文档库 最新最全的文档下载
当前位置:文档库 › 窗函数主瓣宽度与频率分辨率之间关系分析

窗函数主瓣宽度与频率分辨率之间关系分析

窗函数主瓣宽度与频率分辨率之间关系分析
窗函数主瓣宽度与频率分辨率之间关系分析

窗函数主瓣宽度与频率分辨率之间关系分析

在分析和测定所采集的数据记录时,快速傅立叶变换(FFT)和功率谱是非常有用的工具。借助这些工具能够有效地采集时域信号、测定其频谱成分、并对结果进行显示。功率谱图(参考抽样程序)在频率轴(x 轴)上的频率范围和分辨率取决于采样速率和数据记录的长度(采样点数)。功率谱图上的频率点数或谱线数为N/2 ,N 是信号采样记录中包含的点数。

1频谱泄漏和窗函数

FFT 分析中常常要用到窗函数。在基于FFT 的测量中正确选择窗函数非常关键。频谱泄漏是由FFT 算法中的假设造成的,FFT 算法中假设离散时间序列可以精确地在整个时域进行周期延拓,所有包含该离散时间序列的信号为周期函数,周期与时间序列的长度相关。然而如果时间序列的长度不是信号周期的整数倍,假设条件即不成立,就会发生频谱泄漏。绝大多数情况下所处理的是一个未知的平稳信号,不能保证采样点数为周期的整数倍。频谱泄漏使给定频率分量的能量泄漏到相邻的频率点,从而在测量结果中引入误差。选择合适的窗函数可以减小频谱泄漏效应。为进一步了解窗函数对频谱的影响,我们考察一下窗函数的频率特性。输入数据通过一个窗函数相当于原始数据的频谱与窗函数频谱的卷积。窗函数的频谱由一个主瓣和几个旁瓣组成,主瓣以时域信号的每个频率成份为中心。旁瓣在主瓣的两侧以一定的间隔衰减至零。FFT 产生离散的频谱,出现在FFT 每个谱线的是在每个谱线上的连续卷积频谱。如果原始信号的频谱成份与FFT 中的谱线完全一致,这种情况下采样数据的长度为信号周期的整数倍,频谱中只有主瓣。没有出现旁瓣的原因是旁瓣正处在窗函数主瓣两侧采样频率间隔处的零分量点。如果时间序列的长度不是周期的整数倍,窗函数的连续频谱将偏离主瓣的中心,频率偏移量对应着信号频率和FFT 频率分辨率的差异,这个偏移导致了频谱中出现旁瓣,所以,窗函数的旁瓣特性直接影响着各频谱分量向相邻频谱的泄漏宽度。

2窗函数特性

为简化窗函数的选择,有必要定义一些参数以便对不同的窗进行比较。这些参数有:-3dB 主瓣带

宽、-6dB 主瓣带宽、旁瓣峰值、旁瓣衰减速度(表二)。

每种窗函数有其自身的特性,不同的窗函数适用于不同的应用。要选择正确的窗函数,必须先估计信号的频谱成份。如若信号中有许多远离被测频率的强干扰频率分量,应选择旁瓣衰减速度较快的窗函数;如果强干扰频率分量紧邻被测频率时,应选择旁瓣峰值较小的窗函数;如果被测信号含有两个或两个以上的频率成

份,应选用主瓣很窄的窗函数;如果是单一频率信号,且要求幅度精度较高,则推荐用宽主瓣的窗函数。对频带较宽或含有多个频率成份的信号则采用连续采样。绝大多数应用采用汉宁(Hanning)窗即可得到满意的结果,因为它具有较好的频率分辨率和抑制频谱泄漏的能力。

动态参数: SNR、 SINAD、 THD、SFDR 与TTIMD

参照上述内容,由FFT 可利用MATLAB 软件计算出功率谱、频谱泄漏、窗函数、SNR、SINAD、

THD、SFDR:

SNR=10*log10(Ps/Pn)

SINAD=10*log10(Ps/(Pn+Pd))

THD=10*log10(Pd/Ph(1))

SFDR=10*log10(Ph(1)/max(Ph(2:10)))

其中:Ps——信号功率、Pn——噪声功率、Pd——由二到五次谐波引起的失调功率、Ph(1)——谐波功

率(基波)、Ph(2:10)——二到九次谐波功率。

补零对频谱的影响:

进行zero padding只是增加了数据的长度,而不是原信号的长度。就好比本来

信号是一个周期的余弦信号,如果又给它补了9个周期长度的0,那么信号并不是10个周期的余弦信号,而是一个周期的余弦加一串0,补的0并没有带来新

的信息。其实zero padding等价于频域的sinc函数内插,而这个sinc函数的

形状(主瓣宽度)是由补0前的信号长度决定的,补0的作用只是细化了这个sinc函数,并没有改变其主瓣宽度。而频率分辨率的含义是两个频率不同的信

号在频率上可分,也就要求它们不能落到一个sinc函数的主瓣上。所以,如果

待分析的两个信号频率接近,而时域长度又较短,那么在频域上它们就落在一个sinc主瓣内了,补再多的0也是无济于事的。

DFT-FFT的应用之确定性信号谱分析

实验报告 课程名称:数字信号处理指导老师:成绩:__________________ 实验名称:DFT/FFT的应用之一确定性信号谱分析实验类型:__验证_ 同组学生姓名:— 一、实验目的和要求 谱分析即求信号的频谱。本实验采用DFT/FFT技术对周期性信号进行谱分析。通过实验,了解用X(k)近似地表示频谱X(ejω)带来的栅栏效应、混叠现象和频谱泄漏,了解如何正确地选择参数(抽样间隔T、抽样点数N)。 二、实验内容和步骤 2-1 选用最简单的周期信号:单频正弦信号、频率f=50赫兹,进行谱分析。 2-2 谱分析参数可以从下表中任选一组(也可自定)。对各组参数时的序列,计算:一个正弦周期是否对应整数个抽样间隔?观察区间是否对应整数个正弦周期? 信号频率f(赫兹)谱分析参数抽样间隔T (秒) 截断长度N (抽样个数) 50 第一组参数0.000625 32 50 第二组参数0.005 32 50 第三组参数0.0046875 32 50 第四组参数0.004 32 50 第五组参数0.0025 16 2-3 对以上几个正弦序列,依次进行以下过程。 2-3-1 观察并记录一个正弦序列的图形(时域)、频谱(幅度谱、频谱实部、频谱虚部)形状、幅度谱的第一个峰的坐标(U,V)。 2-3-2 分析抽样间隔T、截断长度N(抽样个数)对谱分析结果的影响; 2-3-3 思考X(k)与X(e jω)的关系; 2-3-4 讨论用X(k)近似表示X(ejω)时的栅栏效应、混叠现象、频谱泄漏。 三、主要仪器设备 MATLAB编程。

四、操作方法和实验步骤 (参见“二、实验内容和步骤”) 五、实验数据记录和处理 %program 2-2-1 clear;clf;clc;%清楚缓存 length=32; T=0.000625; t=0:0.001:31;%设置区间以及步长 n=0:length-1; xt=sin(2*pi*50*t); xn=sin(2*pi*50*T*n); figure(1); subplot(2,1,1);plot(t,xt); xlabel('t');ylabel('x(t)'); axis([0 0.1 -1 1]);title('原序列'); subplot(2,1,2); stem(n,xn);xlabel('n');ylabel('xn)'); title('抽样后序列');axis([0 length -1 1]); figure(2); %画出序列的实部、虚部、模、相角 subplot(2,2,1);stem(n,real(xn)); xlabel('n');ylabel('real(xn)');title('序列的实部');axis([0 length -1 1]); subplot(2,2,2);stem(n,imag(xn)); xlabel('n');ylabel('imag(xn)');title('序列的虚部');axis([0 length -1 1]); subplot(2,2,3);stem(n,abs(xn)); xlabel('n');ylabel('abs(xn)');title('序列的模');axis([0 length -1 1]); subplot(2,2,4);stem(n,angle(xn)); xlabel('n');ylabel('angle(xn)');title('序列的相角');axis([0 length -1 1]); F=fft(xn,length); %计算DFT figure(3); %画出DFT的的幅度,实部和虚部 subplot(3,1,1);stem(n,abs(F)); xlabel('k');ylabel('abs(F)');title('DFT幅度谱'); subplot(3,1,2);stem(n,real(F));

频谱分析中如何选择合适的窗函数

频谱分析中如何选择合适的窗函数 1、信号截断及能量泄漏效应 数字信号处理的主要数学工具是傅里叶变换。应注意到,傅里叶变换是研究整个时间域和频率域的关系。然而,当运用计算机实现工程测试信号处理时,不可能对无限长的信号进行测量和运算,而是取其有限的时间片段进行分析。做法是从信号中截取一个时间片段,然后用观察的信号时间片段进行周期延拓处理,得到虚拟的无限长的信号,然后就可以对信号进行傅里叶变换、相关分析等数学处理。 周期延拓后的信号与真实信号是不同的,下面从数学的角度来看这种处理带来的误差情况。设有余弦信号x(t)在时域分布为无限长(- ∞,∞),将截断信号的谱XT(ω)与原始信号的谱X(ω)相比,它已不是原来的两条谱线,而是两段振荡的连续谱。这表明原来的信号被截断以后,其频谱发生了畸变,原来集中在f0处的能量被分散到两个较宽的频带中去了,这种现象称之为频谱能量泄漏(Leakage)。 信号截断以后产生的能量泄漏现象是必然的,因为窗函数w(t)是一个频带无限的函数,所以即使原信号x(t)是限带宽信号,而在截断以后也必然成为无限带宽的函数,即信号在频域的能量与分布被扩展了。又从采样定理可知,无论采样频率多高,只要信号一经截断,就不可避免地引起混叠,因此信号截断必然导致一些误差,这是信号分析中不容忽视的问题。 如果增大截断长度T,即矩形窗口加宽,则窗谱W(ω)将被压缩变窄(π/T减小)。虽然理论上讲,其频谱范围仍为无限宽,但实际上中心频率以外的频率分量衰减较快,因而泄漏误差将减小。当窗口宽度T趋于无穷大时,则谱窗W(ω)将变为δ(ω)函数,而δ(ω)与X(ω)的卷积仍为H(ω),这说明,如果窗口无限宽,即不截断,就不存在泄漏误差。 为了减少频谱能量泄漏,可采用不同的截取函数对信号进行截断,截断函数称为窗函数,简称为窗。泄漏与窗函数频谱的两侧旁瓣有关,如果两侧p旁瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱,为此,在时间域中可采用不同的窗函数来截断信号。 2、常用窗函数 实际应用的窗函数,可分为以下主要类型: 幂窗:采用时间变量某种幂次的函数,如矩形、三角形、梯形或其它时间函数x(t)的高次幂;三角函数窗:应用三角函数,即正弦或余弦函数等组合成复合函数,例如汉宁窗、海明窗等;指数窗。:采用指数时间函数,如e-st形式,例如高斯窗等。

正余弦信号的谱分析

设计一正余弦信号的谱分析代码: F=input('输入信号频率'); t=0:0.001:0.2; x1=cos(2*pi*F*t); subplot(3,1,1); plot(t,x1); title('x1连续余弦信号'); n=0:31; x2=cos(2*pi*F*n*1/64); subplot(3,1,2),stem(n,x2); xlabel('n'),ylabel('x1(n)'); title('x2采样后的余弦序列'); k=0:31; X=abs(fft(x2,32)); subplot(3,1,3); stem(k,X); xlabel('k'),ylabel('X(k)'); string=[num2str(32),'点FFT幅频曲线']; title(string); 输入信号频率:10 (1)

输入信号频率:11 (2)

代码: N=input('输入谱分析的长度'); n=1:N-1; figure(1) f1=0.22,f2=0.34; x=0.5*sin(2*pi*f1*n)+sin(2*pi*f2*n); subplot(2,1,1),stem(n,x); xlabel('n'),ylabel('x1(n)'); title('余弦序列'); X=abs(fft(x,N)); subplot(2,1,2); k=0:N-1; stem(k,X); xlabel('k'),ylabel('X(k)'); string=[num2str(N),'点FFT幅频曲线']; title(string); figure(2) f1=0.22,f2=0.25; x=0.5*sin(2*pi*f1*n)+sin(2*pi*f2*n); subplot(2,1,1),stem(n,x); xlabel('n'),ylabel('x1(n)'); title('余弦序列'); X=abs(fft(x,N)); subplot(2,1,2); k=0:N-1; stem(k,X); xlabel('k'),ylabel('X(k)'); string=[num2str(N),'点FFT幅频曲线']; title(string);

数字信号处理实验报告-DFTFFT的应用之一确定性信号谱分析

实验报告 课程名称: 数字信号处理 指导老师: 成绩:__________________ 实验名称:DFT/FFT 的应用之一 ? 确定性信号谱分析 实验类型:__验证_ 同组学生姓名: — 一、实验目的和要求 谱分析即求信号的频谱。本实验采用DFT/FFT 技术对周期性信号进行谱分析。通过实验,了解用X(k)近似地表示频谱X(ej ω)带来的栅栏效应、混叠现象和频谱泄漏,了解如何正确地选择参数(抽样间隔T 、抽样点数N )。 二、实验内容和步骤 2-1 选用最简单的周期信号:单频正弦信号、频率f=50赫兹,进行谱分析。 2-2 谱分析参数可以从下表中任选一组(也可自定)。对各组参数时的序列,计算:一个正弦周期是 否对应整数个抽样间隔?观察区间是否对应整数个正弦周期? 2-3 对以上几个正弦序列,依次进行以下过程。 2-3-1 观察并记录一个正弦序列的图形(时域)、频谱(幅度谱、频谱实部、频谱虚部)形状、幅度谱的第一个峰的坐标(U ,V )。 2-3-2 分析抽样间隔T 、截断长度N (抽样个数)对谱分析结果的影响; 2-3-3 思考X(k)与X(e j ω)的关系; 2-3-4 讨论用X(k)近似表示X(ej ω)时的栅栏效应、混叠现象、频谱泄漏。 三、主要仪器设备 MATLAB 编程。 专业:________________ 姓名:________________ 学号:________________ 日期:________________ 地点:________________

实验名称:_______________________________姓名:______________学号:__________________ P. 四、操作方法和实验步骤 (参见“二、实验内容和步骤”) 五、实验数据记录和处理 列出MATLAB程序清单,加注释。 六、实验结果与分析 6-1 实验前预习有关概念,并根据上列参数来推测相应频谱的形状、谱峰所在频率(U)和谱峰的数值(V)、混叠现象和频谱泄漏的有无。 6-2 观察实验结果(数据及图形)的特征,做必要的记录。 5-2 用基本理论、基本概念来解释各种现象。 (注: A、黑色部分不要改动。 B、蓝色部分,学生根据本人情况填写。 C、“五、实验数据记录和处理”和“六、实验结果与分析”根据要求(见红色部分),逐条撰写。 D、从第二页起,在每页头部填写实验名称、姓名、学号,标上页码。不够时自行加页。 E、上交纸质报告)

几种常见窗函数及其MATLAB程序实现

几种常见窗函数及其MATLAB程序实现 2013-12-16 13:58 2296人阅读评论(0) 收藏举报 分类: Matlab(15) 数字信号处理中通常是取其有限的时间片段进行分析,而不是对无限长的信号进行测量和运算。具体做法是从信号中截取一个时间片段,然后对信号进行傅里叶变换、相关分析等数学处理。信号的截断产生了能量泄漏,而用FFT算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的。在FFT分析中为了减少或消除频谱能量泄漏及栅栏效应,可采用不同的截取函数对信号进行截短,截短函数称为窗函数,简称为窗。 泄漏与窗函数频谱的两侧旁瓣有关,对于窗函数的选用总的原则是,要从保持最大信息和消除旁瓣的综合效果出发来考虑问题,尽可能使窗函数频谱中的主瓣宽度应尽量窄,以获得较陡的过渡带;旁瓣衰减应尽量大,以提高阻带的衰减,但通常都不能同时满足这两个要求。 频谱中的如果两侧瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱。不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。信号的加窗处理,重要的问题是在于根据信号的性质和研究目的来选用窗函数。图1是几种常用的窗函数的时域和频域波形,其中矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低,如果仅要求精确读出主瓣频率,而不考虑幅值精度,则可选用矩形窗,例如测量物体的自振频率等;布莱克曼窗主瓣宽,旁瓣小,频率识别精度最低,但幅值识别精度最高;如果分析窄带信号,且有较强的干扰噪声,则应选用旁瓣幅度小的窗函数,如汉宁窗、三角窗等;对于随时间按指数衰减的函数,可采用指数窗来提高信噪比。表1 是几种常用的窗函数的比较。 如果被测信号是随机或者未知的,或者是一般使用者对窗函数不大了解,要求也不是特别高时,可以选择汉宁窗,因为它的泄漏、波动都较小,并且选择性也较高。但在用于校准时选用平顶窗较好,因为它的通带波动非常小,幅度误差也较小。

信号的频谱分析及MATLAB实现

第23卷第3期湖南理工学院学报(自然科学版)Vol.23 No.3 2010年9月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Sep. 2010信号的频谱分析及MATLAB实现 张登奇, 杨慧银 (湖南理工学院信息与通信工程学院, 湖南岳阳 414006) 摘 要: DFT是在时域和频域上都已离散的傅里叶变换, 适于数值计算且有快速算法, 是利用计算机实现信号频谱分析的常用数学工具. 文章介绍了利用DFT分析信号频谱的基本流程, 重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施, 实例列举了MATLAB环境下频谱分析的实现程序. 通过与理论分析的对比, 解释了利用DFT分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应, 并提出了相应的改进方法. 关键词: MA TLAB; 频谱分析; 离散傅里叶变换; 频谱混叠; 频谱泄漏; 栅栏效应 中图分类号: TN911.6 文献标识码: A 文章编号: 1672-5298(2010)03-0029-05 Analysis of Signal Spectrum and Realization Based on MATLAB ZHANG Deng-qi, YANG Hui-yin (College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China) Abstract:DFT is a Fourier Transform which is discrete both in time-domain and frequency-domain, it fits numerical calculation and has fast algorithm, so it is a common mathematical tool which can realize signal spectrum analysis with computer. This paper introduces the basic process of signal spectrum analysis with DFT, emphasizes the causes of error producing in spectrum analysis process and the main ways to decrease the analysis error, and lists the programs of spectrum analysis based on MATLAB. Through the comparison with the theory analysis, the problems of spectrum aliasing, spectrum leakage and picket fence effect are explained when using DFT to analyze signal spectrum, and the corresponding solution is presented. Key words:MATLAB; spectrum analysis; DFT; spectrum aliasing; spectrum leakage; picket fence effect 引言 信号的频谱分析就是利用傅里叶分析的方法, 求出与时域描述相对应的频域描述, 从中找出信号频谱的变化规律, 以达到特征提取的目的[1]. 不同信号的傅里叶分析理论与方法, 在有关专业书中都有介绍, 但实际的待分析信号一般没有解析式, 直接利用公式进行傅里叶分析非常困难. DFT是一种时域和频域均离散化的傅里叶变换, 适合数值计算且有快速算法, 是分析信号的有力工具. 本文以连续时间信号为例, 介绍利用DFT分析信号频谱的基本流程, 重点阐述频谱分析过程中可能存在的误差, 实例列出MATLAB 环境下频谱分析的实现程序. 1 分析流程 实际信号一般没有解析表达式, 不能直接利用傅里叶分析公式计算频谱, 虽然可以采用数值积分方法进行频谱分析, 但因数据量大、速度慢而无应用价值. DFT在时域和频域均实现了离散化, 适合数值计算且有快速算法, 是利用计算机分析信号频谱的首选工具. 由于DFT要求信号时域离散且数量有限, 如果是时域连续信号则必须先进行时域采样, 即使是离散信号, 如果序列很长或采样点数太多, 计算机存储和DFT计算都很困难, 通常采用加窗方法截取部分数据进行DFT运算. 对于有限长序列, 因其频谱是连续的, DFT只能描述其有限个频点数据, 故存在所谓栅栏效应. 总之, 用DFT分析实际信号的频谱, 其结果必然是近似的. 即使是对所有离散信号进行DFT变换, 也只能用有限个频谱数据近似表示连续频 收稿日期: 2010-06-09 作者简介: 张登奇(1968? ), 男, 湖南临湘人, 硕士, 湖南理工学院信息与通信工程学院副教授. 主要研究方向: 信号与信息处理

FIR滤波器的窗函数设计法及性能比较

MATLAB课程设计报告 学院:地球物理与石油资源学院 班级: 姓名: 学号: 班内编号: 指导教师: 完成日期: 2013年6月3日

一、 题目 FIR 滤波器的窗函数设计法及性能比较 1. FIR 滤波器简介 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR )滤波器和有限冲激响应(FIR )滤波器。与IIR 滤波器相比,FIR 滤波器的主要特点为: a. 线性相位;b.非递归运算。 2. FIR 滤波器的设计 FIR 滤波器的设计方法主要有三种:a.窗函数设计法;b.频率抽样发;c.最小平法抽样法; 这里我主要讨论在MA TLAB 环境下通过调用信号分析与处理工具箱的几类窗函数来设计滤波器并分析与比较其性能。窗函数法设计FIR 滤波器的一般步骤如下: a. 根据实际问题确定要设计的滤波器类型; b. 根据给定的技术指标,确定期望滤波器的理想频率特性; c. 求期望滤波器的单位脉冲响应; d. 求数字滤波器的单位脉冲响应; e. 应用。 常用的窗函数有 同。 时与布莱克曼窗结果相当时与海明窗结果相同; 时与矩形窗一致;当当885.84414.50]!)2/([1)(120===+=∑∞ =x x x m x x I m m 3.窗函数的选择标准 1. 较低的旁瓣幅度,尤其是第一旁瓣; 2. 旁瓣幅度要下降得快,以利于增加阻带衰减; 3. 主瓣宽度要窄,这样滤波器过渡带较窄。 函数,可定义为是零阶式中Bessel x I n R I N n I n w window Kaiser n R N n N n n w window Balckm an n R N n n w window Ham m ing n R N n n w window Hanning N N N N )()5.2.9()(]) (})]1/(2[1{[)()4()4.2.9()()]14cos(08.0)12cos( 5.042.0[)()3()3.2.9()()]12cos( 46.054.0[)()2() 2.2.9()()]1cos( 5.05.0[)()1(0020ββππππ--=-+--=--=--=

信号的频谱分析

实验三信号的频谱分析 方波信号的分解与合成实验 一、任务与目的 1. 了解方波的傅立叶级数展开和频谱特性。 2. 掌握方波信号在时域上进行分解与合成的方法。 3. 掌握方波谐波分量的幅值和相位对信号合成的影响。 二、原理(条件) PC机一台,TD-SAS系列教学实验系统一套。 1. 信号的傅立叶级数展开与频谱分析 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数: 如果将式中同频率项合并,可以写成如下形式: 从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。依此类推,还有三次、四次等高次谐波分量。 2. 方波信号的频谱 将方波信号展开成傅立叶级数为: n=1,3,5… 此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。

(a)基波(b)基波+三次谐波 (c)基波+三次谐波+五次谐波 (d)基波+三次谐波+五次谐波+七次谐波 (e)基波+三次谐波+五次谐波+七次谐波+九次谐波 图3-1-1方波的合成 3. 方波信号的分解 方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。本实验便是采用此方法,实验中共有5路滤波器,分别对应方波的一、三、五、七、九次分量。 4. 信号的合成 本实验将分解出的1路基波分量和4路谐波分量通过一个加法器,合成为原输入的方波信号,信号合成电路图如图3-1-2所示。 图3-1-2 三、内容与步骤 本实验在方波信号的分解与合成单元完成。 1. 使信号发生器输出频率为100Hz、幅值为4V的方波信号,接入IN端。 2. 用示波器同时测量IN和OUT1端,调节该通路所对应的幅值调节电位器,使该通路输出方波的基波分量,基波分量的幅值为方波信号幅值的4/π倍,频率于方波相同并且没有相位差.(注意:出厂时波形调节电位器已调到最佳位置,其波形基本不失真,基本没有相位差。若实验中发现存在波形失真或有相位差的现象,请适当调节波形调节电位器,使波形恢复正常。) 3. 用同样的方法分别在OUT3、OUT5、OUT7、OUT9端得到方波的三、五、七、九此谐波分量(注意其他谐波分量各参数应当满足式3-1-1所示)。 4. 完成信号的分解后,先后将OUT1与IN1、OUT3与IN2、OUT5与IN3、OUT7与IN4、OUT9与IN5连接起来,即进行谐波叠加(信号合成),分别测量(1)基波与三次谐波;(2)基波、三次谐波与五次谐波;(3)基波、三次谐波、五次谐波与七次谐波;(4)基波、三次谐波、五次谐波、七次谐波与九次谐波合成后的波形。并分别保

实验三窗函数的特性分析

数字信号处理及实验实验报告 实验题目窗函数的特性分析 姓名MYT 组别班级学号 【实验目的】 分析各种窗函数的时域和频率特性,灵活运用窗函数分析信号频谱和设计FIR数字滤波器。 【实验原理】 在确定信号谱分析、随机信号功率谱估计以及FIR数字滤波器设计中,窗函数的选择对频谱分析和滤波器设计都起着重要的作用。在确定信号谱分析和随机信号功率谱估计中,截短无穷长的序列会造成频率泄漏,影响频谱分析的精度和质量。合理选取窗函数的类型,可以改善泄漏现象。在FIR数字滤波器设计中,截短无穷长的系统单位脉冲序列会造成FIR滤波器的幅度特性产生波动,且出现过渡带。 【实验结果与数据处理】 1、分析并绘出常用窗函数的时域特性波形。 程序如下: clc,clear,close all N=50 figure(1) W1=boxcar(N); stem([0:N-1],W1); figure(2) W2=hanning(N); stem([0:N-1],W2); figure(3) W3=hamming(N); stem([0:N-1],W3); figure(4) W4=blackman(N); stem([0:N-1],W4); figure(5) W5=bartlett(N); stem([0:N-1],W5); figure(6) W6=kaiser(N,2*N); stem([0:N-1],W6);

时域波形图如下: 图 1 矩形窗 图 2 汉宁窗 图 3 汉明窗

图 4 布莱克曼窗 图 5 Bartlett窗 图 6 凯泽窗

2、研究凯泽窗(Kaiser)的参数选择对其时域和频域的影响。 (1)固定beta=4,分别取N=20,60,110。 clc,clear,close all N1=20;N2=60;N3=110; beat=4; figure(1) subplot(3,2,[1,2]) W=kaiser(N1,beat); stem([0:N1-1],W); subplot(3,2,[3,4]); Ww=kaiser(N2,beat); stem([0:N2-1],Ww); subplot(3,2,[5,6]); WW=kaiser(N3,beat); stem([0:N3-1],WW); figure(2) subplot(3,2,[1,2]) W1=fft(W,N1) plot([0:N1-1],abs(fftshift(W1))) subplot(3,2,[3,4]); W2=fft(Ww,N2) plot([0:N2-1],abs(fftshift(W2))) subplot(3,2,[5,6]); W3=fft(WW,N3) plot([0:N3-1],abs(fftshift(W3))) 图7 凯泽窗频域图图8 凯泽窗时域图 (2)固定N=60,分别取beta=1,5,11。 clc,clear,close all beat1=1;beat2=5;beat3=11; N=60; figure(1) subplot(3,2,[1,2])

信号频谱分析和测试

信号频谱分析和测 试 返回 一、实验室名称:虚拟仪器实验室 二、实验项目名称:信号频谱分析和测试 三、实验目的 1.了解周期函数的傅立叶变换理论及虚拟频谱分析仪的工作原理; 2.熟悉典型信号的波形和频谱特征,并能够从信号频谱中读取所需的信息。 四、实验内容 1.测量典型信号(正弦波、三角波、方波)的频谱并记录; 2.用实验平台的任意波形信号源产生一个任意信号,观察其频谱。 五、实验器材(设备、元器件): 1、计算机一台 2、SJ-8002B 电子测量实验箱一台 3、FG1617函数发生器一台 4、虚拟频谱分析仪程序 5、Q9线一条 六、实验原理 6.1 常见周期信号傅立叶展开公式与波形 1)方波 ,其中的 2)三角波 ,其中的 )7sin 715sin 513sin 31(sin 4)( +ω+ω+ ω+ωπ=t t t t A t f T π=ω2)7cos 4915sin 2513sin 91(sin 8)(2 +ω-ω+ω-ωπ=t t t t A t f T π=ω2

3)锯齿波 ,其中 6.2 信号的离散傅立叶变换(DFT ) x(t)经采样后变为x(nT ’),T ’为采样周期,采样频率fs=1/T ’。离散信号x(nT ’)的傅里 叶变换可以表示为: ,n=0,1,…N-1 X(k)是复数,信号的频谱是它的模,为了方便显示,做归一化处理,用 来表示频谱。 频率分辨率为: FFT 是DFT 的快速算法。 6.3 虚拟频谱分析仪 数字式虚拟频谱分析仪是通过A/D 采样器件,将模拟信号转换为数字信号,传给微处 理器系统或计算机来处理.在对交流信号的测量中,根据奈奎斯特采样定理,采样速率必须 是信号频率的两倍以上,采样频率越高,时间轴上的信号分辨力就越高,所获得的信号就越 接近原始信号,在频谱上展现的频带就越宽。 本频谱分析仪采用快速傅立叶变换的方法,分析信号中所含各个频率份量的幅值。其构 成框图如图4所示: 图4频谱分析仪框图 七、实验步骤 7.1 测量典型信号(正弦波、三角波、方波)的频谱 (1) 准备工作:用Q9线连接信号发生器与实验平台的Ain1端,并用EPP 排线连接实 验平台和计算机之间的EPP 接口,最后打开电源.。信号发生器产生一个频率为10K ,峰峰 值为3V 左右的正弦波,启动实验平台配套的频谱分析软件,观察波形显示并作图。 (2)由信号源产生一个频率为10KHz ,峰值为3V 的正弦波,用数字频谱分析仪对该信 号进行频谱测量,幅度刻度方式设为线性刻度,不加窗函数,起始频率为0Hz ,结束频率为 100KHz ,Y 线性参考电压为2V ,将测量结果填入表1,并计算出频谱的理论值填入表1。 )4sin 413sin 312sin 21(sin 2)( +ω+ω+ω+ωπ+= t t t t A A t f T π=ω2()()N nk j N n e n x k X /210π--=∑=N k X )(f ?N f f s =?N kf k f f s k =??=

数据库常用函数

数据库常用函数

一、基础 1、说明:创建数据库 CREATE DATABASE database-name 2、说明:删除数据库 drop database dbname 3、说明:备份和还原 备份:exp dsscount/sa@dsscount owner=dsscount file=C:\dsscount_data_backup\dsscount.dmp log=C:\dsscount_data_backup\outputa.log 还原:imp dsscount/sa@dsscount file=C:\dsscount_data_backup\dsscount.dmp full=y ignore=y log=C:\dsscount_data_backup\dsscount.log statistics=none 4、说明:创建新表 create table tabname(col1 type1 [not null] [primary key],col2 type2 [not null],..) CREATE TABLE ceshi(id INT not null identity(1,1) PRIMARY KEY,NAME VARCHAR(50),age INT) id为主键,不为空,自增长 根据已有的表创建新表: A:create table tab_new like tab_old (使用旧表创建新表) B:create table tab_new as select col1,col2… from tab_old definition only 5、说明:删除新表 drop table tabname 6、说明:增加一个列 Alter table tabname add column col type 注:列增加后将不能删除。DB2中列加上后数据类型也不能改变,唯一能改变的是增加varchar类型的长度。 7、说明:添加主键: Alter table tabname add primary key(col) 说明:删除主键: Alter table tabname drop primary key(col) 8、说明:创建索引:create [unique] index idxname on tabname(col….) 删除索引:drop index idxname 注:索引是不可更改的,想更改必须删除重新建。 9、说明:创建视图:create view viewname as select statement 删除视图:drop view viewname 10、说明:几个简单的基本的sql语句 选择:select * from table1 where 范围 插入:insert into table1(field1,field2) values(value1,value2) 删除:delete from table1 where 范围 更新:update table1 set field1=value1 where 范围

Parzen窗方法的分析和研究

对Parzen窗/PNN算法的学习和研究报告 姓名:吴潇学号:1333755 1、Parzen窗方法综述、发展历史及现状 模式识别领域的非参数估计方法大致可以分为两类。第一种类型是先估计出概率密度函数的具体形式,然后再利用这个估计出来的概率密度函数对样本进行分类。第二种类型是,不估计具体的概率密度函数,而直接根据样本进行分类。Parzen窗方法就是属于第一种类型的非参数估计方法,概率神经网络(PNN)是它的一种实现方式。Parzen窗方法的基本思想是利用一定范围内的各点密度的平均值对总体密度函数进行估计。 Parzen窗(Parzen window)又称为核密度估计(kernel density estimation),是概率论中用来估计未知概率密度函数的非参数方法之一。该方法由Emanuel Parzen于1962年在The Annals of Mathematical Statistics杂志上发表的论文“On Estimation of a Probability Density Function and Mode”中首次提出。Nadaraya和Watson最早把这一方法用于回归法中。Specht把这一方法用于解决模式分类的问题,并且在1990年发表的论文“Probabilistic neural networks”中提出了PNN网络的硬件结构。Ruppert和Cline基于数据集密度函数聚类算法提出了修订的核密度估计方法,对Parzen窗做了一些改进。 Parzen窗方法虽然是在上个世纪60年代提出来的,已经过去了45年的时间,看上去是一种很“古老”的技术,但是现在依然有很多基于Parzen窗方法的论文发表。这说明Parzen 窗方法的确有很强的生命力和实用价值,虽然它也存在很多缺点。 2、Parzen窗方法和概率神经网络 Parzen窗方法就是基于当样本个数n非常大的时候,有公式成立这样的一个事实而提出的。通过计算在一个区域R内的频数k/n,用这个频数来估计这一点的频率,从而得到这一点的概率。当n趋于无穷大的时候,p(x)等于该点的实际概率。这种方法就是模式识别领域中的非参数估计方法。 Parzen窗方法就是通过构造一系列的区域:,在这些区域内计算k/n。记V n为区域R n的体积,k n为落在区域R n中的样本个数,表示对的第n次估计,于是有: 为了保证能够收敛到,必须满足以下3个条件: 1)2)3) Parzen窗方法的实质就是通过对上面的区域R n,每次按照来构造区域序列,使区域逐渐收缩到一个给定的初始区间。它不断收缩区域,按照公式把区域不断缩小,而不关心该

16种常用数据分析方法66337

一、描述统计 描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。 1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。 2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。 二、假设检验 1、参数检验 参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。 1)U验使用条件:当样本含量n较大时,样本值符合正态分布 2)T检验使用条件:当样本含量n较小时,样本值符合正态分布 A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别; B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似; C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。 2、非参数检验 非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。 适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。

A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。 三、信度分析 检査测量的可信度,例如调查问卷的真实性。 分类: 1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度 2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如 何,常用方法分半信度。 四、列联表分析 用于分析离散变量或定型变量之间是否存在相关。 对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。 五、相关分析 研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。 1、单相关:两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量; 2、复相关:三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的自变量和因变量相关; 3、偏相关:在某一现象与多种现象相关的场合,当假定其他变量不变时,其中两个变量之间的相关关系称为偏相关。 六、方差分析

声发射信号的谱分析和相关分析

声发射信号的谱分析和相关分析 陈玉华,刘时风 耿荣生* 沈功田** (清华大学机械系,北京100084) *(北京航空工程技术研究中心, 北京100076) **(国家质量技术监督局锅检中心,北京100027) 摘要:本文主要阐述了谱分析方法和相关分析方法在声发射信号分析中的应用,给出了谱分析和相关分析的基本原理,并分别举例子做了分析讨论。 关键词:声发射;谱分析;FFT;相关分析 SPECTRAL ANALYSIS AND CORRELATION ANALYSIS FOR ACOUSTIC EMISSION SIGNAL CHEN Yuhua,LIU Shifeng (Tsinghua University,Beijing 100084,China) Abstract:A review is given to both spectral analysis and correlation analysis of acoustic emission signal. The principles of spectral analysis and correlation analysis are presented and discussed with some examples. Keywords: acoustic emission;spectral analysis;FFT;correlation analysis 材料或结构受外力或内力作用产生变形或断裂,以弹性波形式释放出应变能的现象称为声发射。声发射是一种常见的物理现象,例如岩石开裂,骨头断裂和各种固体材料断裂过程中发出的声音都是声发射信号,图1为典型的声发射信号。实际应用中,由于外界的干扰以及声发射接收系统的原因(比如传感器的频率特性等),接受得到的声发射信号中除了含有声发射信号特征信息外,还存在着大量的干扰和噪声信号。因此,要想复杂的信号中提取出需要的特征声发射信号,就需要应用一些分析手段来对信号进行处理。 图1. 典型声发射信号

信号的频谱分析及MATLAB实现

信号的频谱分析及MATLAB 实现(实例) 摘自:张登奇,杨慧银.信号的频谱分析及MATLAB 实现[J].湖南理工学院学报(自然科学版),2010,(03) 摘 要:DFT 是在时域和频域上都已离散的傅里叶变换,适于数值计算且有快速算法,是利用计算机实现信号频谱分析的常用数学工具。文章介绍了利用DFT 分析信号频谱的基本流程,重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施,实例列举了MATLAB 环境下频谱分析的实现程序。通过与理论分析的对比,解释了利用DFT 分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应,并提出了相应的改进方法。 关键词:MATLAB ;频谱分析;离散傅里叶变换;频谱混叠;频谱泄漏;栅栏效应 3 分析实例 对信号进行频谱分析时,由于信号不同,傅里叶分析的频率单位也可能不同,频率轴有不同的定标方式。为了便于对不同信号的傅里叶分析进行对比,这里统一采用无纲量的归一化频率单位,即模拟频率对采样频率归一化;模拟角频率对采样角频率归一化;数字频率对2π归一化;DFT 的k 值对总点数归一化。同时,为了便于与理论值进行对比,理解误差的形成和大小,这里以确定信号的幅度谱分析为例进行分析说明。假设信号为:)()(t u e t x t -=,分析过程:首先利用CTFT 公式计算其模拟频谱的理论值;然后对其进行等间隔理想采样,得到)(n x 序列,利用DTFT 公式计算采样序列的数字连续频谱理论值,通过与模拟频谱的理论值对比,理解混叠误差形成的原因及减小误差的措施;接下来是对)(n x 序列进行加窗处理,得到有限长加窗序列)(n xw ,再次利用DTFT 公式计算加窗后序列)(n xw 的数字连续频谱,并与加窗前)(n x 的数字连续频谱进行对比,理解截断误差形成的原因及减小误差的措施;最后是对加窗序列进行DFT 运算,得到加窗后序列)(n xw 的DFT 值,它是对)(n xw 数字连续频谱进行等间隔采样的采样值,通过对比,理解栅栏效应及DFT 点数对栅栏效应的影响。利用MATLAB 实现上述分析过程的程序如下: clc;close all;clear; %CTFT 程序,以x(t)=exp(-t) t>=0 为例 %利用数值运算计算并绘制连续信号波形 L=4, %定义信号波形显示时间长度 fs=4,T=1/fs; %定义采样频率和采样周期 t_num=linspace(0,L,100);%取若干时点,点数决定作图精度 xt_num=exp(-1*t_num);%计算信号在各时点的数值 subplot(3,2,1);plot(t_num,xt_num),%绘信号波形 xlabel('时间(秒)'),ylabel('x(t)'),%加标签 grid,title('(a) 信号时域波形'),%加网格和标题 %利用符号运算和数值运算计算连续信号幅度谱的理论值 syms t W %定义时间和角频率符号对象 xt=exp(-1*t)*heaviside(t),%连续信号解析式 XW=fourier(xt,t,W),%用完整调用格式计算其傅氏变换 %在0两边取若干归一化频点,点数决定作图精度 w1=[linspace(-0.5,0,50),linspace(0,1.5,150)];

相关文档
相关文档 最新文档