文档库 最新最全的文档下载
当前位置:文档库 › 人教版数学必修四:2.4向量的数量积(1)(作业纸)

人教版数学必修四:2.4向量的数量积(1)(作业纸)

人教版数学必修四:2.4向量的数量积(1)(作业纸)
人教版数学必修四:2.4向量的数量积(1)(作业纸)

课题:§2.4 向量的数量积(1)作业 总第____课时

班级_______________

姓名_______________

一、填空题:

1. 已知向量a 与b 的夹角为30,2a =,3b =,则b a

?= .

2.已知等边三角形ABC 的边长为1,则?= . 3.对于向量和实数,下列命题中真命题是 .

①若b a

?=0,则0a =或0b =;

②若0a λ=,则0λ=或0a =;

③若2

2

a b =,则a b =或a b =-; ④若c a b a ?=?,则b c =. 4.下列各式中,不正确的是 . ① ( a +b )2= a 2 +2 a ·b +b 2; ②(a ·b )·c =a ·(b ·c ); ③( a -b )2= a 2 -2 a ·b +b 2;

④(a +b )·(a –b )= a 2- b 2.

5.若向量,满足1,2a b ==,且,的夹角为

3

π

,则a b += .

6.若向量,满足4a b ==,且,的夹角为

23

π

,则)2(b a b +?= .

7.设向量b a

,满足,323,1=-==b a b a 求b a +3= .

8.已知,32,3,3===c b a ,0=++c b a

且a c c b b a ?+?+?则=____ .

9.已知21,e e 是夹角为

60的两个单位向量,2123e e a -=,2132e e b -=,

则b a ?= .

10.若向量,,满足1,2,3a b c ===,且,,两两所成的角相等,++= . 二、解答题:

11.已知∣∣=4,∣∣=3.

(1)若,的夹角为60°,求(2)(3);a b a b +?- (2)若(23)(2)61,a b a b -?+=求,的夹角.

12. 在平行四边形ABCD 中,已知|AB |=4,|AD |=3, ∠DAB =600

. 求:(1)?; (2)?;(3)? .

13.若向量,满足4,3a b ==,且,的夹角为

23

π

,又2,2c a b d a kb =+=+,问

.

当k取何值时,c d

三、作业错误分析及订正:

1.填空题错误分析:[错误类型分四类:①审题错误;②计算错误;③规范错误;④知识错误;只有“知识性错误”需要写出相应的知识点.]

2.填空题具体订正:

_____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ 3.解答题订正:

【2019年整理】03第三节数量积向量积混合积

第三节 数量积 向量积 混合积 分布图示 ★两向量的数量积 ★例1 ★例4 ★向量积概念的引入 ★向量积的运算 ★例6 ★例9 ★向量的混合积 ★例11 ★内容小结 ★习题8-3 内容要点 一、两向量的数量积 定义1设有向量 示b ,它们的夹角为0 ,乘积| a ||b | cose 称为向量a 与b 的数量积(或 称为内积、 点积),记为a b,即 a b 却 a || b | cos . 根据数量积的定义,可以推得: (1) a b =|b |Pr j b a =|a |Pr j a b ; I — - 2 (2) a a a | ; (3) 设a*、b 为两非零向量,贝U a_L b 的充分必要条件是 a , b = 数量积满足下列运算规律: (1)交换律 a b = b a; (2)分配律 (a b) c = a c b c; (3)结合律 人(』b)=(杯b =a ,(Lb),( &为实数) 二、两向量的向量积 定义2若由向量a 与b 所确定的一个向量 c 满足下列条件: ★数量积的运算 ★例2 ★例3 ★例5 ★向量积的定义 ★例7 ★例8 ★例10 ★混合积的几何意义 ★例12 ★例13 ★课堂练习 ★返回

(1) c的方向既垂直于a又垂直于b, c的指向按右手规则从a转向b来确定(图

8-3-4); (2) C的模| C|=|a〔|b | sin6 ,(其中8为a与b的夹角), 则称向量c为向量a与b的向量积(或称外积、叉积),记为 c = a b . 根据向量积的定义,即可推得 (1) a 3 =0 ; (2) 设a、b为两非零向量,贝U a//b的充分必要条件是』xb = 0. 向量积满足下列运算规律: (1) a b = -b a; (2) 分配律(a b) c = a c b c; (3) 结合律u£xb) = (?a)Xb = ax(7_b),(岛为实数). 三、向量的混合积 例题选讲 两向量的数量积 例1(E01)已知a={1,1,~4}, b={1,—2,2},求 (1)a b; (2) a与b的夹角0 ; (3) a与b上的投影. 解(1) a b =1 1 1 (-2) (-4) 2 = -9. a x b x a y b y a z b z 1 . 3■: (2) cos@=j2 2;j 2 2 2 =_了,」.nr a x a y a z , b x b y b z 2 4 a b (3) a b =|b|PrRa, . Pr j b a = ------------- = -3. |a| 例2证明向量c与向量(£ d)b —(b 3)£垂直. 证[(a c)b - (b c)a] c =[(a c)b c - (b c)a c] =(b c)[a c - a c] =0,

向量数量积的运算律

向量数量积的运算律 新知检索 8.向量数量积满足交换律:·=__________________________. 9.向量数量积满足分配律:(+)·=______________________. 10.数乘向量的数量积,可以与任一向量交换结合,即对任意实数λ,有(?λ=_________. 学法指导 本节课的学习目标是掌握向量数量积的运算规律,并准确运用;重点是注意结合律的正确使用.学习本节课应注意的问题: 1.对于分配律,用向量数量积的几何意义给出了证明.在学习与使用时,可以类比数量乘法的交换律.但要明确它们的不同. (1)已知实数)0≠b c b a (、、,则c a bc ab =?=;但对于向量、、,该推理是不正确的,即a ·b =b ·不一定能推出a =.只有当向量a 、b 、共线且同向时,才成立,否则就不成立. 比如:|a |=3,|b |=1,|c |=3,< a ,b >=30°,=60°, 经过计算可知:·=·,但≠. (2)对于实数c b a 、、有(ab )c =a (bc ),但对于向量、、c ,(·)·c ≠·(·c ),这是因为(a ·b )·c 表示一个与c 共线的向量,而a ·(b ·c )表示一个与a 共线的向量,而c 与a 一般并不共线,所以(a ·b )·c ≠a (b ·c ) . 2.教材中的例题1是直接对数量积性质、运算律的应用.其中推得结论: (1)2(+=22||2||b b a a +?+; (2)(a +b )·(a -b )=22||||-.在以后的运算中,可以直接运用. 3.用向量知识证明几何问题.用向量解题可分为三步:

高中数学-空间向量及向量的应用

高中数学 - 空间向量及向量的应用 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设 , , 空间向量的直角坐标运算: 空间两点间距离: ; 1:利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 1 )异面直线所成角 设 分别为异面直线 的方向向量,则 则: 空间线段 的中点 M (x ,y ,z )的坐标:

2 )线面角 设 是直线 l 的方向向量, n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 分别为平面 的法向量,则 与 互补或相等, 操作方法: 1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos ( S 为原斜面面积 , S 为射影面积 , 为斜面与射影所成二面 角的平面角 )这个公式对于斜面为三角 形 , 任意多边形都成立 . 是求二面角的好方法 .当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式 ,求出二面角的大小。 2.空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3.空间向量的应用 (1)用法向量求异面直线间的距离 2)直线与平面所成的角的范围是 [0, ] 。射影转化法 2 方法 3)二面角的范围一般是指 (0, ],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 1)异面直线所成的角的范围 是 b F

高中数学的空间向量知识

高中数学的空间向量知识 基本内容 空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同) 2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量(k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量. 5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题. 6、利用向量求距离就是转化成求向量的模问题:. 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线

(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析) 一.选择题 1.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量=,=,=,则=() A.++B.++C.++D.++ 2.已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,,共面,则λ=() A.2 B.3 C.4 D.6 3.空间中,与向量同向共线的单位向量为() A.B.或 C. D.或 4.已知向量,且,则x的值为() A.12 B.10 C.﹣14 D.14 5.若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点() A.不共面B.共面C.共线D.不共线 6.已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α∥β,则λ的值是()

A.B.﹣6 C.6 D. 7.已知,则的最小值是()A.B.C.D. 8.有四个命题:①若=x+y,则与、共面;②若与、共面,则=x+y;③若=x+y,则P,M,A,B共面;④若P,M,A,B共面,则=x+y.其中真命题的个数是() A.1 B.2 C.3 D.4 9.已知向量=(2,﹣1,1),=(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D.8 10.如图所示,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E到平面ACD1的距离为() A.B. C.D. 11.正方体ABCDA1B1C1D1中,直线DD1与平面A1BC1所成角的正弦值为() A. B. C.D. 二.填空题(共5小题) 12.已知向量=(k,12,1),=(4,5,1),=(﹣k,10,1),且A、B、C三点共线,则k= . 13.正方体ABCD﹣A1B1C1D1的棱长为1,MN是正方体内切球的直径,P为正方体表面上的动点,则?的最大值为. 14.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,﹣1,﹣4),=(4,

8.1.2 向量数量积的运算律

8.1.2 向量数量积的运算律 (教师独具内容) 课程标准:理解掌握数量积的性质和运算律,并能运用性质和运算律进行简单的应用. 教学重点:向量数量积的性质与运算律及其应用. 教学难点:平面向量数量积的运算律的证明. 【知识导学】 知识点 平面向量数量积的运算律 已知向量a ,b ,c 与实数λ,则 交换律 a ·b =□ 01b ·a 结合律 (λa )·b =□ 02λ(a ·b )=□03a ·(λb ) 分配律 (a +b )·c =□ 04a ·c +b ·c 【新知拓展】 对向量数量积的运算律的几点说明 (1)向量数量积不满足消去律:设a ,b ,c 均为非零向量且a ·c =b ·c ,不能得到a =b .事实上,如图所示,OA →=a ,OB →=b ,OC → =c ,AB ⊥OC 于D ,可以看出,a ,b 在向量c 上的投影分别为|a |cos ∠AOD ,|b |cos ∠BOD ,此时|b |cos ∠BOD =|a |cos ∠AOD =OD .即a ·c =b ·c .但很显然b ≠a . (2)向量的数量积不满足乘法结合律:一般地,向量的数量积(a ·b )c ≠a (b ·c ),这是由于a ·b ,b ·c 都是实数,(a ·b )c 表示与c 方向相同或相反的向量,a (b ·c )表示与a 方向相同或相反的向量,而a 与c 不一定共线. 1.判一判(正确的打“√”,错误的打“×”) (1)对于向量a ,b ,c 等式(a·b )·c =a ·(b·c )恒成立.( ) (2)若a·b =a·c ,则b =c ,其中a ≠0.( ) (3)(a +b )·(a -b )=a 2 -b 2 .( ) 答案 (1)× (2)× (3)√ 2.做一做

数量积向量积混合积

第三节 数量积 向量积 混合积 分布图示 ★ 两向量的数量积 ★ 数量积的运算 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 向量积概念的引入 ★ 向量积的定义 ★ 向量积的运算 ★ 例6 ★ 例7 ★ 例8 ★ 例9 ★ 例10 ★ 向量的混合积 ★ 混合积的几何意义 ★ 例11 ★ 例12 ★ 例13 ★ 内容小结 ★ 课堂练习 ★ 习题8-3 ★ 返回 内容要点 一、两向量的数量积 定义1设有向量a 、b ,它们的夹角为θ,乘积θcos ||||b a 称为向量a 与b 的数量积(或称为内积、点积),记为b a ?,即 θcos ||||b a b a =?. 根据数量积的定义,可以推得: (1) b j a a j b b a a b Pr ||Pr ||==?; (2) 2 ||a a a =?; (3) 设a 、b 为两非零向量,则 b a ⊥的充分必要条件是 0=?b a . 数量积满足下列运算规律: (1)交换律 ;a b b a ?=? (2)分配律 ;)(c b c a c b a ?+?=?+ (3)结合律 )()()(b a b a b a λλλ?=?=?,(λ为实数). 二、两向量的向量积 定义2 若由向量a 与b 所确定的一个向量c 满足下列条件: (1)c 的方向既垂直于a 又垂直于b , c 的指向按右手规则从a 转向b 来确定(图

8-3-4); (2)c 的模 θsin ||||||b a c =,(其中θ为a 与b 的夹角), 则称向量c 为向量a 与b 的向量积(或称外积、叉积),记为 b a c ?=. 根据向量积的定义,即可推得 (1)0 =?a a ; (2)设a 、b 为两非零向量,则 b a //的充分必要条件是 0=?b a . 向量积满足下列运算规律: (1);a b b a ?-=? (2)分配律 ;)(c b c a c b a ?+?=?+ (3)结合律 )()()(b a b a b a λλλ?=?=?,(λ为实数). 三、向量的混合积 例题选讲 两向量的数量积 例1(E01) 已知},2,2,1{},4,1,1{-=-=b a 求 (1) ;b a ? (2) a 与b 的夹角θ; (3) a 与b 上的投影. 解 (1) b a ?2)4()2(111?-+-?+?=.9-= (2) 222222cos z y x z y x z z y y x x b b b a a a b a b a b a ++++++= θ,2 1- = ∴.4 3π θ= (3) ,Pr ||a j b b a b =?.3| |Pr -=?=∴a b a a j b 例2 证明向量c 与向量a c b b c a )()(?-?垂直. 证 c a c b b c a ??-?])()[(])()[(c a c b c b c a ??-??=])[(c a c a c b ?-??=,0= ∴.])()[(c a c b b c a ⊥?-?

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设血勺乃召),氓叫?乃w ), AB = OB-OA=(^y 2l 切—(吊丹 丑)=(乃—咛乃—丹 勺一匂) 空间向量的直角坐标运算: 设Q = 2],砌,色3 $ =1鹉毎妇则; ① 口+ b= P],曲,电 宀|俎,给禺 ?=I 角十知鬥 +為、屯 +鸟I ? ② a-b = \ a^a 2,a 21■ 诲.场岛i =(业一% 气-如 码一為 帀 ③ 加=兄I 曲卫2,? ' = I 現珂"久卷 '(/i e 7?); ④ 总■&= |气命4 片妇任 | = &占 + 逐血 +&並: ⑤ 口0Fe 鱼二 空三生=左或。『舌寻口[三碣‘ - 冊节 处二赵; 对? $ ⑥ 7丄匸q 口血十口曲十m 禺=0 ; 空间两点间距离:丄“ 「 1 :利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 (1)异面直线所成角Z ? gw 设Q”分别为异面直线讥的方向向量,则 则: 空间线段 的中点M (x ,y ,z )的坐标: 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应

(2) 线面角凰打殳《是直线l 的方向向量,n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 加“分别为平面G 8的法向量,则 与,剤7 互补或相等, - ? ? . m * n |( csfl i = | A>| = I 忘I * I 云I 操作方法: 1 ?空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos (S 为原斜面面积,S 为射影面积,为斜面与射影所成二面 角的平面角)这个公式对于斜面为三角形 ,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式,求岀二面角的大小。 2 ?空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3 ?空间向量的应用 (1 )用法向量求异面直线间的距离 CQS P rris-:欧 * b (1)异面直线所成的角的范围是 (2 )直线与平面所成的角的范围是 [0,—]。射影转 化法 2 方法 (3 )二面角的范围一般是指 (0,],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 b F

12022-向量数量积的运算律

向量数量积的运算律 制作人:张明娟 审核人:叶付国 使用时间:2012-5-8 编号:12022 学习目标: 1、 掌握平面向量数量积的运算律及其运算; 2、 通过向量数量积分配律的学习,体会类比、猜想、证明的探索性学习 方法; 3、通过解题实践,体会向量数量积的运算方法. 学习重点:向量数量积的运算律及其应用. 学习难点:向量数量积分配律的证明. 重点知识回顾: 1、两个向量的夹角的范围是: ; 2、向量在轴上的正射影 正射影的数量为 ; 3、向量的数量积(内积):a ·b = ; 4、两个向量的数量积的性质: (1)b a ⊥? ; (2)a a ?= 或a = ; (3)θcos = ; 向量数量积的运算律 平面向量数量积的常用公式 证明:(1) (2) c b c a c b a b a b a b a b a a b b a ?+?=?+?=?=?=??=?))(3(;)()())(2(; 1λλλλ)(222 2))(1(b b a a b a +?+=+2 2))()(2(b a b a b a -=-+

典例剖析: 例1、已知a =6,b =4,a 与b 的夹角为060, 求:(1)b 在a 方向上的投影; (2)a 在b 方向上的投影; (3) 例2、已知a 与b 的夹角为0120,a =2,b =3,求: ()() b a b a 32-?+) ())(;();()(b a b a b a b a 32321 22+?-- ?(-+5 4取何值,问夹角为与t t b a -==0 120,1

例 3、已知a =3,b =4,(且a 与b 不共线),当且仅当k 为何值时,向量b k a +与b k a - 互相垂直? 变式:已知a =1, b =2, a 与b a -垂直.求a 与b 的夹角. 练习题:求证菱形的对角线互相垂直. 例 4、已知a =2,b =4,0120,=b a ,求a 与b a -的夹角.

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

第二课时向量数量积的运算律(可编辑修改word版)

= = AC ? ?? ? 2.3.2 向量数量积的运算律 类型二、运用向量数量积的运算律求向量的模 【学习目标】: 熟练掌握平面向量数量积的运算律,并会应用。 【自主学习】: 向量数量积的运算律: (1) 交换律: 例 2、已知 a = b = 5, 向量 a 与b 的夹角为 ,求 a - b , a + b 。 3 (2) 数乘 向量的数量积 结合律: 那么分配律是否成立呢? 【合作探究】 分配律: 变式: 在三角形 ABC 中,已知 AB 3, BC 5, ∠ABC = 600 , 求 。 【课堂互动】 类型一、运用向量数量积的运算律计算例 1、求证: 类型二、运用向量数量积的运算律解决有关垂直问题例 2、求证:菱形的两条对角线互相垂直: 已知: ABCD 是菱形, AC 和 BD 是它的两条对角线。 (1) (a + b ) 2 = 2 + 2a ? b + 2 → → → → ;(2) a + b ?? a - b ? = ? ?? ? → 2 → 2 a - b ; 求证: AC ⊥ BD . 证明: → → → → 变式:已知 a = 3, b = 4, ?a , b ? = 60 , 求(a + 2b ) (a - 3b ) . 总结: a ⊥ b ? 。 a b

a b a ⊥ 变式: 已 知 a = 3, b = 4 ,且(a + kb ) ⊥ (a - kb ), 求 k 的值。 2 【合作探究】 1 、 若 a,b( b ≠ 0 ) 为 实 数 , 则 a ? b = a ? b 成 立 , 对 于 向 量 3、已知 e 1 , e 2 是夹角为 3 的两个单位向量, a = e 1 - 2e 2 , b = ke 1 + e 2 , 若 a ? b = 0 ,则 k 的值为 。 a , b , a ? b = ? 成立吗? 2、若 a,b,c( b ≠ 0 )为实数,则 ab = bc ? a = c ; 但对于向量, ab = bc ? a = c 还成立吗? 4、证明平行四边形中, AC 2 + BD 2 = 2 AB 2 + 2 AD 2. 3、 向量的数量积满足结合律吗,即(a ? b )? c = a ? (b ? c )成立吗? (a ? b ) ? c 表 示什么意义? a ? (b ? c ) 表示什么意义? 【当堂检测】 → → < >= 1200 , = = 5, (2a - b )? a = 1 、 已 知 向 量 a , b 且 a 2, b 则 (选做)5、设 a b , 且 = 2, b = 1, k,t 是两个不同时为零的实数。 。 (1) 若 x = a + (t - 3)b 与 y = -ka + tb 垂直,求 k 关于 t 的函数关系式 k=f(t); (2) 求出函数 k=f(t)的最小值。 → → → → 2 2 、 a = 6, b = 8, ?a , b ? = 120 , 求 a + b , a + b .

高中数学 空间向量及其运算 教案

空间向量及其运算 【高考导航】 本节内容是高中教材新增加的内容,在近两年的高考考查中多作为解题的方法进行考查,主要是解题的方法上因引入向量得以扩展.例如2001上海5分,2002上海5分. 【学法点拨】 本节共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积.这一节是空间向量的重点,在学习本节内容时要与平面向量的知识结合起来,认识到研究的范围已由平面扩大到空间.一个向量是空间的一个平移,两个不平行向量确定的是一个平行平面集,在此基础上,把平行向量基本定理和平面向量基本定理推广到空间,得出空间直线与平面的表达式,有了这两个表达式,我们可以很方便地解决空间的共线和共面问题.空间向量基本定理是空间几何研究代数化的基础,有了这个定理,整个空间被3个不共面的基向量所确定,空间一个点或一个向量和实数组(x ,y ,z )建立起一一对应关系,空间向量的数量积一节中,由于空间任一向量都可以转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同. 【基础知识必备】 一、必记知识精选 1.空间向量的定义 (1)向量:在空间中具有大小和方向的量叫作向量,同向且等长的有向线段表示同一向量或相等向量. (2)向量的表示有三种形式:a ,AB ,有向线段. 2.空间向量的加法、减法及数乘运算. (1)空间向量的加法.满足三角形法则和平行四边形法则,可简记为:首尾相连,由首到尾.求空间若干个向量之和时,可通过平移将它们转化为首尾相接的向量.首尾相接的若干个向量若构成一个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0. (2)空间向量的减法.减法满足三角形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向一定”,另外要注意 -=的逆应用. (3)空间向量的数量积.注意其结果仍为一向量. 3.共线向量与共面向量的定义. (1)如果表示空间向量的有向线段在直线互相平行或重合,那么这些向量叫做共线向量或平行向量.对于空间任意两个向量a,b(b≠0),a∥b ?a=λb ,若A 、B 、P 三点共线,则对空间任意一点O ,存在实数t,使得OP =(1-t)OA +t OB ,当t=2 1 时,P 是线段AB 的中点,则中点公式为OP = 2 1 (OA +). (2)如果向量a 所在直线O A 平行于平面α或a 在α内,则记为a ∥α,平行于同一个平面的

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或( 1,,)n y z =],在平面α内任找两个不共线的向量,a b 。由n α⊥,得0n a ?=且0n b ?=,由此得到关于,x y 的方程组,解此方程组即可得到n 。 方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。 0=+++D Cz By Ax )0,,(不同时为C B A ,称为平面的一般方程。其法向量),,(C B A n =→ ;若平面与3个坐 标轴的交点为),0,0(),0,,0(),0,0,(321c P b P a P ,如图所示,则平面方程为:1=++c z b y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。 方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→ → ?b a 为一长度等于θsin ||||→ → b a ,(θ 为 ,两者交角,且πθ<<0),而与 , 皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 的方向转为 的方向时,大拇指所指的方向规定为→→?b a 的方向,→ →→→?-=?a b b a 。 :),,,(),,,(222111则设z y x b z y x a ==→ → ??=?→ → 21y y b a ,2 1z z 21x x - ,21z z 21x x ???? 21y y (注:1、二阶行列式:c a M = cb ad d b -=;2、适合右手定则。 ) 例1、 已知,)1,2,1(),0,1,2(-==→ → b a , 试求(1):;→ → ?b a (2):.→ →?a b Key: (1) )5,2,1(-=?→ → b a ;)5,2,1()2(-=?→ → a b 例2、如图1-1,在棱长为2的正方体1111ABCD A B C D -中, 求平面AEF 的一个法向量n 。 )2,2,1(:=?=→ →→AE AF n key 法向量

平面向量的数量积的运算律

第十二教时 平面向量的数量积的运算律 要求学生掌握平面向量数量积的运算律,明确向量垂直的充要条件 复习: 1 ?平面向量数量积(内积)的定义及其几何意义、性质 2 ?判断下列各题正确与否: 1若a = 0,则对任一向量b ,有a b = 0。 2若a 0,则对任一非零向量b ,有ab 0。 3 若 a 0, ab = 0,则 b = 0。 4若ab = 0,则a 、b 至少有一个为零。 5 若 a 0, a b = a c ,贝U b = c 。 6若a b = ac ,贝U b = c 当且仅当a 0时成立。 7对任意向量a 、b 、c ,有(a b ) c a (b c )。 8对任意向量a ,有a 2 = |a|2。 平面向量的运算律 1 .交换律:a b = b a 证:设 a , b 夹角为,贝U a b = |a||b|cos , b a = |b||a|cos 二 a b = b a ??? c (a + b ) = ca + c b 即:(a + b ) c = a c + b c 4.例题:P118-119 例二、例三、例四 (从略) 三、应用例题:(《教学与测试》第27课P156例二、例三) 例一、已知a 、b 都是非零向量,且a + 3b 与7a 5b 垂直, 解:如图:」ABCD 中:AB DC , AD BC , AC = AB AD 2 ■ 2 ? |AC |2=| AB AD |2 AB AD 而 BD = AB AD ? |BD |2=| AB AD |2 AB AD ?'?I c | |a + b| cos =|c| |a| cos 1 + |c| |b| cos 2 2.( a) b = (a b) =a( b) 证 :若 > 0, ( a) b = |a||b|cos , (ab): = |a||b|cos , a (b): = |a||b|cos , 若 < 0, ( a) b =| a||b|cos() (ab): = |a||b|cos , a (b): =|a || b|cos() 3. (a + b) c =a c + b c 在平面内取一点 0,作OA = a, AB = b , |a||b|( cos ) = |a||b|cos , |a||b|( cos ) = |a||b|cos 。 __ !, __ p _____ h 2 ___ 2 ___ t k ? | AC |2 + |BDf = 2 AB 2AD = | AB |2 | BC |2 | DC |2 四、 小结:运算律 五、 作业:P119 习题5.6 7、8 《教学与测试》P152练习 |AD |2 ??? a + b (即OB )在c 方向上的投影 等于a 、b 在c 方向上的投影和, 即:|a + b| cos = |a| cos 1 + |b| cos 2 教材: 目的: 过程: (V ) (x ) (x ) (x ) (x ) (x ) (x ) (V ) a 4 b 与7a 2b 垂直, 求a 与b 的夹角。 解:由(a + 3b)(7a 5b)= 0 7a 2 + 16a b 15b 2 = 0 ① (a 4b)(7a 2b)= 0 7a 2 30a b + 8b 2 = 0 ② 两式相减:2a b = b 代入①或②得:a 2 = b 2 设a 、b 的夹角为, 则 cos : =a b b 2 1 ? =60 |a||b| 2|b|2 2 2AB AD 例二、求证:平行四边形两条对角线平方和等于四条边的平方和

高中数学:空间向量知识点

高中数学:空间向量知识点 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 ;; 运算律:⑴加法交换律: ⑵加法结合律: ⑶数乘分配律: 3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,平行于,记作。 当我们说向量、共线(或//)时,表示、的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量、(≠),//存在实数λ,使=λ。 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量不共线,与向量共面的条件是存在实数使。 5. 空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使。 若三向量不共面,我们把叫做空间的一个基底,叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

推论:设是不共面的四点,则对空间任一点,都存在唯一的三个有序实数,使。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系中,对空间任一点,存在唯一的有序实数组,使,有序实数组 叫作向量在空间直角坐标系中的坐标,记作,叫横坐标,叫纵坐标,叫竖坐标。 (2)若空间的一个基底的三个基向量互相垂直,且长为,这个基底叫单位正交基底,用表示。 (3)空间向量的直角坐标运算律: ①若,,则, ,, , , 。 ②若,,则。

高中数学空间向量方法解立体几何教案

空间向量方法解立体几何 【空间向量基本定理】 例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、 PD上的点,且M分成定比2,N分PD成定比1,求满足的实数x、y、z的值。 分析;结合图形,从向量出发,利用向量运算法则不断进行分解,直到全部向量都 用、、表示出来,即可求出x、y、z的值。 如图所示,取PC的中点E,连接NE,则。 点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。 【利用空间向量证明平行、垂直问题】 例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。 (1)证明:PA//平面EDB; (2)证明:PB⊥平面EFD; (3)求二面角C—PB—D的大小。 点评:(1)证明两条直线平行,只需证明这两条直线的方向向量是共线向量. (2)证明线面平行的方法: ①证明直线的方向向量与平面的法向量垂直; ②证明能够在平面内找到一个向量与已知直线的方向向量共线; ③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量是共面向量. (3)证明面面平行的方法: ①转化为线线平行、线面平行处理; ②证明这两个平面的法向量是共线向量. (4)证明线线垂直的方法是证明这两条直线的方向向量互相垂直. (5)证明线面垂直的方法: ①证明直线的方向向量与平面的法向量是共线向量;

人教新课标版数学高一-人教B版必修4精练 2.3.2 向量数量积的运算律

第二章 2.3 2.3.2 一、选择题 1.若|a|=3,|b|=3,且a 与b 的夹角为π 6,则|a +b|=( ) A .3 B . 3 C .21 D .21 [答案] D [解析] ∵|a|=3,|b|=3,a 与b 的夹角为π 6, ∴|a +b|2=a 2+2a·b +b 2 =9+2×3×3×cos π6+3 =9+2×3×3×3 2 +3=21, ∴|a +b|=21. 2.(2015·山东临沂高一期末测试)若向量a 、b 满足|a |=|b |=1,且a ·(a -b )=1 2,则向量 a 与 b 的夹角为( ) A .π6 B .π3 C .2π3 D .5π6 [答案] B [解析] 设向量a 与b 的夹角为θ, ∵a ·(a -b )=a 2-a ·b =1 2, ∴1-1×1×cos θ=1 2, ∴cos θ=1 2,∵0≤θ≤π, ∴θ=π3 . 3.设a 、b 、c 满足a +b +c =0,且a ⊥b ,|a|=1,|b|=2,则|c |2等于( ) A .1 B .2 C .4 D .5

[解析] ∵a +b +c =0,∴c =-a -b , ∴c 2=|c |2=(a +b )2=|a |2+2a ·b +|b |2=1+4=5,故选D . 4.已知两个非零向量a 、b 满足|a +b |=|a -b |,则下面结论正确的是( ) A .a ∥b B .a ⊥b C .|a |=|b | D .a +b =a -b [答案] B [解析] 本题考查向量的运算. 由题意知|a +b |=|a -b |,∴|a +b |2=|a -b |2,即a 2+2a ·b +b 2=a 2-2a ·b -b 2, ∴a ·b =0,∴a ⊥b . 注意:|a +b |2=(a +b )2=a 2+2a ·b +b 2. 5.下列各式中正确命题的个数为( ) ①(λa )·b =λ(a ·b )=a ·(λb ),(λ∈R ); ②|a ·b |=|a |·|b |; ③(a +b )·c =a ·c +b ·c ; ④(a ·b )·c =a ·(b ·c ). A .1 B .2 C .3 D .4 [答案] B [解析] ①、③正确,②、④错误. 6.(2015·重庆理,6)若非零向量a 、b 满足|a|=223|b|,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A .π4 B .π 2 C .3π4 D .π [答案] A [解析] 设a 与b 的夹角为θ,根据题意可知,(a -b )⊥(3a +2b ),得(a -b )·(3a +2b )=0,所以3|a|2-a·b -2|b|2=0,3|a|2-|a|·|b|cos θ-2|b|2=0,再由|a|=223|b|得83|b|2-223|b|2 cos θ- 2|b|2=0,∴cos θ= 22,又∵0≤θ≤π,∴θ=π 4 .

高中数学空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B C D .23 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =. 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 13OA AB AO AB ?=u u u u r u u u r u u u r u u u r . 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D -- M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

相关文档
相关文档 最新文档