞灰速度。(√) 13、尾部受热面的低温腐蚀主要是由于水的腐蚀。(×) 14、煤的成分中氧是杂质。(√) 15、灰熔点低容易引起受热面结渣。(√) 16、给水流量不正常地大于蒸汽流量时,汽包水位上升。(√) 17、对流过热汽的出口蒸汽温度是随着锅炉负荷的增加而降低。(×) 18、锅炉安全阀的总排气能力应等于最大连续蒸发量。(×) 19、给水温度升高,在同样的炉内负荷下,锅炉的蒸发量就会提高,其他 工况不变的情况下,过热汽温会上升。(×) 20、汽压稳定决定于锅炉蒸发量与外界负荷之间是否处于平衡状态。(√) 1. 锅炉负荷对过热汽温有何影响?为什么? 答:锅炉负荷增加时,燃料增加,烟量增加,烟速增加,烟侧对流放热系数增加,且传热温差增大,导致烟气放热量增大,另外负荷增加引起蒸汽

锅炉汽温难调整,原因竟然是这样!

锅炉汽温难调整,原因竟然是这样! 火电厂技术联盟 汽温是机炉安全经济运行所必须监视与调整的主要参数之一,由于影响汽温的因素多,影响过程复杂多变,调节过程惯性大,这就要求汽温调节应勤分析、多观察,树立起超前调节的思想。在机组工况发生变化时,应加强对汽温的监视与调整,分析其影响因素与变化的关系,摸索出汽温调节的一些经验,来指导我们的调整操作。下面,我们对一些典型工况进行分析,并提出一些指导性措施。由于汽温变化的复杂性,大家在应用过程中要结合实际遇到的情况学会灵活变通,不可生吞活剥。 汽温调整的原则: 1)在锅炉运行过程中,汽温的稳定取决于烟气侧放热量与蒸汽侧吸热量的平衡,在实际锅炉运行中受各种工况的影响其平衡是一种不稳定的动态平衡,作为运行值班员一定要熟练掌握影响汽温的各种因素,才能在工况发生变化时及时调整好汽温。 2)运行中应严格监视和调整主蒸汽及再热蒸汽温度正常。 3)主蒸汽温度通过两级喷水减温器进行调节,一级减温为主要调整手段进行粗调,二级减温器进行细调维持过热器出口汽温。 4)再热蒸汽温度的调整以摆角为主要调节手段,事故喷水减温器是调节再热汽温的辅助手段,尽量少用或不用再热器事故喷水以提高机组经济性。 5)主汽温度调整应根据过热器各段温度变化趋势及时超前进行,只要中间点温度能够维持正常则高过出口汽温也能维持正常,减温水不可猛增猛减,以防汽温失调。 6)锅炉运行中注意调整汽温正常的同时,还应注意锅炉各受热面的壁温情况,防止锅炉受热面金属超温。 汽温调节的方法: 1、主蒸汽温度高时应采取下列措施 1) 开大减温水调整门,并注意减温水量与减温器后汽温的变化; 2) 调整燃烧降低火焰中心,减少上层燃烧器的风煤量,增加下层燃烧器的风煤量; 3) 降低锅炉负荷,必要时可停止上排磨煤机的运行; 4) 加强水冷壁的吹灰。 2、主蒸汽温度低时应采取下列措施 1) 关小减温水调整门,注意减温水量与减温器后汽温的变化,必要时关闭减温水隔绝门;

DZL1-0.7-AII全自动蒸汽锅炉设计说明书

DZL1-0.7-AII全自动蒸汽锅炉设计说明书 一、产品简介 1、结构简介 新型DZL系列蒸汽锅炉为单锅筒纵置式水火管锅壳式锅炉,燃烧设备为链条炉排。炉膛左右两侧水冷壁为辐射受热面,炉膛两翼烟道为对流受热面,锅筒内布置螺纹烟管(Ф57×3)对流受热面,炉墙采用耐热混凝土整体浇注捣制成型新工艺,锅炉主机外侧为立体形护板外壳。 锅炉本体在总体结构上采用上置锅筒,水冷壁管和集箱左右对称布置的形式。锅筒由Ф1200×10的筒体和Ф1200×10的前后管板组焊而成。水冷壁管为Ф51×3的锅炉管,集箱为Ф159×6 锅炉管,下降管为Ф108×6锅炉管. 该锅炉炉膛内布置有前后拱,燃烧效率高。 该系列锅炉采用最新科研成果,如:拱型管板、螺纹烟管等,解决了锅壳式锅炉的管板裂纹,水冷壁爆管、热效率低、出力不足、煤质适应性差等问题。 2、燃烧过程 燃料经煤斗、链条炉排进入炉膛燃烧,产生的烟气沿锅筒底部经由八字烟道上的出口烟窗进入两翼对流管束,通过前烟箱进入螺纹烟管,经过除尘器,由引风机抽引通过烟囱排入大气。 3、技术特点 (1)采用拱型管板与螺纹烟管组成锅筒,使锅筒由准钢性体变为准弹性体结构,取消了管板区的拉撑件,减少了应力。管板内烟管由两回程改为单回程,解决了管板裂纹的难题。 (2)锅筒下部由于布置了上升管排,消除了锅筒底部的死水区,使泥渣不易沉积,锅筒高温区能得到良好的冷却,预防了锅筒下部鼓包。 (3)采用高效传热螺纹烟管,获得了强化传热效果,达到锅炉升温、升压快的特点,提高了锅炉的热效率。 (4)结构紧凑,与同类型锅炉比较,外形尺寸小,节省锅炉房基建投资。 (5)运行稳定、调整方便、出力足。 (6)采用螺纹烟管强化传热,提高了传热系数和热效率,由于烟气在管内有扰动作用。烟管内不易积灰,起到自清扫的作用。 (7)炉膛内的八字墙、出口烟窗部位均有一定降尘作用。使锅炉的原始排尘浓度控制在标准以下,保证了锅炉烟尘排放达到国家环保规定的指标。 二、锅炉主要规范及设计参数 1.锅炉蒸发量 1 t/h 2.蒸汽压力 0.7 MPa 3.蒸汽温度 170 ℃ 4.给水温度 20 ℃ 5.设计效率≥75 % 6.设计燃料Ⅱ类烟煤 7.燃料消耗量 130 kg/h 8.受热面积 39 m2 9.排烟温度 230 ℃ 10.锅炉水容积 3.2 m3 11.大件运输重量15000 kg 12.锅炉大件运输尺寸5100×1800×3580mm(长×宽×高) 三、安全阀、辅机及控制说明 该锅炉配有A48H-1.6C全启式弹簧安全阀(DN40)两只。 给水泵采用1WZ4-120锅炉给水泵,且实现锅炉手动或自动给水。 为了有效地监视和控制水位及压力,该锅炉配备有水位计、水位控制及报警器,具有低水位联锁保护功能,同时还配备有两只压力表。 该锅炉配有4-72-12 №2.8A鼓风机、Y5-47-4C引风机、除尘器、上煤机、出渣机及炉排调速器等。

锅炉汽包给水控制要点

过程控制系统设计与实践 工艺过程及要求 6号课题:锅炉汽包给水控制系统(该题目不要有任何改动) 该课题由第六组4名同学完成。 汽包水位是影响锅炉安全运行的重要因素,水位过高会破坏汽水分离装置的正常工作,水位过低会引起水冷壁破裂。锅炉汽包给水控制的任务是使给水量适应锅炉蒸发量,使汽包中水位保持一定范围内。工艺上要求: 1)正常运行时水位波动范围:±30~50mm。 2)异常情况:±200mm。事故情况:>±350mm。 3)出现事故时能进行报警。 4)保持稳定的给水量。给水量不应该时大时小地剧烈波动,否则对省煤 器和给水管道的安全运行不利。 图1 汽包给水系统工艺流程图

目录 1 引言 (1) 1.1 论文选题背景 (1) 1.2 锅炉汽包给水系统 (1) 1.2.1 工作过程 (1) 1.2.1 控制对象及控制任务 (1) 2 给水控制基本方案 (2) 2.1 单冲量控制系统 (2) 2.2 双冲量控制方案 (3) 2.3 三冲量控制系统 (4) 2.4 几种控制方案的比较 (4) 2.5 最优方案 (5) 3 系统的实现 (6) 3.1 引起“虚假水位”原因分析 (6) 3.2 汽包水位检测元件 (7) 3.2.1 测量的问题 (7) 3.2.2 检测元件的型号选择 (8) 3.2 给水阀的选择 (8)

3.2.1 气开气关的选择 (8) 3.2.2 调节阀的型号选择 (8) 3.3 调节器的选择 (9) 3.3.1 控制规律与正反作用确定 (9) 3.3.2 调节器的型号选择 (10) 3.3 流量检测元件的选择 (10) 3.4 仪器仪表清单 (11) 4 结束语 (12) 参考文献 (13) 附录..................................... 错误!未定义书签。

燃油蒸汽锅炉房课程设计说明书

东华大学 燃油蒸汽锅炉房课程设计说明书 ——上海某造纸厂锅炉及锅炉房设计 学院: 专业班级: 学生姓名: 学号: 指导老师: 2012年6月24日

目录 1、设计概况 (2) 2、设计原始资料 (2) 2.1蒸汽负荷及参数 (2) 2.2 燃料资料 (2) 2.3水质资料 (2) 2.4气象资料 (2) 3、热负荷计算及锅炉选择 (2) 3.1最大热负荷 (2) 3.2锅炉型号与台数的确定 (2) 4、给水及水处理设备的选择 (3) 4.1给水设备的选择 (3) 4.2水处理系统设计及设备选择 (4) 5、热力除氧器选型 (7) 6、汽水系统主要管道管径的确定 (8) 6.1锅炉房最大的用水量及自来水总管管径的计算 (8) 6.2与离子交换器相接的各管管径的确定 (8) 6.3给水管管径的确定 (9) 6.4蒸汽母管管径 (9) 7、燃油系统以及送、引风系统的设备选择计算 (9) 7.1计算燃油消耗量,确定燃油系统 (9) 7.2计算理论空气量0V k 和烟气量0 V y (10) 7.3送风机的选择计算 (11) 7.4引风机的选择计算 (11) 7.5风、烟管道断面尺寸设计计算 (12) 7.6热回收方案确定 (13) 7.7烟囱设计计算 (13) 8、锅炉房布置 (15) 9、锅炉房人员的编制 (15) 10、锅炉房主要设备表 (15) 11、参考文献 (16)

一、 设计概况 本设计为一燃油蒸汽锅炉房,为造纸厂生产过程提供饱和蒸汽。生产用气设备要求提供的蒸汽压力最高为0.4MP ,用气量为20t/h;假设造纸厂凝结水回收利用率为20%。 二、 设计原始资料 1、蒸汽负荷及参数: 生产用汽 D=20t/h, P=0.4MPa, 设凝结水回收率=20% 2、燃料资料: 选择200号重油作为锅炉燃料 元素分析成分: ar 83.976%,12.23%,1%,0.568%0.2%,2%,0.026% ar ar ar ar ar ar C H S O N W A ======= 重油收到基低位发热量:,=41868kj/kg net ar Q 密度:3=0.92~1.01/g cm ρ 3、水质资料 总硬度: H=3me/L 永久硬度:FT H =1.0me/L 总碱度:T H =2me/L PH 值: PH=7.5 溶解氧: 6~9mg/L 悬浮物: 0 溶解固形物:400me/L 注:未查到相关资料,采用假设值。 4、气象资料: 大气压强:101520Pa 海拔高度: 4.5 m 土壤冻结深度: 无土壤冻结情况 冬季采暖室外计算温度:-2℃ 冬季通风室外计算温度:3℃ 三、 热负荷计算及锅炉选择 1、最大热负荷: 生产过程所需最大热负荷:00=K =22/D D t h 0K ——考虑蒸汽损失及锅炉房汽泵、吹灰、自用蒸汽等因素的系数取1.1。 2、 锅炉型号与台数的确定 根据用于生产的最大蒸汽负荷22t/h 以及蒸汽压力0.4Mpa ,且采用重油作为燃料,本设计选用WNS8-1.25-Y(Q)型锅炉3台。工作过程中3台锅炉基本上接

锅炉汽包水位控制系统设计-毕业论文

摘要 汽包水位是影响锅炉安全运行的一个重要参数,汽包水位过高或者过低的后果都非常严重,因此对汽包水位必须进行严格控制。PLC技术的快速发展使得PLC 广泛应用于过程控制领域并极提高了控制系统性能,PLC已经成为当今自动控制领域不可缺少的重要设备。 本文从分析影响汽包水位的各种因素出发,重点分析了锅炉汽包水位的“假水位现象”,提出了锅炉汽包水位控制系统的三冲量控制方案。按照工程整定的方法进行了PID参数整定,并进行了仿真研究。根据控制要求和所设计的控制方案进行硬件选型以及系统的硬件设计,利用PLC编程实现控制算法进行系统的软件设计,最终完成PLC在锅炉汽包水位控制系统中应用。 关键词:汽包水位、三冲量控制、PLC、PID控制

ABSTRACT The steam drum water level is a very important parameter for the boiler safe operation, both high and low steam drum water level may lead to extremely serious consequence; therefore it must be strictly to be controlled. With the rapid development of PLC technology, it can widely be applied to the process control domain and enhances the performance of control system enormously. PLC has already become the essential important equipment in automatic control domain. Based on the analysis of all kinds of factors which influence steam drum water level, “unreal water level phenomenon”is analyzed specially, and three impulses control plan for steam drum water level control system is proposed. PID parameters are regulated by engineering regulation method, and simulation study is done. According to the needs of control, the selection of control requirements hardware and system hardware design as well as system software design are carried out. Finally the application of PLC in boiler steam drum water control system is completed. Key words:Steam drum water level、Three impulses control、PLC、PID control

油田注汽锅炉水处理装置经济运行技术研究

油田注汽锅炉水处理装置经济运行技术研究 顾 嵘,杨 彬,郝 军,赵红岩 (新疆油田分公司重油公司,新疆克拉玛依) 摘 要:简要介绍了油田注汽锅炉水处理装置运行现状、存在问题以及解决方法,通过对软化装置和除氧装置工艺进行改造,合理调控运行参数,引进应用了硬度在线监测装置等手段,有效地降低了水处理装置运行成本。 关键词:钠离子交换剂;交换软化;真空脱氧;化学除氧 油田注汽锅炉是随着重油热力开采而迅速发展起来的一种新型工业锅炉,是一种高压直流锅炉。直流锅炉对给水质量要求较高,为使锅炉给水质量达标,保证锅炉安全经济运行,油田注汽锅炉配有专用水处理装置,来进行锅炉给水处理。由于水处理装置部分工艺流程和控制系统方面存在的不足及缺陷,使得锅炉水处理装置在生产合格给水的同时,吨水处理成本偏高,影响了注汽锅炉安全经济运行。经过深入细致的调研和探索,终于成功的解决了油田注汽锅炉水处理装置存在的问题。1 软化装置运行技术研究1.1 软化再生工艺改造研究 当钠离子交换剂失效后,为了恢复其软化能力,必须用Na +再生剂进行再生,油田注汽锅炉水处理 采用的再生剂为食盐(NaCL)溶液。再生是离子交换器使用过程中十分重要的一个环节,再生效果的好坏直接影响软化器出水质量。现场运行中就出现再生时间长、再生剂流量小、再生后效果差、离子交换剂使用时间短、失效快的现象。经开罐检查发现以上情况均是二级交换器内的布盐器堵塞、脱落造成的。原设计二级罐内装有布盐器,布盐器易堵,再生进盐时压力较低(0.2~0.3M Pa ),盐水不能将堵塞物冲开,造成进盐量小,影响进盐、置换。造成一级罐树脂得不到充分还原,使用时间短。为此联合站技术人员通过研究决定改造原再生工艺流程。根据改造方案,对水处理再生工艺流程进行了改造,去除了二级罐内的布盐器,变更了一、二级罐之间盐路连接方式,如图1 所示。 图1 改造后工艺流程 1.2 交换器软化能力提高研究 1.2.1 交换器的周期制水量的调整 正常工作的离子交换器,不论进入去硬度交换器的生水硬度如何变化,其出水(软水)的残留硬度都不受影响。交换剂开始运行时,软水残留硬度较 高,此情况短时间就消失,这种现象是正常软化水量的。然后软水的残留硬度就很小,并保持平稳,直到快失效前残留硬度迅速增高,失效以后的曲线称为(尾部)。性能越好的交换剂,其尾部的失效曲线应越接近于垂直。若失效曲线很倾斜,则说明尾部交换能 11  2007年第5期 内蒙古石油化工 收稿日期:2006-11-12

吉林大学锅炉课程设计说明书DOC

吉林大学锅炉课程设计说明书DOC 1 2020年4月19日

本科生课程设计 题目: 锅炉课程设计--26题 学生姓名:刘泰秀42101020 专业:热能与动力工程(热能)班级: 421010班

一、设计任务 1.本次课程设计是一次虚拟锅炉设计,主要目的是为了完成一次完整的热力计算。 2.根据所提供参考图纸,绘制A0图纸2张,其目的是为掌握典型锅炉的基本机构及工作原理。 3.以《锅炉课程设计指导书》为主要参考书,以《电站锅炉原理》、《锅炉设计手册》为辅助参考资料,进行设计计算。 二、题目要求 锅炉规范: 1.锅炉额定蒸发量 670t/h 2.给水温度:222 ℃ 3.过热蒸汽温度:540 ℃、压力(表压)9.8MPa 4.制粉系统:中间仓储式 5.燃烧方式:四角切线圆燃烧 6.排渣方式:固态 7.环境温度:20 ℃ 8.蒸汽流程:指导书4页 三、锅炉结构简图

四、计算表格 设计煤种名称Car Har Oar Nar Sar Aar Mar Qar 枣庄甘霖井56.90 3.64 2.25 0.88 0.31 28.31 7.71 22362 序 号 项目名称符号单位计算公式及数据结果 1 理论空气量V0 m3/kg 0.0889*(Car+0.375*Sar)+0.265*Har- 0.0333*Oar 5.9584 2 理论氮容积V0N2 m3/kg 0.8*Nar/100+0.79*V0 4.7142 3 RO2容积VRO2 m3/kg 1.866*Car/100+0.7*Sar/100 1.0639 4 理论干烟气 容积 V0gy m3/kg V0N2+VRO2 5.7781 5 理论水蒸气 容积 V0H2O m3/kg 11.1*Har/100+1.24*Mar/100+1.61*dk *V0 0.5956 6 飞灰含量αfh 查表2-4 0.9

直流蒸汽锅炉和汽包蒸汽锅炉的特点分析

直流蒸汽锅炉和汽包蒸汽锅炉的特点分析 两者相比较,直流蒸汽锅炉的水处理要求更高,适合直流的就适合汽包蒸汽锅炉,适合汽包蒸汽锅炉的不一定适合直流蒸汽锅炉。(文章来源:河南永兴锅炉集团https://www.wendangku.net/doc/ca11191042.html,转载请注明!) 一、直流蒸汽锅炉介绍: 直流锅炉没有汽包,工质一次通过蒸发部分,即循环倍率为1。直流蒸汽锅炉的另一特点是在省煤器、蒸发部分和过热器之间没有固定不变的分界点,水在受热蒸发面中全部转变为蒸汽,沿工质整个行程的流动阻力均由给水泵来克服。如果在直流锅炉的启动回路中加入循环泵,则可以形成复合循环蒸汽锅炉。 即在低负荷或者本生负荷以下运行时,由于经过蒸发面的工质不能全部转变为蒸汽,所以在锅炉的汽水分离器中会有饱和水分离出来,分离出来的水经过循环泵再输送至省煤器的入口,这时流经蒸发部分的工质流量超过流出的蒸汽量,即循环倍率大于1。当锅炉负荷超过本生点以上或在高负荷运行时,由蒸发部分出来的是微过热蒸汽,这时循环泵停运,锅炉按照纯直流方式工作。二、直流蒸汽锅炉的技术特点: (1)取消汽包,能快速启停。与自然循环蒸汽锅炉相比,直流锅炉从冷态启动到满负荷运行,变负荷速度可提高一倍左右。(2)适用于亚临界和超临界以及超超临界压力锅炉。 (3)蒸汽锅炉本体金属消耗量最少,锅炉重量轻。一台300MW 自然循环蒸汽锅炉的金属重量约为5500t~7200t,相同等级的直流蒸汽锅炉的金属重量仅有4500t~5680t,一台直流蒸汽锅炉大约可节省金属2000t。加上省去了汽包的制造工艺,使锅炉制造成本降低。 (4)水冷壁的流动阻力全部要靠给水泵来克服,这部分阻力约占全部阻力的25%~30%。所需的给水泵压头高,既提高了制造成本,又增加了运行耗电量。 (5)直流锅炉启动时约有30%额定流量的工质经过水冷壁并被加热,为了回收启动过程的工质和热量并保证低负荷运行时水冷壁管内有足够的重量流速,直流锅炉需要设置专门的启动系统,而且需要设置过热器的高压旁路系统和再热器的低压旁路系统。加上直流锅炉的参数比较高,需要的金属材料档次相应要提高,其总成本不低于自然循环锅炉。 (6)系统中的汽水分离器在低负荷时起汽水分离作用并维持一定的水位,在高负荷时切换为纯直流运行,汽水分离器起到一个蒸汽联箱的作用。 (7)为了达到较高的重量流速,必须采用小管径水冷壁。这样,不但提高了传热能力而且节省了金属,减轻了炉墙重量,同时减小了锅炉的热惯性。 (8)水冷壁的金属储热量和工质储热量最小,即热惯性最小,使快速启停的能力进一步提高,适用机组调峰的要求。但热惯性小也会带来问题,它使蒸汽锅炉水冷壁对热偏差的敏感性增强。当煤质变化或炉内火焰偏斜时,各管屏的热偏差增大,由此引起各管屏出口工质参数产生较大偏差,进而导致工质流动不稳定或管子超温。 (9)为保证足够的冷却能力和防止低负荷下发生水动力多值性以及脉动,水冷壁管内工质的重量流速在MCR 负荷时提高到2000 ㎏/(㎡*s)以上。加上管径减小的影响,使直流锅炉的流动阻力显著提高。600MW 以上的直流锅炉的流动阻力一般为5.4MPa~6.0MPa。 (10)汽温调节的主要方式是调节燃料量与给水量之比,辅助手段是喷水减温或烟气侧调节。由于没有固定的汽水分界面,随着给

锅炉汽温调整的方法和注意事项

锅炉汽温调整的方法和注意事项汽温是机、炉安全经济运行所必须监视与调整的主要参数之一,由于影响汽温的因素多,影响过程复杂多变,调节过程惯性大,这就要求汽温调节应勤分析、多观察,树立起超前调节的思想。在机组工况发生变化时,应加强对汽温的监视与调整,分析其影响因素与变化的关系,摸索出汽温调节的一些经验,来指导我们的调整操作。下面,我们对一些典型工况进行分析,并提出一些指导性措施。由于汽温变化的复杂性,大家在应用过程中要结合实际遇到的情况学会灵活变通,不可生搬硬套。 一、机组正常运行中的汽温调节 汽温调节可以分为烟气侧调整、蒸汽侧的调整,烟气侧的调节过程惯性大,通常情况下需要3-5分钟左右温度才会开始变化;而蒸汽侧的调节相对比较灵敏。因此正常运行过程中,应保持减温水调整门具有一定的开度,一般应大于7%;如果减温器已经关完或开度很小时,由于阀门的特性原因它的调节能力减弱,也就是减温水流量变化相对较小,此时应观察同侧另一级减温水流量是否偏大,并及时对其的减温水流量进行重新分配,另外还可以对燃烧进行调整(在炉膛氧量允许时可适当加大风量,或调整风门使火焰中心上移),使汽温回升、减温器开启。如果各级减温器开度均比较大时(若大于60%),

同时也应从燃烧侧调整,或对炉膛进行吹灰,以达到关小各级减温器,使其具有足够的调节余量。 总之,在机组正常运行时,各级减温后的蒸汽温度在不同工况下是不相同的。应加强对各级减温器后蒸汽温度的监视,并做到心中有数,以便在汽温异常时作为调整的参考。建议在负荷发生变化时应将减温水且为手动调整,避免汽温大幅度波动。 二、变工况时汽温的调节。 变工况时汽温波动大,影响因素众多,值班员应在操作过程中分清主次因素,对症下药,及早动手,提前预防.必要时采取过调手段处理,不可贻误时机,酿成超温事故。变工况时汽温的变化主要是锅炉的燃烧负荷与汽轮机的机械负荷不匹配所造成的。一般情况下,当锅炉的热负荷大于汽轮机的机械负荷时,汽温为上升趋势,两者的差值越大,汽温的上升速度越快。目前机组在投入BLR方式下运行时,机组负荷变化频繁且幅度较大。下面对几种常见情况分析如下: 1、正常加减负荷时的汽温调节。 正常加负荷时,在汽轮机调门开度增加,锅炉压力下降自调系统开始增加燃料量、风量。而汽温的变化要滞后于燃烧侧的热负荷的增加。对于过热器来说,由于蒸发量的增加,对过热汽温有一定的补偿能力,所以过热汽温的变化是滞后与负荷变化速度的(它随着负荷的增加燃料量、蒸汽压力、蒸汽流量的增加而增快的)。也就是说负荷

锅炉课程设计说明书

锅炉课程设计说明书文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

课程设计说明书学生姓名:学号: 学院: 班级: 题目: 指导教师:职称: 指导教师:职称: 年月日 绪论 一、锅炉课程设计的目的 锅炉课程设计《锅炉原理》课程的重要教学实践环节。通过课程设计来达到以下目的:对锅炉原理课程的知识得以巩固、充实和提高;掌握锅炉机组的热力计算方法,学会使用热力计算标准方法,并具有综合考虑锅炉机组设计与布置的初步能力;培养对工程技术问题的严肃认真和负责的态度。 二、锅炉校核计算主要内容 1、锅炉辅助设计:这部分计算的目的是为后面受热面的热力计算提供必要的基本计算数据或图表。 2、受热面热力计算:其中包含为热力计算提供结构数据的各受热面的结构计算。 3、计算数据的分析:这部分内容往往是鉴定设计质量等的主要数据。

三、整体校核热力计算过程顺序 1、列出热力计算的主要原始数据,包括锅炉的主要参数和燃料特性参数。 2、根据燃料、燃烧方式及锅炉结构布置特点,进行锅炉通道空气量平衡计算。 3、理论工况下(a=1)的燃烧计算。 4、计算锅炉通道内烟气的特性参数。 5、绘制烟气温焓表。 6、锅炉热平衡计算和燃料消耗量的估算。 7、锅炉炉膛热力计算。 8、按烟气流向对各个受热面依次进行热力计算。 9、锅炉整体计算误差的校验。 10、编制主要计算误差的校验。 11、设计分析及结论。 四、热力校核计算基本资参数 1) 锅炉额定蒸汽量De=220t/h 215℃ 2) 给水温度:t GS= =540℃ 3)过热蒸汽温度:t GR 4)过热蒸汽压力(表压)P GR= 5)制粉系统:中间储仓式(热空气作干燥剂、钢球筒式磨煤机) 6)燃烧方式:四角切圆燃烧 7)排渣方式:固态

锅炉汽包水位调整总结

300MW机组锅炉汽包水位调整技术的探讨 【摘要】阐述了300MW机组锅炉汽包水位的变化机理和锅炉汽包水位调整技术,对锅炉运 行过程中汽包水位的一些关键问题从不同角度进行了探讨,为运行人员提供了科学的操作依据、实践经验和技术支持。【关键词】锅炉水位调整 1、前言锅炉的汽包水位由于调整不当,将造成两种水位事故。一种是汽包满水事故,指锅炉 汽包水位严重高于汽包正常运行水位的上限值,使锅炉蒸汽严重带水,蒸汽温度急剧下降,发生水冲击,损坏管道和汽轮机组。另一种是汽包缺水事故,指锅炉水位低于能够维持锅炉正常水循环的水位,蒸汽温度急剧上升,水冷壁管得不到充分的冷却而发生过热爆管。这种事故的发生轻者造成机组非计划停运,严重时可造成汽轮机和锅炉设备的严重损坏。在机组正常启停和运行中通过科学的判断分析和正确的高水平的调整汽包水位,才能很好的防止恶性事故的发生和间接地降低发电厂的生产成本。 2、汽包水位的变化机理 2.1 锅炉启动过程中的汽包水位变化投入炉底部加热后,辅汽在炉 水中凝结成为炉水,使汽包水位缓慢上升。锅炉点火初期,由于冷风带走的热量和燃油燃烧释放的热量相等,汽包水位无大的变化。当1.8t/h的油枪增投至两支及以上时,由于热量平衡的 破坏,使炉内温度上升,炉水吸热开始产生汽泡,汽水混合物的体积膨胀,汽包水位开始缓慢上升产生暂时的虚假水位,随炉水吸热量的增加,当水冷壁内水循环流速加快后,大量汽水混合物进入汽包后汽水分离,饱和蒸汽进入过热器,使汽包水位开始明显下降。随着汽包压力的升高,这种蒸发速度会降低,但在实践中观察该现象不太明显。当到达冲转参数(主蒸汽压力4.2Mpa,主蒸汽温度320℃)关闭35%旁路的过程中,蒸发量下降,单位工质吸收的热量增加,微观分析,分子运动速度加快,对汽包、水冷壁、过热器的撞击次数增多,宏观观察,汽包压力又进一步升高,送一方面使汽水混合物比容减小,另一方面饱和温度升高,很多已生成的蒸汽凝结为水,水中气泡数量减小汽水混合物的体积缩小,促使汽包水位迅速下降,造成暂时的虚假水位,这时在给水量未变的情况下由于锅炉耗水量下降汽包水位会迅速回升。在挂闸冲转后水位的变化相反。机组并网后负荷50Mw给水主副阀切换时,由于给水管路直径的变大使给水流量加大汽包水位上升很快。其它阶段只要给水量随负荷的上升及时增加汽包水位的变化不太明显。2.2 引风机、送风机、一次风机、磨煤机跳闸后汽包水位的变化锅炉的上述四大转机任意跳闸1台,相当于炉内燃烧减弱,水冷壁吸热量减少,炉水体积缩小,汽泡减少,使水位暂时下降。从实际事故中观察,跳1台引风机后的10s内,给水自动以2t/s的速度增加,其水位下降速率仍然高达6.2mm/s。同时气压也要下降,饱和温度相应降低,炉水中汽泡数量又将增加,水位又会上升,还由于负荷的下降,给水量不变,如果人工不干预,水位最终会上升。这就是平时所说的先低后高。2.3高加事故解列后汽包水位的变化高加事故解列,就是汽轮机的一二三段抽汽量 突然快速为零的过程。对于锅炉来说,发生了2个工况的变化,一个是蒸汽流量减少压力升高,另一个是给水温度降低100℃引起的炉水温度降低,水位将先低后高。2.4 突然掉大焦和一次风压突升后汽包水位的变化这种情况相当于燃烧加强的结果,水冷壁吸热量增加,炉水体积膨胀,汽泡增多,使水位暂时上升:同时气压也要升高,饱和温度相应升高,炉水中汽泡数量又将减少,水位又会下降;随后蒸发量增加,但给水未增加时,水位又进一步下降,即水位先高后低。从实际生产中观察,上升不明显,但下降较快,事故发生10s后,虽然给水以1t/s的速度增加,水位仍以1.7mm/s的速度下降。2.5 锅炉安全门动作和负荷突变后汽包水位的变化当锅炉安全门动作或负荷突增时,汽包压力将迅速下降,送时一方面汽水比容增大,另一方面使饱和温度降低,促使生成更多的蒸汽,汽水混合物体积膨胀,形成虚假高水位。但是由于负荷增大,炉水消耗增加,炉水中的汤泡逐渐逸出水面后,水位开始迅速下降,即先高后低。当安全门回座或负荷突降时,水位变化过程相反。3 锅炉启动过程中汽包水位的调整(1)经过高加水侧锅炉冷态启动上水正常后,投入底部加热之前给电子水位计测量筒进行灌水,使电子水位能正确显示,防止在启动过程中水位误差过大造成汽包水位无法投入和MFT误动事故。(2)锅炉底部

影响锅炉汽温的因素及汽温的控制措施

仅供参考[整理] 安全管理文书 影响锅炉汽温的因素及汽温的控制措施 日期:__________________ 单位:__________________ 第1 页共8 页

影响锅炉汽温的因素及汽温的控制措施 锅炉运行中,如果汽温过高,将引起过热器、再热器、蒸汽管道以及汽轮机汽缸、阀门、转子部分金属强度降低,导致设备使用寿命缩短,严重时甚至造成设备损坏事故。从以往锅炉受热面爆管事故统计情况来看,绝大多数的炉管爆破是由于金属管壁严重超温或长期过热造成的,因而汽温过高对设备的安全是一个很大的威胁。蒸汽温度低的危害大家也是知道的,它将引起机组的循环效率下降,使煤耗上升,汽耗率上升,新蒸汽温度过低时,带来的后果就不仅仅是经济上的问题了,严重时可能引起蒸汽带水,给汽轮机的安全稳定运行带来严重的危害,所以规程上规定机组额定负荷下新蒸汽温度变化应在+5℃~-5℃之间。 一、影响过热汽温变化的因素 1、燃料性质的变化:主要指燃料的挥发份、含碳量、发热量等的变化,当煤粉变粗时,燃料在炉内燃烬时间长,火焰中心上移,汽温将升高。当燃料的水份增加时,水份在炉内蒸发需吸收部分热量,使炉膛温度降低,同时水份增加,也使烟气体积增大,增加了烟气流速,使辐射过热器的吸热量降低,对流过热器的吸热量增加。 2、风量及其配比的变化:炉内氧量增大时,由于低温冷风吸热,炉膛温度降低,使炉膛出口温度升高。在总风量不变的情况下,配风的变化也会引起汽温的变化,当下层风量不足时,部分煤粉燃烧不完全,使得火焰中心上移,炉膛出口烟温升高。 3、燃烧器及制粉系统运行方式的变化:上层制粉系统运行将造成汽温升高,燃烧器摆角的变化,使火焰中心发生变化,从而引起汽温的变化 4、给水温度的变化:给水温度升高,蒸发受热面产汽量增多,从 第 2 页共 8 页

锅炉汽包安装作业指导书

1、工程概况 1.1工程简介 本项目为东营市港城热力在东营市东营港大明工业园区内建设的1×410t/h+1×B20MW供热机组工程,由山东省鑫峰工程设计有限公司设计。锅炉由无锡华光锅炉股份有限公司设计生产的UG410/9.8-M型高温高压自然循环汽包炉,平衡通风、紧身封闭。燃用烟煤、额定蒸发量410t/h,最大连续出力451t/h,额定蒸汽压力(表压)9.8MPa,锅筒工作压力(表压)11.87MPa ,额定蒸汽温度540℃,给水温度215℃,汽包采用悬吊式安装方式。 1.2主要工程量及总的施工方案 1.2.1主要工程量 1.2.1.1锅炉汽包筒体安装(包括内部装置) 1套 1.2.1.2 U型吊杆安装 2套 1.2.2设备简介 锅炉汽包内径1600mm,壁厚90mm,总长16464mm,材质为P355GH。包括汽包内部装置,汽包总重约71.332t。汽包吊挂装置为U型吊杆, U型吊杆的四个吊挂点分别距锅炉对称中心线4350mm和4350mm,吊杆总重量为6715 Kg;汽包内部装置总重6809 Kg。 1.2.3总的施工方案 汽包由汽车运输到锅炉炉底BE轴与BF轴之间卸车,在炉底进行汽包划线,转身等工作,检查并调整汽包的方向、位置及水平。根据汽包纵、横向中心线,在汽包顶梁上划出汽包的纵、横向中心线的位置,再根据汽包横向中心线划出汽包吊架的纵向中心线,并复核对角线。吊装捆扎前要转动汽包,使水平线处于水平位置,并注意人孔和管座位置,避免起吊后再做调整。汽包吊装捆扎时不允许将绳索通过管孔或将管孔、管座作受力点。钢丝绳必须围绕筒体捆扎,钢丝绳和汽包之间用木板、软布垫实做保护,并注意捆扎的方法和道数,以防止起吊打滑。正式起吊前要试吊,一般吊起20cm,检查各受力点部位,再下坠5-10cm,在一切正常后才能正式起吊。 1)根据现场条件,汽包的提升方法采用2组100t滑车组和2台10t卷扬机垂直吊装。起吊时,应先稍稍吊空,经试吊检查(以利于平稳提升,同时便于上、下吊环对接)后,方可正式提升。起吊时右侧高,左侧低,右侧比左侧高13.49米,倾斜角度45度。

高压汽包锅炉及内部结构分析

高压汽包锅炉的内部结构分析 I. I. Belyakov 1 . 高压汽包锅炉内部结构分析表明了单级蒸发系统是最有利的。这 种设计确保了在相等的连续排污量是引入锅水的碱式磷酸盐的最 少消耗量和最小的含盐量。 关键词:内部结构,汽包锅炉,蒸发级,磷酸盐,排污。 汽包锅炉不同于直流锅炉,它需要通过组织内部结构以确保蒸发量,以及把过程中的内部沉积和蒸发受热面的金属腐蚀产物限制在最小值。这样的设计是必要的,因为在汽包锅炉中,蒸发受热面和过热器之间存在固定的分界面;由于化合物在传热介质水相和蒸汽相的溶解度不同(蒸汽相中化合物溶解度低于水相),化合物富集于锅水中。 依据成分平衡,其中不包括携带到蒸汽中的盐份,锅水中化合物的平均浓度由 fw bw C p p C +=1 )1( 确定,其中fw C 和bw C 分别代表给水的给水和锅水的杂质浓度,代表排污率,即,排污量)(bl D 与蒸发量)(st D 之比。 从表达式)1(中可知,汽包排污水中可溶性杂质浓度,当排污率%1=p 时,它近似等于给水的100倍。因此,为了防止蒸发受热面管子的金属被腐蚀,锅水中应该添加特殊的试剂以使管子的内表面水垢沉积变的最小。 为了保证锅水中可溶性杂质的浓度为恒值,一部分应该连续从汽包中排出,腐蚀 1 Central Boiler and Turbine Institute (NPO TsKTI), Russia.

产物和不可溶矿泥的形式从下联箱中周期性的排出。 由于可以从锅水中排出一部分杂质,所以在相同蒸发量时,汽包锅炉的给水品质可以比直流锅炉的给水品质低。 图1介绍了最广泛使用的高压汽包锅炉内在结构。 为了提高蒸汽分离效率,它才用了分级蒸发原理,并带有在顶端布置立式旋风分离器的除盐装置。在分离器内部一个直接定位于汽包上的清洁空间,用于汽水混合物的分离,所有的蒸汽是通过特殊的清洗装置用给水清洗的。 目前,我们不能在假定它们能够产生足够所需的蒸汽前提下来考虑设备和分离装置的最佳布置,而是要从能够提供可靠的蒸发受热表面的观点出发来分析内部结构。 数量上相当于锅炉消耗量(蒸发量的一半)的给水是由起泡穿层式清洗装置提供并送入汽包水空间的。 磷酸盐或是碱式磷酸盐通过特殊方式引入汽包是为了粘合硬盐,并使锅水PH 值接近到适合于保护蒸发受热面管子金属的值,使蒸发受热面不被腐蚀。磷酸盐被引入到锅水是因为这将导致生成243)(PO Ca 或26410)()(OH PO Ca ])()(3[224OH Ca PO Ca ?。这些化合物在水中是难溶的。磷酸盐会在受热面上形成传导率低的沉淀和氢氧根促成积垢。由于后者化合物主要形成-OH 形式的离子,因此引入锅水的磷酸盐要比引入给水的多[1]。 这种磷酸盐引入法需要在汽包长度方向上均匀的支架带有小直径排污孔的特殊管子。有许多空堵塞的例子,在汽包长度方向上变形很严重。 在省煤气之后直接往给水中加磷酸盐是比较简单的。这种方法在化学工业汽包压力为MPa 0.10的废热锅炉中已经成功使用很多年了[2]。 因为碱式磷酸盐加入高压汽包锅炉可以改善锅水品质,所以将它引入给水或锅炉其他部分已经没有实际意义了。 盐是通过连排管子排出锅炉的。这种排污方式使得平分管路和化学工业排污过程自动程度简单化成为了可能。然而,这种工程溶液要求在连接管路中有严格的对称性分布。如果违反这个条件,盐的分布可能会因为在锅炉侧排污的不均匀流动而被扰动 (盐移)。 连排水是从立式旋风分离器里低于设计水位mm 300~200的最后蒸发段中带出来的[3]。 为了从锅炉中排出铁的磷酸盐沉淀,是要通过短时间)60~30(s 打开安装在循环系统下联箱的阀门。定排的效率是取决于联箱中的水在它后一半长度上最大流速时的

锅炉汽温调节系统

汽包锅炉蒸汽温度自动调节系统 一、蒸汽温度自动调节系统 锅炉蒸汽温度自动调节包括过热蒸汽温度和再热蒸汽温度调节。调节的任务是维持锅炉过热器及再热器的出口汽温在规定的允许范围之内。 1、过热汽温调节任务和特点 过热汽温是锅炉运行质量的重要指标之一。过热汽温过高或过低都会显著地影响电厂的安全性和经济性。过热汽温过高,可能会造成过热器、蒸汽管道和汽机的高压部分金属损坏,因为超温会引起汽轮机金属内部过大的热应力,会缩短使用寿命,还可能导致叶片根部的松动;过热汽温过低,会引起机组热耗上升,并使汽机轴向推力增大而可能造成推力轴承过载。过热汽温过低还会引起汽轮机尾部叶片处蒸汽湿度增加,从而降低汽轮机的内效率,并加剧对尾部叶片的水蚀。所以,在锅炉运行中,必须保持过热汽温长期稳定在规定值附近(一般范围为额定值541±5℃)。过热汽温调节对象的静态特性是指过热汽温随锅炉负荷变化的静态关系。过热器的传热形式、结构、布置都将直接影响过热器的静态特性。对流式过热器和辐射式过热器的过热汽温静态特性完全相反。对于对流式过热器,当负荷增加时,通过其烟气的温度和流速都增加,因而使过热汽温升高。而对于辐射式过热器,由于负荷增加时炉膛温度升高不多,而炉膛烟温升高所增加的辐射热量小于蒸汽负荷增大所需要的吸热量。我们的过热器系统采取了对流式、辐射式和屏式(半辐射式)交替串联布置的结构,这有利于减小过热器出口汽温的偏差,并改善了过热汽温调节对象的静态特性。 引起过热蒸汽温度变化的原因很多,如蒸汽流量变化、燃烧工况变化、进入过热器的蒸汽温度变化、流过过热器的烟气温度和流速变化等。归结起来,过热汽温调节对象的扰动主要来自三个方面:蒸汽流量变化(机组负荷变化),加热烟气的热量变化和减温水流量变化(过热器入口汽温变化)。 过热汽温调节对象的动态特性是指引起过热汽温变化的扰动与过热汽温之间的动态关系。在各种扰动下的过热汽温调节对象动态特性的特点是有迟延和惯性,典型的过热汽温阶跃反应曲线如下图所示。. 当机组负荷扰动时,蒸汽流量的变化使沿整个过热器管路长度上各点的蒸汽流速几乎同时改变,从而改变过热器的对流放热系数,使过热器各点的蒸汽温度也几乎同时改变。所以,在机组负荷扰动下,过热汽温的迟延和惯性比较小。当烟气热量扰动(烟气温度和流速发生变化)时,由于烟气流速和温度的变化也是沿整个过热器同时改变的,与蒸汽流量变化对传热影响的情况类似,所以过热汽温的反应也是较快的。当减温水流量扰动时,改变了高温过热器的入口汽温,从而影响了过热器出口汽温。由于过热器管路很长,因此汽温的反应是较慢的。 由此,在不同扰动作用下,过热汽温动态特 )有较大的差别,例、K性参数的数值(τ、Tc远大于如:减温水扰动时汽温反应的迟延时间t 烟气侧扰动时的迟延时间。使调正确选择调节过热汽温的手段,因此,(即调节机构动作节机构动作后能及时影响汽温 应尽可能小)是τ时,汽温动态特性的迟延时间调节对象在调节作用下的迟但目前广泛采用喷水减温作为调节过热汽温的手段,很重要的。太大,如果只根据汽温偏差来改变喷水量往往不能满足生产上的要和时间常数Tct延时间以便好地控制汽温的因此,在设计自动调节系统时应该设法减小调节对象的惯性迟延,求。变化。 、过热汽温调节基本方案2从过热汽温调节对象的阶跃试验曲线可以看出:若从动态特性的角

相关文档
相关文档 最新文档