文档库 最新最全的文档下载
当前位置:文档库 › 添加不同的促生长剂对鲤鱼生长和鱼体成分的影响

添加不同的促生长剂对鲤鱼生长和鱼体成分的影响

添加不同的促生长剂对鲤鱼生长和鱼体成分的影响
添加不同的促生长剂对鲤鱼生长和鱼体成分的影响

果蔬中常用植物生长调节剂分析方法研究进展

果蔬中常用植物生长调节剂分析方法研究进展 摘要:植物生长调节剂是一类具有植物激素活性的人工合成农药,可用于调节 果蔬的生长和贮藏。近年来,植物生长调节剂在果蔬生产中的使用越来越多,而 产生的安全事件不断增多。果蔬中植物生长调节剂的残留问题已经引起社会的广 泛关注,痕量植物生长调节剂残留的分析技术也在不断发展。文中概述了国内外 检测果蔬中植物生长调节剂残留的主要分析方法及其优缺点,包括气相色谱(GC)、高效液相色(HPLC)、质谱联用技术、酶联免疫吸附测定(ELISA)、 毛细管电泳(CE)及其他分析法,并对其发展趋势进行了展望。 关键词:水果蔬菜;植物生长调节剂;分析方法 一、果蔬中常用的调节剂 调节剂按其功能可分为五类:生长素类、细胞分裂类、赤霉素类、催熟剂类 以及生长抑制剂类。当前,在果蔬生产中使用比较多的有:赤霉素、氯吡脲、乙 烯利、矮壮素、多效唑等,它们大多属低毒类农药,也有少数微毒或者无毒,然 而某些调节剂或其水解产物具有潜在的致癌、致畸或者导致突变作用(例如:丁 酰肼的水解产物不对称二甲基肼具有致畸作用)也应得到应有的重视。 二、果蔬中常用调节剂的分析方法 2.1气相色谱(GC)分析法 目前GC 技术主要应用于乙烯利的检测,也可用于丁酰肼等调节剂的分析, 但需要进行衍生化反应,前面的处理过程较为繁琐。由于大部分的调节剂相对分 子质量较大、极性较强、不易气化或者受热易分解,所以,GC 技术在调节剂的残留分析中应用不多,虽然衍生化处理后可以采用GC 分析某些调节剂,但衍生化 过程通常都会耗时费力,不符合实际检测中简单、快速的要求,更不适用于大批 量样品的分析。而乙烯利等少数调节剂虽然其特殊性质采用GC 分析操作比较简便,但是灵敏度还有待进一步提高。 2.2高效液相色谱(HPLC)分析法 与GC 相比,HPLC 可用于检测果蔬中大多数调节剂的残留,正常情况下无需 衍生化反应,前面处理过程比较简单,可是,在分析基质比较复杂的样品时,其 选择性与灵敏度不及GC。Newsome 等采用高压离子交换液相色谱法分析了马来 酰肼及其β-D- 葡糖苷。样品采用甲醇提取,在马铃薯、大头菜、甜菜及胡萝卜中 的平均加标回收率为87%。而Kobayashi 等改用水提取,建立了测定农产品中马 来酰肼残留的HPLC法,方法的回收率为92.6%~104.9%,LOD 为0.5μg/g。虽然HPLC分析马来酰肼与美国官方分析化学师协会(AOAC)采用的蒸馏-分光光度法 相比更加快速、灵敏、准确,但样品中干扰杂质的分离相对困难。所以潘广文等 建立了马铃薯、洋葱、大蒜中马来酰肼的高效离子排斥色谱(HPIEC)法,该方法不但样品处理步骤简单,分析周期短并且不受杂质干扰。固相萃取(SPE)是HPLC 分析中最常用的前处理技术:Hu Jiye 等采用酸化乙腈提取、氨基柱净化、丙酮洗脱后以HPLC-UV(紫外检测器)分析了西瓜中氯吡脲的残留;而Kobayashi 等改用丙酮提取,Chem Elut柱和Oasis HLB 以及Bond Elut PSA 迷你柱双柱净化后,也用HPLC 分析了农产品中氯吡脲的残留;Zhang Hua等又以乙酸乙酯提取,ENVI-18 柱净化后采用反相高效液相色谱法(RP-HPLC)分析了果蔬中氯吡脲的残留。 虽然SPE 技术对微量以及痕量目标化合物的提取、分离能力较为强,但其操作比 较繁琐、耗时,并且成本较高,不适合大批量样品的快速筛查。所以,胡江涛等 以分散固相萃取-高效液相色谱(DSPE-HPLC)快速分析了猕猴桃中氯吡脲残的残

植物生长调节剂现状及发展趋势

植物生长调节剂现状及发展趋势 安阳市小康农药有限责任公司红雨 植物生长调节剂(plant growth regulators)是一类与植物内源激素具有相似生理和生物学效应的物质,我们也可以理解为人工合成或提取的植物激素。已发现具有调控植物生长和发育功能物质有生长素、赤霉素、乙烯、细胞分裂素、脱落酸、油菜素内酯、水杨酸、茉莉酸和多胺等,而作为植物生长调节剂被应用在农业生产中主要是前6种。就世界范围来说,植物生长调节剂的研究和应用从20世纪30年代才开始,但它的潜在社会效益和经济效益非常大,所以它的发展非常迅速,到20世纪60年代,即已形成了植物生长调节剂工业。随着化工技术和生物技术的发展,植物生长调节剂对农业的产量提高、产品品质的改善、降低劳动强度、提高劳动生产率起着越来越重要的作用,正如人们的预言:21世纪是生物工程世纪,生物工程的变革将是转基因工程和化学调控技术的变革。 一、植物生长调节剂研究和应用现状 在20世纪30年代,植物生理学家Thimann和Skoo等对吲哚乙酸(IAA)对植物的顶端优势、插枝生根、形成无籽果实的研究,标志着植物生长调节剂的研究和应用的开始。 到20世纪60年代对植物激素的分类和生长素、萘乙酸、赤霉素的应用,标志着植物生长调节剂研究的逐渐成熟,到今天几百种植物生长调节剂的人工合成和应用,标志着植物生长调节剂工业时代的兴起。 我国植物生长调节剂的生产主要集中在一些传统的品种,如赤霉素、乙烯利、甲派嗡等。由于产品老化和重复建设,使得各企业经济效益低下,发展缓慢。但我国植物生长调节剂生产发展也取得了一定的成绩,如近十年研制生产的油菜素内酯、多效唑、复硝酚钠等,已经达到了国际先进水平,在世界上占有一定的地位,产生了很大的社会效益和经济效益,为我国植物生长调节剂的研究和发展奠定了一定的经济基础,贮备了坚定的技术力量。二、植物生长调节剂的研究和发展趋势 人类的求知欲正吸引着众多科学家不断发现新的植物生长调节剂和总结新的理论,如最近发现的茉莉酸、多胺、月光花素、寡糖等,对植物生长发育都有着很重要的调控作用,将是新型的植物生长调节剂。根据资料显示,植物生长调节剂的研究将有以下几个趋势。 1、新产品不断产生 随着植物生长调节剂研究的不断深入,更新更好的植物生长调节剂正取代着老的植物生长调节剂,如缩节胺取代了矮壮素,缩节胺在调节棉花生长上比矮壮素更具有优越性,

鱼类激素

.肾机能的调节 (一)肾小球滤过作用的调节 肾小球通透性一般不会发生太大变化。肾小球滤过作用调节主要通过肾血流量调节而实现。 肾血流量具有自动调节机制,即肾内存在血流阻力随动脉血压而改变以维持血流量相对稳定的机制。 另一方面,肾血流量也受神经-体液因素的调节。支配肾脏的传出神经包括内脏神经(交感神经)和迷走神经(副交感神经)两种。前者有缩血管的作用,特别对入球小动脉和出球小动脉作用尤为显著;迷走神经的作用尚待研究。 体液因素中,肾上腺素和去甲肾上腺素都是促进肾血管收缩的主要激素。 (二)肾小管活动的调节 1.自身调节 (1)小管液的溶质浓度:小管液的溶质所形成的渗透压是对肾小管重吸收水分的力量。(渗透性利尿); (2)球管平衡:肾小管重吸收率与肾小球滤过率之间保持一定的平衡; 2.神经调节:肾的血管和肾小管主要受交感神经的支配。 3.体液调节: (1)抗利尿激素:增加远球小管和集合管对水分的通透性,使尿量较少; (2)醛固酮(肺鱼):保Na+、排K+;醛固酮的分泌受肾素-血管紧张素系统调节,血管紧张素II能y引起强烈而持久的醛固酮分泌。但除肺鱼外,鱼类都缺。 15. 甲状腺激素的生理作用 1.代谢 。甲状腺激素的作用在高等脊椎动物主要是增加机体的代谢活动。 ?甲状腺激素对变温动物的代谢活动也起重要作用。 2.调节渗透压 ?例:硬骨鱼类处于渗透压变化的环境中,甲状腺素能促使渗透压调节所需的能量代谢增强。 3. 对生长、发育、变态和行为的影响 ?甲状腺激素的主要作用是促进生长和发育成熟。(例:甲状腺素处理鱼受精卵和鱼苗能明显地提高孵化率和成活率) ?甲状腺激素能改变鱼类的运动行为。 胰岛素的生理作用(降低血糖,合成脂肪,合成蛋白质) 答:1. 对糖代谢的影响 促进葡萄糖转运,加速葡萄糖的氧化,增加糖元生成,抑制糖异生; 2.对脂肪代谢的影响 促进脂肪合成,抑制其水解,减少脂肪酸的释放和酮体的生成; 3.对蛋白质代谢的影响 促进氨基酸进入细胞,加速蛋白质合成。 17. 肾间组织激素的作用和调节 答:(一)作用 1.调节水盐平衡

植物生长调节剂复配大全

植物生长调节剂复配 大全

植物生长调节剂复配大全 植物生长调节剂可促进作物生长、提高作物的座果率等,同时还能与多种农药品种进行复配,常用的植物生长调节剂的复配可分为:植物生长调节剂之间混复配、植物生长调节剂与杀菌剂复配、植物生长调节剂与肥料复配等,下面让我们一起来了解下吧。 一、植物生长调节剂之间复配 以前大家认为植物生长调节剂具有专用性,不能复配使用,而现代植物生理学研究证明:不同的植物生长调节剂复配使用后,将产生意想不到的好效果。生长促进剂与生长抑制剂复配使用后发现,对一些植物可抑制营养生长而促进生殖生长,在植物控制旺长、抗倒伏的同时,使果实膨大,提高产量改善品质。 1、复硝酚钠萘乙酸钠 它是一种省工、低成本、高效、优质的新型复合植物生长调节剂。复硝酚钠作为一种综合调节作物生长平衡的调节剂,可全面促进作物生长,而与萘乙酸钠复配,一方面强化萘乙酸钠的生根作用,另一方面又增强复硝酚钠生根速效性,二者共同促进,使生根效果更快,吸收营养更强劲,更全面,加速促进作物伸张健壮,不倒伏,节间粗壮,分枝、分蘖增多,抗病,抗倒伏。 2、DA-6 乙烯利(或复硝酚钠乙烯利) 它是一种复合型玉米专用的矮化、健壮、防倒型调节剂。单用乙烯利,表现为有矮化作用,且叶片增宽、叶色深绿、叶片向上、次生根增多,但易出现叶片早衰现象。 3、复硝酚钠赤霉素 复硝酚钠与赤霉素同作为速效性调节剂,均能在施用后短时间内发生作用,使作物显示出很好生长效果,而复硝酚钠与赤霉素复配使用,据中牟县枣树科学研究所应用中威春雨1号(正宗复硝酚钠)研究表明,在加合二者效果的同时,复硝酚钠的持效性特点,能补赤霉素的这一缺陷,同时通过综合调控生长平衡,避免赤霉素使用过量造成对植株体的伤害,从而使枣树显着增产,品质也明显提高。 4、萘乙酸钠吲哚丁酸盐 它是世界上应用最为广泛的复合生根剂,在果树、林木、蔬菜、花卉及一些观赏植物上推广应用广泛。该混剂可经由根、叶、发芽的种子吸收,刺激根部内鞘部位细胞分裂生长,使侧根生长快而多,提高植株吸收养分和水分能力,达到植株整体生长健壮。 由于该剂在促进植物扦插生根中往往出现增效或加合作用,从而使一些难以生根的植物也能插枝生根。 二、植物生长调节剂与肥料复配

促进坐果、彭果配方(助剂部分)

关于促进坐果、膨果的几个配方 促进果实坐果、膨大、增加产量,历来是调节剂的主要应用之一。自我国开始在植物调节剂的研究以来,这类应用一直占有着相当大的比例。从番茄、茄子的防止落花,苹果的防止采前落果,促进葡萄果粒膨大而后到应用抑制剂促进结实率,我们先后应用了吲哚乙酸、2,4-D、萘乙酸、赤霉素、细胞分裂素、比久等抑制剂来促进坐果、膨果,而达到增产、改善品质的目的。但单独使用某一药剂时,往往提高坐果的同时,产生空洞果、裂果、果梗变硬等副作用,达不到提高品质的要求,就需要两种或两种以上的植物生长调节剂混用,但复配产品要经过科学的试验,其复配有效成份及含量均要经过严格的筛选,否则欲速则不达,甚至产生副作用,下面就一些此类常用的复配制剂介绍一下。(1)复硝酚钠+α-萘乙酸钠 其制剂一般为水剂或可溶粉剂,由高纯度α-萘乙酸钠与复硝酚钠复配而成,市场上常见的为2.85%水剂(1.8:1.05),这两种成份可以相互增效,拓宽药效,降低使用浓度,既具有复硝酚钠赋活剂的效果,又具有α-萘乙酸钠生根、膨果的效果,是一种广谱性植物生长调节剂,由于其制剂的速效性,保花保果性能优良,已成为一个较为广泛的植物生长调节剂品种。 (2)赤霉素(GA4+7)+ 6-BA 其制剂一般为乳油、可溶液剂或涂抹剂。市场产品有3.6%、3.8%乳油,3.6%液剂,2.7%膏剂。它可经由植物的茎、叶、花吸收,再传到到分生组织活跃的部位,促进坐果,促进苹果五棱突起,并有增重效果。此混剂已在元帅系的红星、新红星、短枝红星、红富士和青香蕉苹果上应用,一般是盛花期

对花喷一次,隔15-20天再对幼果喷一次。此外,还可在猕猴桃、葡萄、香蕉等果树上应用。 (3)氯化胆碱+萘乙酸(钠) 其制剂一般为可溶粉剂或水剂。市场产品有25%水剂,主要应用于马铃薯、甘薯、萝卜、洋葱、人参等块根块茎类作物。此配方为促控剂类型,通过抑制C3植物的光呼吸,提高光合作用效率、促进有机质的运输,并将光合产物尽可能输送到块根块茎中去,增加块根块茎的产量。 (4)赤霉素(GA3)+ CPPU 其制剂一般为乳油或可溶液剂。为0.1%氯吡脲可溶液剂的升级产品,加赤霉素的作用是防止穗轴硬化及幼果大小不齐等副作用。一般赤霉素的使用浓度在10ppm,氯吡脲根据处理作物的不同,使用浓度有所调整,使用范围在 5-20ppm。如在巨峰葡萄上应用此混剂,最好选用赤霉素 10ppm+CPPU5ppm的浓度,不仅能提高坐果率,还促进了幼果的膨大,单果重明显增加。 (5)赤霉素(GA3)+ (类)生长素 其制剂一般为可溶液剂或可溶粉剂。类生长素如α-萘乙酸、2,4-D、对氯苯氧乙酸、β-萘氧乙酸等在番茄、芒果、菠萝、香蕉等作物应用时,在提高坐果率的同时也同时产生一定数量的空洞果,若配合赤霉素使用,则大大减少了空洞果的比例,明显提高了品质。 (6)赤霉素+ 生长素+ 6-BA 其制剂多为膏剂。配置比例为0.3%赤霉素+0.005%吲哚乙酸 +0.05%6-BA,用此混剂的羊毛脂软膏处理新水梨的幼果果梗,其单果重

转生长激素基因鱼的研究与进展

转生长激素基因鱼的研究进展 摘要: 本文主要介绍了非“全鱼”、“全鱼”以及“同种”生长激素基因重组体的构建,对比分析相应转基因鱼的生长,同时介绍了显微注射法、电脉冲法、精子载体法、基因枪法等常用的鱼类基因转移技术,分析了转生长激素基因鱼的安全性、遗传稳定性和发展前景。 关键词:生长激素基因重组体;转基因鱼;基因转移; Abstract:This paper mainly introduces the of non - "all fish", fish and the same growth hormone gene recombinant construction, comparison and analysis of the corresponding transgenic fish growth, at the same time, it introduces the micro injection method, electroporation ,sperm vector method,Particle gun method commonly used fish gene transfer technology, analysis of the growth hormone gene fish safety, genetic stability and development prospects. Key words: Growth hormone gene recombinant; transgenic fish; gene transfer; 0前言 1985年,世界上第一批转基因鱼的诞生,开辟了鱼类遗传育种的新领域,同时也揭开了转基因鱼研究的序幕[1]。过去的20 余年,转基因鱼研究取得了长足发展。目前,世界上已经有超过35 种的鱼用于转基因研究,绝大多数鱼类的转基因研究以培育具有优良生产性状的新品系为目的[2]。其中,生长激素转基因鱼由于具有生长速度快、饵料转化效率高等特点而备受关注。近日,美国食物药品管理局(FDA)在确认转基因三文鱼食用安全性五年、环境安全性三年之后,批准了水恩公司(AquaBounty)的转基因三文鱼品牌“AquAdvantage”上市,从而使之成为首个获批的供食用转基因动物,快速生长转基因鱼在转基因动物中率先实现市场化[2]。 在对转生长激素基因鱼的研究中,先后经历了转非全鱼生长激素基因鱼,转全鱼生长激素基因鱼以及同种生长激素基因鱼的研究,采用了显微注射法、电脉冲法、精子载体法、基因枪法等常用的基因转移技术,本文主要分析不同转基因元件构建的转基因鱼生长状况,介绍几种基本的基因转移方法,转基因鱼的安全性、遗传稳定性分析以及其发展前景。 1生长激素基因重组体与转基因鱼 1.1 非“全鱼”生长激素转基因鱼 非“全鱼”生长激素转基因重组体指转植基因的构成元件(调控序列和生长激素编码序列)中至少有一部分来自鱼类以外的其他物种。通过转移此类转植基因所获得的转基因鱼即为非“全鱼”生长激素转基因鱼。转基因鱼研究的初期,所使用的重组生长激素基因来自哺乳动物,如人、牛等的生长激素基因,调控顺序有小鼠金属硫蛋白基因(mMT)启动子、病毒SV40启动子等。部分非“全鱼”生长激素转基因鱼的快速生长效应是令人振奋,60 日龄转入生长激素基因银鲫(Carassius auratus gibelio Bloch)的平均体重是对照组的 1.82 倍[4]。135日龄转入生长激素基因泥鳅(Misgurnus anguillicaudatus)体重较对照鱼增加3—4.6 倍[5,6]。F2 代转入生长激素基因鲤鱼(Cyprinuscarpio L.)最大个体体重是对照鱼的8.7 倍[7]。除此之外,尽管其他非“全鱼”生长激素转基因鱼的生长速率或体重增加较对照鱼有一定优势,但一般不超过 50%。F2 和 F4代转入生长激素基因红鲤(Cyprinus carpio L. red var.)的生长率分别比对照鱼高出13%—25%[8,9]。转虹鳟生长激素基因鲤鱼P0 代个体的平均体重比对照鱼高 22%,F1 代杂合个体平均体重比对照鱼高50%[10,11]。嵌合体转基因沟

鱼类的年龄和生长鱼类的生长特性鱼类的生长特性主要有遗传

鱼类的年龄和生长 第一节鱼类的生长特性 鱼类的生长特性主要有遗传性、阶段性、延续性、周期性、性别差异等。 ◆鱼类生长的遗传性 *鱼类个体的大小、生长速度以及一生中生长速度的变化特点,由不同种类或亚种或品种的遗传特性所决定。 最大个体鲸鲨可以长到20—25m,重达8700kg 最小个体鰕虎鱼,长度只有7.5—11.5mm。

*从俄罗斯闪光鲟不同种群的生长状况,可以看到它们之间生长的显著差别(如下表)。在选择增养殖对象时,生长的遗传特性是首要的因素。 闪光鲟不同种群的生长状况(单位:cm, 年) ◆ 鱼类生长的阶段性通常鱼类一生的生长可划分为三个阶段: 1、性成熟之前——是生长的旺盛阶段,此时性腺尚未大规模地发育,取得的营养除维持代谢的消耗 之外,大多用于生长,因而此阶段的生长最快。例如鲢从孵出至龄,体长增长迅速,至龄时体重增 加显著。 2、性成熟后——进入生长的稳定阶段。此阶段鱼体性腺大规模发育,所摄取的大部分营养用于性腺的 发育。 3、衰老阶段——此时对所摄取的营养,吸收和利用率都很低,在生殖机能衰退的同时,体长和体重的 增长都极差。 ◆鱼类生长的延续性 鱼类在性成熟后相当长的时期内,生长仍以明显的速度进行着。例如长江上游的齐口裂腹鱼至6龄时,雄鱼体长为31.4cm,而后生长一直延续,每年都有少量的增长,到14龄时体长为50cm。

齐口裂腹鱼 ◆鱼类生长的周期性 鱼类的生长在一年中有明显的周期性变化。出现这种周期性变化的原因包括两个方面:1、一方面是气候的季节变化对于生长的影响。

鲢、鳙鱼历月增重绝对值变化 2、另一方面,当鱼类进入性成熟阶段,生理活动因性周期的变化而周期变动。 ◆鱼类生长的性别差异 一般雄鱼比雌鱼性成熟早,因而生长速度提前减慢,所以雄鱼个体通常比雌鱼要小些。例如湖口地区青鱼1—6龄雌、雄鱼的平均体长存在明显的差别。 湖口地区青鱼雌雄鱼体长对比(单位:cm) 也有少数鱼类雄鱼比雌鱼生长快。如尼罗罗非鱼,由于雌鱼具有口腔护卵的习性,所以雌鱼的生长 比雄鱼差,同龄个体雌鱼小。 第二节鱼类的年龄及鉴定年龄的方法 ◆鱼类的年龄鱼类一生能存活的年数因种类而不同。 通常大型鱼类、性成熟晚的寿命较长,而小型、性成熟早的鱼类寿命短。 青鳉、间银鱼、香鱼等在一年内可生长到最大长度,一年达到性成熟,产卵后死亡,它们的寿命为一年。

常用植物生长调节剂及其应用

常用植物生长调节剂及其应用 山东丁世民刘玉娥 在植物栽培中,您可能使用过植物生长调节剂,但对每种调节剂的调节机理及具体用法,可能就了解不多了。这里介绍几种常用的植物生长调节剂及应用实例,或许对您有所帮助。 萘乙酸(α-萘乙酸、NAA、α-naphthaleneacetic acid) 属于广谱型植物生长调节剂,能促进细胞分裂与扩大,诱导形成不定根,提高坐果率,防止落果,改变雌、雄花比例,延长休眠,维持顶端优势等;对人畜低毒。常见剂型为70%钠盐原粉: 在园林花卉中的具体应用实例有: ①促进生根将侧柏插枝用200~400毫克/千克萘乙酸浸12小时;仙客来用1~10毫克/千克萘乙酸浸球茎6~12 小时。 ②减少落果菊花在短日照处理后6~9天,用50~100毫克/千克萘乙酸喷洒叶片,每30天1次;叶子花、香豌豆、兰花用50毫克/千克萘乙酸在蕾期喷洒离层部。 ③减少落果用10毫克/千克萘乙酸在花谢后7天喷洒文竹,10~15天后再喷1次。 赤霉素(赤霉酸、九二○、gibberellicacid) 广谱型植物生长调节剂,能促进植物生长发育,提高产量,改善品质;迅速打破种子、块茎、鳞茎等器官的休眠,促进发芽;减少蕾、花及果实的脱落,使2年生的植物在当年开花。常见剂型有:85%结晶粉、4%乳油。 在园林植物中的具体应用实例如表1、表2。 表1 赤霉素打破休眠、促进萌发应用实例 表2 赤霉素促进开花应用实例

丁酰联(二甲基琥珀酰阱、调节剂九九五、B9、daminozide) 属于生长抑制剂,可抑制内源激素赤霉素的生物合成、从而抑制新枝生长、缩短节间、增加叶片厚度及叶绿素含量,防止落花,促进坐果,诱导不定根形成,刺激根系生长,提高抗寒力。常用剂型有:85%、90%可溶性粉剂,4%乳油。 在园林植物中的具体应用实例为有: ①促进生根如麝香石竹、大丽花,可用5000毫克/千克丁酰肼处理插枝,快蘸5秒;一品红,可用2500毫克/千克丁酰肼处理插枝,快蘸15秒。 ②促进开花用5000毫克/千克丁酰肼对叶子花进行叶面喷洒,同时进行8小时短日照处理;用2500毫克/千克丁酰肼在杜鹃发新枝时进行叶面喷洒,同时进行8小时短日照处理。 ③延迟开花用1000毫克/千克丁酰肼在杜鹃开花前1~2个月喷洒蕾部。 ④延长花期用2500毫克/千克丁酰肼处理菊花,在短日照开始后3周叶面喷洒1次,5周后再喷1次。 ⑤矮化作用用2500毫克/千克丁酰肼处理菊花,在花芽分化期进行叶面喷洒;用2500~5000毫克/千克丁酰肼对矮牵牛进行叶面喷洒。 多效唑(高效唑、氯丁唑、PP333,PaclobutrMol) 为内源激素赤霉素的合成抑制剂,能抑制植物的纵向伸长,使分蘖或分枝增多,茎变粗,植株矮化紧凑。它主要通过根系吸收,叶吸收量少,作用较小,但能增产。经过多效唑处理的菊花、月季、天竺葵、一品红以及一些花灌木,株形明显受到调整,更具观赏价值。常见的剂型为15%可湿性粉剂。 在园林植物中的具体应用实例有: ①矮牵牛将15%多效唑可湿性粉剂稀释后进行土壤浇灌,每盆1~2毫.克(有效含量)。

关于萘乙酸生长调节剂的问题

关于萘乙酸生长调节剂的问题 时间: 2009-09-27 作者: 雪淞 07:21:00 从“NY5015-2002”3.6.3中将比久(丁酰肼)、萘乙酸、2,4-D作为无公害食品柑橘生产技术规程中禁止使用的植物生长调节剂。α-萘乙酸(萘乙酸、NAA)是一种低毒的植物生长调节剂。其急性毒性约为:2520毫克/公 ... 从“NY5015-2002”3.6.3中将比久(丁酰肼)、萘乙酸、2,4-D作为无公害食品柑橘生产技术规程中禁止使用的植物生长调节剂。α-萘乙酸(萘乙酸、NAA)是一种低毒的植物生长调节剂。其急性毒性约为:2520毫克/公斤(大鼠急性径口)。并且,到目前为止,还未有见致癌、致畸、致突变等的报道。但对皮肤有轻度刺激及对眼睛有强烈刺激。在1998年9月联合国FAO和UNEP倡导的《关于在国际贸易中对某些危险化学品和农药采用事先知情同意程序的公约》,即《鹿特丹公约》清单所规定管制的27种农药和农药制剂中,并未有出现萘乙酸。至今,在欧盟所宣布的禁用的320个农药有效成份中,也暂时未见萘乙酸。在美国禁用及限用124个农药中仍旧暂未见出现萘乙酸。在我国禁止使用的农药29种及限制使用的22种中,没有萘乙酸出现。但我国限制使用的农药名单中出现了丁酰肼(比久、B9),在欧盟的清单中出现2-4滴丙酸。在由华中科技大学同济医学院公共卫生学院(夏世钧)、沈阳化工研究院安全评价中央(白喜耕)、广州医学院致癌研究所(蔡义国)、中国疾病防备控制中央职业卫生与中毒控制所黄金祥等全国近50多位闻名教授、研究员、专家所联合编写的《农药毒理学》中所报道的具有致癌、内分泌干扰物的农药中,萘乙酸没有出现,但丁酰肼、2-4滴丙酸却有出现。再者,在“NY5015-2002”中,没有对萘乙酸可能对环境的伤害作出解释或详细的量化。而萘乙酸的实际使用的浓度一般多在30毫克/公斤(50ppm)以下的使用稀释浓度。并且,一般在第二次生理落果后作为抑制植株体内脱落酸的发展而与赤霉素配合使用。在使用后距离采收期长达180多天。中国生理学会植物生长物质委员会组织编写的《植物生长调节剂在果树上的应用》中介绍在柑橘疏花疏果中应用萘乙酸(李三玉),以及减少苹果和梨采前落果,在采果前约30天和15天各喷1次浓度为20~30ppm 萘乙酸或防落灵,防落效果良好(李三玉);由华南师范大学植物生理研究室主任潘瑞炽,及华南师范大学理学博士、副教授、中国植物生理学会植物生长物质副秘书长李玲等编写的《植物生长发育的化学控制》一书中介绍芒果在10~12cm时喷施30~40ppm 萘乙酸可有效减少采前落果。在中国农业科学院植物保护研究所徐映明等编写的《农药问答》(2005年1月第4版,2007年7月第3次印刷)对萘乙酸应用中,对温州蜜柑花后喷施疏果、柠檬喷施加速成熟、金橘喷施促进果实膨大,以及萘乙酸在其它果树上的应用均作了较详细的量化指引。假如一种农药进入植物体内会逐渐代谢降解,药效就慢慢消失,植物生长调节剂也不例外,其在作物体内残留量的多少,常决定于药物降解速度和摄入量。根据农业部农药检定所主编的《新编农药手册》中资料,萘乙酸应用于苹果及梨的处理时间在采收前最长为21天,最短为5天,使用浓度为5~20ppm,也就

常见植物生长调节剂的复配方法

常见植物生长调节剂的复配方法 1、促进坐果剂:作用是提高单性结实率,提高水果单重,促进坐果、加快果实的膨大速度、增加果实的大小。其类型分别有赤霉素+细胞激动素、赤霉素+生长素+6-BA、赤霉素+萘氧乙酸+二苯脲、赤霉素+卡那霉素、赤霉素+芸苔素内酯、赤霉素+萘氧乙酸+微肥元素等。 2、生根剂:主要促进秧苗移栽之后的生根、缓苗,或者苗木的扦插等。其类型分别有生长素+土菌消、生长素+邻苯二酚、吲哚乙酸+萘乙酸、生长素+糖精、脱落酸+生长素、黄腐酸+吲哚丁酸等。 3、抑制性坐果剂、谷物增产剂:作用是控制旺长,提高坐果率。其类型分别有矮壮素+氯化胆碱、矮壮素+乙稀利、乙稀利+脱落酸、矮壮素+乙稀利+硫酸铜、矮壮素+嘧啶醇、矮壮素+赤霉素、脱落酸+赤霉素等。 4、打破休眠促长剂:作用是打破休眠促进发芽。其类型有赤霉素+硫脲、硝酸钾+硫脲、苄氨基嘌呤+萘乙酸+烟酸、赤霉素+KCl、赤霉素+Fospinol 等。 5、干燥脱叶剂:主要用于芝麻、棉花等,在机械采收前干燥、脱叶,其作用不仅是干燥脱叶的效果,还要有增加产量的效果。其类型有乙稀利+百草苦、噻唑隆+甲胺磷、噻唑隆+碳酸钾、乙稀利+过硫酸胺、噻唑隆+敌草隆、乙稀利+草多索+放线菌酮等。 6、催熟着色改善品质剂:有加快果实成熟、使色泽鲜艳、增加果实的甜度等作用。其类型有乙稀利+促烯佳、乙稀利+环糊精复合物、乙稀利+2,4,5-涕丙酸、敌草隆+柠檬酸、苄氨基嘌呤+春雷霉素等。

7、蔬果、摘果剂:在苹果、柑橘快成熟前应用,促使柑橘果梗基部的离层形成,从而导致果实与枝条的分离。其类型有:萘乙酰胺+乙稀利、二硝基邻甲酚+萘乙酰胺+乙稀利、萘乙酰胺+西维因、二硝基邻甲酚+萘乙酰胺+西维因、萘乙酸+西维因等。 8、促进花芽发育、开花及性比率:使果实作物由营养生长转化为生殖生长,促进开花。其类型有萘乙酸+苄氨基嘌呤、苄氨基嘌呤+赤霉素、赤霉素+硫带硫酸银、乙稀利+重铬酸钾等。 9、抑芽剂:在烟草上抑制腋芽的萌发,在贮藏期抑制马铃薯的发芽等作用。其类型有青鲜素+抑芽敏、氯苯胺灵+苯胺灵、蔗糖脂肪酸酯+青鲜素等。 10促长增产剂:提高植株对N、P、K的吸收,增加产量的作用。其类型有吲哚乙酸+萘乙酸、吲哚乙酸+萘乙酸+2,4-D+赤霉素、助壮素+细胞激动素+类生长素、双氧水+木醋酸等。 11、抗逆剂(抗旱、抗低温、抗病等):增加营养元素的吸收、促进幼苗的生长、增加干物质总量、提高抗寒性、抗旱性、抗病、抗虫能力。其类型有抗激动素+脱落酸、细胞激动素+生长素+赤霉素、乙稀利+赤霉素、水杨酸+基因活性剂等。

配方施肥技术介绍

配方施肥技术介绍 施肥的目的: 庄稼一枝花,全靠肥当家。“土肥”是农业八字宪法的重要内容。几千年前,我国农民就开始使用有机肥,直到20世纪50年代后,化肥才开始在我国逐渐被广泛施用。化肥、种子和水曾经是现在还是粮食单产提高的三大决定要素,如果没有化肥的“功劳”,目前靠国内耕地生产的粮食是绝对不能养活13亿人口的。40年来,我国粮食单产和总产是随着化肥用量增加而提高的,化肥在未来农业,至少在中国21世纪的农业发展过程中是不可替代的。 土壤是一个巨大的养分仓库,含又大量元素如氮、磷、钾以及碳、氢、氧,中量元素如钙、镁、硫和微量元素如锌、锰、硼、铁、铜、钼和氯。作物生长至少需要以上16种元素或营养,其中碳、氧、氢需求量最大,但作物可以从空气中吸收二氧化碳,从土壤中吸收水分(氢),所以这些元素一般情况下不需要通过施肥进行补充。按作物吸收土壤营养元素的难容程度,将土壤中营养元素形态划分为三类,第一类为无效态养分,占绝对多数量;第二类是缓效态养分,占一定数量,作物可以间接吸收或随着有效态养分被作物吸收,这部分养分随之转化为一定数量的有效态养分;第三类为有效态养分,绝对数量较少。目前我国耕地20厘米土层内每年或每季每亩(667平方米,下同)土壤中有效氮总量相当于几十公斤尿素的含氮量,有效磷相当于几公斤磷酸二铵的含磷量,有效钾相当于几十公斤氯化钾的含钾量。如果不施肥,上述有效养分就会被快速消耗,每年从缓效态和无效态养分中补充的养分明显少于被作物吸收带走的养分。如果实施秸杆还田或过腹还田或堆沤肥还田,可以补充相当多的养分;如果只将燃烧后的灰分还田,则氮素在燃烧过程中几乎全部返回到大气。其实,即使实现全部秸杆还田,由于籽粒部分所带走的养分没有归还,所以土壤养分总体上还是亏损的。总之,人们从土壤中拿走多少养分,就要补充(归还)多少养分,考虑到高产和损失等原因,所归还的养分甚至还要比拿走的养分多。有时土壤中有效态养分绝对含量很多,但在作物需肥高峰时相对数量就显得不足,施肥(追肥)的另外一个目的就是在关键时期提高土壤中有效态养分的相对浓度。上述内容在学术上被称为:“归还学说”。 施肥与高产、高效、优质、减少污染的关系: 食物安全问题始终是社会稳定和经济繁荣的基础。我国进入21世纪30年代,人口将达到16亿。目前我国总粮食产量约5亿吨,按人均粮食400~450公斤需求计算,届时需要粮食6.4~7.2 亿吨,而国际市场只有2亿吨左右粮食可供购买,如果按目前价格每年从国外购买1亿吨粮食,需要支付近千亿元人民币。可见,中国只能而且必须依靠自己的土地养活自己。 肥料利用率提高具有重要的理论和实践意义。为保证我国21世纪食物安全,粮食单产必须提高30%~50%;在粮食增产贡献率中肥料约占32%;我国目前每公斤纯养分平均仅增产粮食6.6公斤,

转生长激素基因鱼的生物能量学研究进展

第34卷第l期2010年1月 水生生物学报 ACTAHYDROBl0LOGICASINICA Vbl.34.No.1 Jan..20lO 厝司 2、,..、一DOI:10.3724,SP.J.1035.2010.00204 转生长激素基因鱼的生物能量学研究进展 李德亮1傅萃长2胡炜2朱作言2 (1.湖南农业大学动物科学技术学院。长沙4lOl28;2.中国科学院水生生物研究所,淡水生态与生物技术国家重点实验室.武汉430072)ADVANCEONBIOENERGETICSoFGROWTHHoRMONETRANSGENICFISHES LIDe—Lian91,FUCui.Zhan92,HUWei2andZHUZuo.Y柚2 (1-cDf妇P巧A一咖口f&f棚cP口脚乃幽^DfDg),,胁n4n^g—c口hm,踟fVP"慨∞删gJ妇4lOl28;2.跏即聊L口6D甩fo秽D,,陀曲w舸Ecology矾dBtotechoto甜.InsmHte可bdrobtolo时,chineseAcⅡde”搿埘scicnces.w“妇n430m∞ 关键词:生长激索:转基因鱼:生物能量学 KeywOrds:Growthhomone:Transgenicfish;Bioenergctics 中图分类号:Q413文献标识码:A文章编号:l000-3207(2010)01-0204一06 1985年,世界上第一批转基因鱼的诞生,开辟了鱼类遗传育种的新领域。同时也揭开了转基因鱼研究的序幕【11。过去的20余年,转基因鱼研究取得了长足发展。目前,世界上已经有超过35种的鱼用于转基因研究,绝大多数鱼类的转基因研究以培育具有优良生产性状的新品系为目的【2l。其中,生长激素转基因鱼由于具有生长速度快、饵料转化效率高等特点而备受关注。目前,美国食品与药物管理局(FDA)正在对转生长激素基因大西洋鲑鱼(勋f,加jd肠r)的市场化资格进行最后审查【3l,快速生长转基因鱼有望在转基因动物中率先实现市场化【2l。 生长激素转植基因在受体鱼类体内的过量表达表现出明显的多重效应,除显著提高受体鱼类生长速率外,还对受体鱼类的摄食与消化、排粪与排泄、代谢、生化组成与能量含量及能量收支情况产生了重要的影响。本文着重从上述方面入手,对转生长激素基因鱼生物能量学的研究进展进行综述。 1转生长激素基因鱼的生长 1.1非“全鱼”生长激素转基因鱼的生长 非“全鱼”生长激素转植基因指转植基因的构成元件(调控序列和生长激素编码序列)中至少有一部分来自鱼类以外的其他物种。通过转移此类转植基因所获得的转基因鱼即为非“全鱼”生长激素转基因鱼。部分非“全鱼”生长激素转基因鱼的快速生长效应是令人振奋的。60日龄转人生长激素基因银鲫(C口馏jjf“j口“阳mj譬f扫e肋Bloch)的平均体重是对照组的1.82倍14J。135日龄转入生长激素基因泥鳅(Mfjg“m“s口n朋棚cn“出胁s)体重较对照鱼增加 3一.6倍15一。F2代转入生长激素基因鲤鱼(cyprf以“sc口伊如L.)最大个体体重是对照鱼的8.7倍【71。除此之外,尽管其他非“全鱼”生长激素转基因鱼的生长速率或体重增加较对照鱼有一定优势,但一般不超过50%。F2和F4代转入生长激素基因红鲤(C砌一nHsc口巾如L.redv札)的湿重特定生长率分别比对照鱼高出13%一25%【8.9J。转虹鳟生长激素基因鲤鱼Po代个体的平均体重比对照鱼高22%,F1代杂合个体平均体重比对照鱼高50%【loJll。嵌合体转基因沟鲶(尼幻缸九ljp“,lc矧眦s)平均体重与对照鱼之间没有显著性差异,尽管其F1代转基因个体表现出一定的快速生长效应,但其平均体重仅仅高出对照鱼23%一 26%【1 21。 1.2“全鱼”生长激素转基因鱼的生长 “全鱼”生长激素转基因鱼指通过转移构成元件来自鱼类,但又不完全来自于受体鱼类本身的转植基因所获得的转基因鱼。转“全鱼”生长激素基因鱼的生长情况根据“全鱼”转植基因不同可分为如下4种情况。 收稿日期:2008.10.27.修订日期:2009.06.29 基金项目:国家973计划(2007cBl09205)资助 作者简介:李德亮(1980一)。男。汉族,河南安阳人:博士:主要从事鱼类遗传育种与生理生态学研究。 E—mail:lidelian980@yahoo.com.cn 通讯作者:朱作言。E-哪il:zyzhu@ihb.ac.cn 万方数据

常用植物生长调节剂

常用植物生长调节剂 一、植物生长促进剂 分子式:C10H9O2N 分子量:175.19 性质:纯品无色.见光氧化成玫瑰红,活性降低。在酸性介质中不稳定,PH低于2时很快失活,不溶于水, 易溶于热水,乙醇,乙醚和丙酮等有机溶剂。它的钠盐和钾盐易溶于水,较稳定。 用途:植物组织培养 2、吲哚丁酸,IBA 分子式:C12H13NO3 分子量:203.2 性质:白色或微黄色。不溶于水,溶于乙醇、丙酮等有机溶剂。 用途:诱导插枝生根。作用特别强,诱导的不定根多而细长。 3、萘乙酸,NAA相似的有萘丁酸、萘丙酸 分子式:C12H10O2 分子量:186.2 性质:无色无味结晶,性质稳定,遇湿气易潮解,见光易变色。不溶于水,易溶于乙醇,丙酮等有机溶剂。钠盐溶于水。 用途:促进植物代谢,如开花、生根、早熟和增产等,用途广泛。 4、萘氧乙酸,NOA 分子式:C12H10O3 分子量:202 性质:纯品白色结晶。难溶于冷水,微溶于热水,易溶于乙醇、乙醚、醋酸等。用途:与NAA相似。 5 、2,4-二氯苯氧乙酸,2,4-D,2,4-滴 分子式:C8H6O3C12 分子量:221 性质:白色或浅棕色结晶,不吸湿,常温下性质稳定。难溶于水,溶于乙醇,乙醚,丙酮等。它的胺盐和钠盐溶于水。 用途:植物组织培养,防止落花落果,诱导无籽,果实保鲜,高浓度可杀死多种阔叶杂草。 6、防落素,PCPA 4-CPA,促生灵,番茄灵,对氯苯氧乙酸 分子式:C6H7O3C1 分子量:186.6 性质:纯品为白色结晶,性质稳定。微溶于水,易溶于醇、酯等有机溶剂。 用途:促进植物生长;防止落花落果,诱导无籽果实;提早成熟;增加产量;改善品质等。常用于番茄保果。 7、增产灵,4-碘苯氧乙酸。相似的有4-溴苯氧乙酸,又称增产素 分子式:C8H7O3I 分子量:278 性质:针状或磷片状结晶,性质稳定。微溶于水或乙醇,遇碱生成盐。 用途:促进植物生长;防止落花落果,提早成熟和增加产量等。 & 甲萘威,西维因,N-甲基-1-萘基氨基甲酸酯 分子式:C12H11O2N 分子量:201.2 性质:纯品为白色结晶,工业品灰色或粉红色。微溶于水,易溶于乙醇、甲醇、丙酮等有机溶剂。遇碱(P H大于10 )迅速分解失效。 用途:干扰生长素运输,使生长较弱的幼果得不到充足养分而脱落,用于苹果的疏果剂。同时它也是一种高效低毒沙虫剂。 9 、2,4,5-T,2, 4,5-三氯苯氧乙酸 分子式:C8H5O3C13 分子量:255.5

鱼类生长激素---结构和生理功能

鱼类生长激素的结构和生理功能 20世纪60年代,人们发现将动物脑垂体匀浆后拌饵料喂鱼可显著提高鱼类的生长速度,自此,生长激素(GH)开始应用于水产养殖。70年代中期,GH分离和活性鉴定技术得到了发展,人们开始尝试给鱼类注射或投喂具有生物学活性的外源性GH来促进鱼类生长。随着基因工程和转基因技术的发胜,GH的产量大大提高更加开拓了(GH)的应用前景。本文现将鱼类(GH)的结构、生理功能等几个方面进行综述。 鱼类生长激素的结构 鱼类GH是鱼类脑垂体前叶嗜酸性细胞分泌的一种由173到188个氨基酸组成、分子量在20000到22000道尔顿之问的单链蛋白类激素,随潜GH分离纯化技术的不断完善,目前,鳗鲡、银大麻哈鱼、虹鳟、斑点叉尾鲴等鱼类GH结构分析工作已经完成,并证实了鱼类(GH)在分子量、氨基酸组成和序列等方面与其他脊椎动物的(GH)存在一定的同源性。其中,硬骨鱼类不同目之间GH结构同源性为53%~55%,硬骨鱼类与其他脊椎动物GH的同源性则较低。。鱼类GH聚丙烯酰胺凝胶电泳(PAGE)分离分析研究发现:某些鱼类的GH存在两种形态,Kawauchi等1986年发现:大麻哈鱼的两种(GH)形态分子量都为22000Da,等电点分别为5.6和6.0,但两者氨基酸组成不同,推测可能存在两种编码基因。随后,在鳗鲡、海鲈等鱼叫一也发现有两种形式的(GH)。 鱼类生长激素的生理功能 促进鱼类生长 GH是在鱼类机体生长发育起关键作用的调节因予,GH几乎可作用jl-机体的所有组织,刺激组织发育,增加体细胞的大小和数目。GH发挥促生长作用一般认为可通过两种方式:一是,认为GH首先作门于肝细胞膜上的GH受体(GHR),机体许多组织细胞,如骨胳系统、 胃肠道、肾脏等均有GHR的存在或GHRmRNA的表达,GH与肝细胞GH受体结合促进肝细胞产生类胰岛素样生长因子一1(IGF一1),再由IGF一1作用于靶细胞从而间接的促进细胞的增殖和生长;二是,认为GH起促进软骨代谢作用时需由IGF一1介导,但当促进骨骼延伸和生长时则不需要TGF—l参与,而是通过直接刺激软骨细胞生长来实现。 调节鱼体代谢 GH促进细胞生K增殖的基础是增强了机体的合成代谢,它可以调节营养物质在不同组织间的分配,在脂肪组织,生长激索表现为抗胰岛索效应,可使脂肪细胞摄取葡萄糖的速度下降,降低机体内葡萄糖转化成脂肪酸的速度,抑制脂肪酸合成酶mRNA的转录和乙酰CoA 羧化酶、脂肪合成酶的活性,同时刺激脂肪的酶解作用,减少脂肪的沉积。在肌肉组织,生长激素不表现抗胰岛素作用,在类胰岛素生长因子一I的介导下加强细胞的合成代谢,加强肌肉细胞蛋白质的合成和氨基酸摄取,蛋白质周转代谢的总量减少,合成量大于降解量,从而提高蛋白质的沉积量。GH对糖代谢的影响比较复杂,不直接参与糖代谢的调节,但可改变组织对糖代谢的敏感性。生长激素

鱼类性腺发育的内分泌调节

一、鱼类性腺发育的内分泌调节(一)脑垂体鱼类脑垂体位于间脑腹面,嵌藏在副蝶骨背面、耳骨内侧缘的小凹窝内,借脑组织构成的柄与下丘脑相接。它是最重要的内分泌腺之一。它分泌的激素不仅作用于身体各种组织,而且能调节其他内分泌腺体的活动。 1.脑垂体的构造鱼类的脑垂体包括腺垂体和神经垂体两大部分。腺垂体由前腺垂体(前叶)、中腺垂体(间叶)和后腺垂体(后叶)组成。这三部分分别相当于哺乳动物腺垂体的结节部、前叶和中间部。前腺垂体距间脑最近,细胞排列较密,细胞的组成很一致。它主要由促肾上腺激素分泌细胞和催乳素分泌细胞组成。前一类细胞多呈长形或椭圆形,邻近神经部,核位于细胞一端,形状不规则,细胞质稀疏、粗糙,内质网多膨胀成囊状或泡状,分泌颗粒少。后一类细胞紧密相连,核一般位于中央,多为圆形或近圆形。细胞质内具有许多颗粒和空泡,边缘具有高电子密度分泌颗粒。中腺垂体位于垂体中央部分,相当于高等脊椎动物的前叶,有许多神经分枝伸入,控制中腺垂体的分泌机能。中腺垂体由3种分泌细胞组成:①促甲状腺分泌细胞,常为多边形或长形,有大型、不规则的核,细胞质稀,粗糙内质网多膨胀,分泌颗粒小而少,有很多核糖体;②促生长激素分泌细胞的细胞核不规则,有时位于细胞边缘,有明显的核仁,粗糙内质网常在核周围呈环形,分泌颗粒丰富;③促性腺激素分泌细胞位于中腺垂体的腹面,细胞多为圆形或椭圆形,中央有一圆形或椭圆形的核,核仁不明显,细胞质内有大小不等的分泌颗粒,粗糙内质网常呈囊状,边缘有电子密度高的核糖体。后腺垂体神经纤维丰富,有数层细胞,分为两种类型:M1型呈椭圆形,分泌颗粒大而密,直径1770~2700?;M2型长形,分泌颗粒小而少,长棒状颗粒居多。神经垂体主要由神经纤维、血管及神经胶质细胞组成。神经纤维无髓鞘,起源于下丘脑,呈网状分散在神经垂体内,包围神经胶质细胞,与微血管网紧密相连。这样能使调节垂体分泌机能的神经分泌物很容易从神经纤维末梢进入血管。2、生理机能鱼类的脑垂体分泌多种激素,对鱼的生长、性腺发育、甲状腺和肾上腺的发育以及体色等方面都有重要作用。生长激素是一种非糖蛋白激素,其N-端的氨基酸为生物活性所必需,而C-端氨基酸起着保护生长激素在循环中不被破坏的作用。除神经组织外,生长激素几乎对所有组织都有刺激作用,使其增加细胞数量和体积。生长激素促进组织生长的作用主要是通过影响蛋白质、糖和脂肪代谢,增加细胞内氨基酸的积累和蛋白质的合成来实现的。催乳素对鱼类的主要作用是调节渗透压。它能防止鱼类体内离子通过鳃和肾脏而丢失,而促进水分从肾脏排出,从而在低渗环境中维持血液中无机离子浓度,这一机能对那些交替生活在海、淡水中的鱼类十分重要。促性腺激素(GtH)是一种糖蛋白激素,由α和β两个亚基组成,亚基间以共价键结合在一起,分子量约为30 000。从机能上讲,哺乳动物的促性腺激素有两种:促卵泡激素(FSH)和促黄体激素(LH),它们分别由不同的细胞合成和分泌。FSH能促进雌体卵泡成熟及分泌雌激素;能促进雄性精子成熟。LH能促进雌体排卵、卵黄生成和黄体分泌雌激素和孕激素;促进雄体间质细胞增生和分泌雄激素。关于硬骨鱼类的GtH分泌细胞是否也像哺乳动物一样,具有两种类型,看法不一。有些学者对草鱼和鲮等脑垂体超微结构的研究证明,只有一种。在多种硬骨鱼类中已分离纯化出两种GtH,即GtHⅠ和GtHⅡ。这两种GtH都是糖蛋白,但化学结构不同。GtHⅠ能促进卵母细胞吸收卵黄和磷蛋白的生成;GtHⅡ能促进卵母细胞成熟和排卵、精子生成及性类固醇激素的合成。尽管这两种GtH在离体情况下都能刺激类固醇生成,但GtHⅡ才是卵母细胞最后成熟的主要调节者。硬骨鱼类排卵前GtH有一个高峰,尽管不同鱼类高峰的形式不同,但这个高峰对卵母细胞最后成熟是重要的。在离体情况下,各种GtH制剂对滤泡完整的卵具有刺激作用而发生胚泡破裂。GtH受体存在于鞘膜层和颗粒层。银大麻哈和马苏大麻哈至少存在两种GtH受体:I型受体和Ⅱ型受体,前者与GtH Ⅰ和GtHⅡ均能结合,但同GtHⅠ亲和性高,而II 型受体只与GtH II特异性地结合。I型受体存在于鞘膜层和颗粒层,II型受体只存在于颗粒层。GtH II对受体的特性与哺乳动物FSH 受体相似。由于哺乳动物的GtH与鱼类的GtH具有相同的生理功能,水产养殖中常用从

相关文档