文档库 最新最全的文档下载
当前位置:文档库 › 三角高程法在跨河水准测量中的主要误差及控制措施

三角高程法在跨河水准测量中的主要误差及控制措施

三角高程法在跨河水准测量中的主要误差及控制措施
三角高程法在跨河水准测量中的主要误差及控制措施

三角高程测量原理

§5.9 三角高程测量 三角高程测量的基本思想是根据由测站向照准点所观测的垂直角(或天顶距)和它们之间的水平距离,计算测站点与照准点之间的高差。这种方法简便灵活,受地形条件的限制较少,故适用于测定三角点的高程。三角点的高程主要是作为各种比例尺测图的高程控制的一部分。一般都是在一定密度的水准网控制下,用三角高程测量的方法测定三角点的高程。 5.9.1 三角高程测量的基本公式 1.基本公式 关于三角高程测量的基本原理和计算高差的基本公式,在测量学中已有过讨论,但公式的推导是以水平面作为依据的。在控制测量中,由于距离较长,所以必须以椭球面为依据来推导三角高程测量的基本公式。 如图5-35所示。设0s 为B A 、两点间的实测水 平距离。仪器置于A 点,仪器高度为1i 。B 为照准 点,砚标高度为2v ,R 为参考椭球面上B A ''的曲率半径。AF PE 、分别为过P 点和A 点的水准面。PC 是PE 在P 点的切线,PN 为光程曲线。当位于P 点的望远镜指向与 PN 图5-35

相切的PM 方向时,由于大气折光的影响,由N 点出射的光线正好落在望远镜的横丝上。这就是说,仪器置于A 点测得M P 、间的垂直角为2,1a 。 由图5-35可明显地看出,B A 、 两地面点间的高差为 NB MN EF CE MC BF h --++==2,1 (5-54) 式中,EF 为仪器高NB i ;1为照准点的觇标高度2v ;而CE 和MN 分别为地球曲率和折光影响。由 2 021s R CE = 2021s R MN ' = 式中R '为光程曲线PN 在N 点的曲率半径。设 ,K R R =' 则 2 0202.21S R K S R R R MN ='= K 称为大气垂直折光系数。 由于B A 、两点之间的水平距离0s 与曲率半径R 之比值很小(当km s 100=时,0s 所对的圆心角仅5'多一点),故可认为PC 近似垂直于OM ,即认为 90≈PCM ,这样PCM ?可视为直角三角形。则(5-54)式中的MC 为 2,10tan αs MC = 将各项代入(5-54)式,则B A 、两地面点的高差为 2 12 02,1022 01202,102,121tan 221tan v i s R K s v s R K i s R s h -+-+=--++ =αα 令式中 C C R K ,21=-一般称为球气差系数,则上式可写成

工程测量中三角高程测量误差分析及解决方法

工程测量中三角高程测量的误差分析及解决方法 戚忠 中国水利水电第四工程局有限公司测绘中心,青海西宁,邮编810007 一引言 一直以来,为保证精度,高等级高程测量都采用几何水准的方法。而在某些特定环境下,几何水准往往会耗费大量的人力、物力,且受地形等条件因素影响较大!鉴于几何水准在某些特定情形下无法进行的问题,探讨如何提高三角高程测量的精度,以保证其测量成果的可行性和可靠性,使得三角高程测量成果足以替代几何水准。随着高精度全站仪的问世,结合合理的方式、方法,运用三角高程替代几何水准测量是切实可行的。三角高程代替几何水准可以解决跨河水准及高边坡、危险地段无法进行精密几何水准测量的难题,保障危险地段测量人员和仪器设备的安全,提高了工作效率,降低了测量成本。 二三角高程测量误差分析 常见的三角高程测量有单向观测法、中间法和对象观测法,对向观测法可以消除部分误差,故在三角高程测量中采用较为广泛。对向观测法三角高程测量的高差公式为: (1) 式中:D为两点问的距离;a为垂直角;为往返测大气垂直折光系数差;i为仪器高;v为目标高; R为地球曲率半径(6370 km);为垂线偏差非线性变化量; 令。 对式(1)微分,则由误差传播定律可得高差中误差:

(2) 由式(2)可知影响三角高程测量精度主要有:1.竖直角(或天顶距)、2.距离、3.仪器高、4.目标高、5.球气差。第1、2项可以通过试验观测数据分析选择精度合适的仪器及其配套的反光棱镜、温度计、气压表等,我们选择的是徕卡TCA2003及其配套的单棱镜、国产机械通风干湿温度计、盒式气压计;第3、4项,一般要求建立稳定的观测墩和强制对中装置,采用游标卡尺在基座3个方向量取,使3个方向量取的校差小于0.2 mm,并在测前、测后进行2次量测;第5项球气差也就是大气折光差,也是本课题的研究重点。 三减弱大气折光差的方法和措施 大气折光差:是电磁波经过大气层时,由于传播路径产生弯曲及传播速度发生变化而引起观测方向或距离的误差。大气折光对距离的影响,表现在电磁波测距中影响的量值相对较大,必须在测距的同时实测测线上的气象元素,再用大气折光模型对距离观测值进行改正。减弱大气折光差的方法和措施有:a.提高观测视线高度;b.尽量选择短边传递高程;c.选择有利观测时间;d.采用同时对向观测;e.确定合适的大气折光系数。上述的5种办法虽然都可以减弱大气折光对三角高程测量精度的影响,但在实际工作中也有很多制约因素。下面具体分析。 3.1提高观测视线高度。由于工地地形条件限制、抬高视线高度需要造高标增大测量成本、由于标墩高大影响其它工程施工,提高观测视线高度的方法不可取。 3.2尽量选择短边传递高程。由三角高程测量高差计算公式可知,折光的影响与距离的平方成比例,选择短边传递高程有利。但控制网的边长是由多种因素控制的,不能随意增加和减少。 3.3选择有利观测时间。中午前后(10~15时)垂直折光小,观测垂直角最有利。日出

关于地球曲率、大气折射对三角高程测量误差分析共3页

关于地球曲率、大气折射对三角高程测量误差分析 一、三角高程测量一般可以替代四等水准测量,也就是说它可以满足四等水准测量的精度要求! 二、当地形高低起伏太大,导致高差太大不便于水准测量,可以用三角高程测量原理测量两点间的高差和点位的高程; 三、误差来源:由于地球是一不规则椭圆,我们姑且把它看成一个半径为6371km的圆,我们来看一下水准面的定义:处处与铅垂线(重力线)垂直的连续封闭曲面;而我们假想的是用一个水平面代替水准面(这里大家要注意一下水准面与水平面的区别);受地球曲率影响,导致了一个误差的来源。所以我们在等级测量中需要计算一个地球曲率改正数对现场测量的 =D2/2R(其实这公式也不难推导)高程加以修正。我们称其为球差改正f 1 我们来个简单的几何分析:f1=根号下D2+R2-R 举例:0.5km误差达到20mm,则有f1=根号下0.52+63712-6771=20mm;

由上图我们可以看出,所实测点位的高程偏小,所以用全站仪单向观测时,计算高程时应加上球差改正f1;若进行对向或是中间观测时不必考虑球差改正;等精度观测可以抵消误差(导线测量要求边长大致相等); 大气折射对三角高程测量的影响:由于低层空气密度大于高层空气密度,观测竖直角的视线穿越不均匀的介质时,导致竖直角偏大或偏小。所有我们在计算高程时需要考虑大气折射的影响。f2(气差改正数)= -k*D2/2R(k 为大气垂直折光系数)但水准测量几乎不受大气折射影响,因为水准测量提供的是一条水平的视线;但水准测量计算高程时需要考虑地球曲率的影 响; K一般取0.14,由于k受地区、气候、季节等诸多因数的影响,人们很难精确的测定k的值,正是这个原因,《城市测量规范》中规定测量边长不 应大于1km。 综合以上:两者误差改正数f=f1+f2=(1-k)*D2/2R; 则有;计算高程时:hAB=S*sin&+i-v+f(S为斜距、注意&有正负之分) hAB=D*tan&+i-v+f(D为平距、注意&有正负之分)测量技巧:测量时采用对向观测时可以抵消f;中间观测法能抵消地球曲率影响,但不能抵消大气折射所带来的误差(理论上); qq:425170631作(个人观点,如有问题,欢迎指教) 2014.1.17 希望以上资料对你有所帮助,附励志名言3条: 1、理想的路总是为有信心的人预备着。 2、最可怕的敌人,就是没有坚强的信念。——罗曼·罗兰

跨河高程传递 精密三角高程测量代替一二等水准测量方法

跨河高程传递精密三角高程测量代替一二等水准测量方法 [摘要]跨河高程传递的测量技术有很多,本文主要简述了精密三角高程的方法来代替一二等水准测量方法的过程,国家一、二等水准测量规范》(CB/r12897-2007)规定了精密三角高程法跨河水准测量的作业方法。此方法应用于长距离三角高程多个项目大桥高程控制网。探讨了一下其中几个比较关键的问题,三角高程测量的误差来源及精度,得出了减弱各项误差从而提高精度的一些相关结论。 [关键词]跨河高程传递精密三角高程二等水准测量 目前高程测量方法一般分为几何水准测量、GPS水准测量和三角高程测量三大类。用传统水准的方法测定点与点之间的高差,所得到的地面点高程精度较高,普遍用于建立国家高程控制点。 跨河三角高程测量以它的测量时间、生产效率优于几何水准测量得以广泛应用,尤其在山区、水域作业,几何水准测量困难,精密三角高程测量发挥了很大优势,解决了几何水准测量难以解决的高程传递问题。随着科技的发展,例如莱卡TC2002、TCA2003测距测角的精度大大提高。通过一定的测量方法又可以减弱或者消除三角高程测量中各种误差源的影响,从而达到高等级水准测量的精度。 1具体跨河精密三角高程作业方法 现行《国家一、二等水准测量规范》规定,精密三角高程法跨河水准测量作业应布设成大地四边形,跨海测量既是通过该方法对近海海岛进行高程传递。 如图l所示。该图形由四条跨河边构成三个独立的闭合环。具有检核条件较多的优点。 ①水准仪测定本岸站点间高差hAB和hCD。②用全站仪测量测站点问距离D-AC、D-AD、D-BC、D-BD。③垂直角观测程序:(a)A、C两点设全站仪,B、D两点设标尺,首先观测本岸近标标定仪器高,测定bB,bD然后同步观测对岸远标尺,测定aAD、aCB;(b)A点仪器不动,C点移到D点,同步观测对岸远标尺,测定aAC、aDB;(c)D点仪器不动,同步观测对岸远标尺,测定aBC、aDA;(d)B点仪器不动,观测本岸近标尺,测定bA,再将D点仪器移回到C 点,同步观测对岸远标尺,测定aBD、aCA,最后,c点仪器观测本岸近标尺。至此,第一仪器位置的观测结束,2台仪器共完成4个单测回的观测量。④观测员、仪器、标尺相互调岸,按上述观测程序完成第二时段仪器位置的观测。 每条边均按单向观测进行高差计算,公式为: 式中:D为跨河点问的水平距离;Iv为垂直角;i为仪器高;v为照准高度.k

三角高程测量与水准测量精度对比分析

中南林业科技大学本科毕业论文在工程测量中三角高程与水准高程的对比研究 三角高程测量与水准测量的精度对比分析 1 绪论 1.1 研究背景和意义 1.1.1 研究背景 在当今的高程测量中,水准测量是高程控制的最主要方法之一。但是,普通的水准测量速度比较慢。虽然国外有使用自动化水准测量,但是也没有显著提高它的效率,并且需要的劳动强度大。在长倾斜路线上受到垂直折光误差累积性影响,当前、后视线通过不同高度的温度层时,每公里的高差可能产生系统性的影响。尽管现在已有不少的研究人员提出了一些折光差改正的计算公式,但这些公式中仍然还存在系统误差??。并且,近年来还发现地球磁场对补偿式精密水准仪也有很影响。1 此外,水准测量的转点多,而且标尺与仪器也存在下沉误差,这又是一项系统误差。由于上述原因,如果在丘陵、山区等地使用水准测量进行高程传递是非常困难的,有时甚至是不可能的。如果采用三角高程测量就比较容易实现。近些年来,由于全站仪的发展,使得测角、测距的精度不断提高。再加上学者对三角高程测量的深入研究,使三角高程测量的精度也有很大的提高。三角高程测量传递高程比较灵活、方便、受地形条件限制较少等优点,使三角高程测量在工程测量中得到广泛的应用。 1.1.2 研究意义 本文旨在研究在工程测量中三角高程测量和水准测量的精度对比研究,

通过对三角高程测量和水准测量的原理、方法、误差来源等进行分析。然后针对这些因素改善其观测条件,探求合适的观测方法来消减误差,并拟定相应的作业规程,对比在三等高程控制测量过程中二者的精度和效率。得出在一定的测量条件下,三角高程测量代替三等水准测量作业方法是可行的。以提高作业效率,减少劳动强度,并实现高程测量的自动化。 1.2 相关概念 1.2.1 水准测量 水准测量又名“几何水准测量”,是用水准仪和水准尺测定地面上两点间高差 第 1 页

全站仪三角高程测量方法

应用全站仪进行三角高程测量的新方 在工程的施工过程中,常常涉及到高程测量。传统的测量方法是水准测量、三角高程测量。两种方法虽然各有特色,但都存在着不足。水准测量是一种直接测高法,测定高差的精度是较高的,但水准测量受地形起伏的限制,外业工作量大,施测速度较慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度较快。在大比例地形图测绘、线型工程、管网工程等工程测量中广泛应用。但精度较低,且每次测量都得量取仪器高,棱镜高。麻烦而且增加了误差来源。 随着全站仪的广泛使用,使用跟踪杆配合全站仪测量高程的方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。经过长期摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 一、三角高程测量的传统方法 如图一所示,设A,B为地面上高度不同的两点。已知A点高程H A, 只要知道A 点对B点的高差H AB 即可由H B =H A +H AB 得到B点的高程H B。 此主题相关图片如下: 图中:D为A、B两点间的水平距离а为在A点观测B点时的垂直角

i为测站点的仪器高,t为棱镜高 HA为A点高程,HB为B点高程。 V为全站仪望远镜和棱镜之间的高差(V=Dtanа) 首先我们假设A,B两点相距不太远,可以将水准面看成水准面,也不考虑大气 折光的影响。为了确定高差h AB ,可在A点架设全站仪,在B点竖立跟踪杆,观测垂直角а,并直接量取仪器高i和棱镜高t,若A,B两点间的水平距离为D, 则h AB =V+i-t 故H B =H A +Dtanа+i-t (1) 这就是三角高程测量的基本公式,但它是以水平面为基准面和视线成直线为前提的。因此,只有当A,B两点间的距离很短时,才比较准确。当A,B两点距离较远时,就必须考虑地球弯曲和大气折光的影响了。这里不叙述如何进行球差和气差的改正,只就三角高程测量新法的一般原理进行阐述。我们从传统的三角高程测量方法中我们可以看出,它具备以下两个特点: 1、全站仪必须架设在已知高程点上 2、要测出待测点的高程,必须量取仪器高和棱镜高。 二、三角高程测量的新方法 如果我们能将全站仪象水准仪一样任意置点,而不是将它置在已知高程点上,同时又在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。如图一,假设B点的高程已知,A点的高程为未知,这里要通过全站仪测定其它待测点的高程。首先由(1)式可知: H A =H B -(Dtanа+i-t) (2) 上式除了Dtanа即V的值可以用仪器直接测出外,i,t都是未知的。但有一点可以确定即仪器一旦置好,i值也将随之不变,同时选取跟踪杆作为反射棱镜,假定t值也固定不变。从(2)可知: H A +i-t=H B -Dtanа=W(3) 由(3)可知,基于上面的假设,H A +i-t在任一测站上也是固定不变的.而且可以计算出它的值W。 这一新方法的操作过程如下: 1、仪器任一置点,但所选点位要求能和已知高程点通视。 2、用仪器照准已知高程点,测出V的值,并算出W的值。(此时与仪

三角高程测量的经典总结

2.4三角高程 2.4.1三角高程测量原理 1、原理 三角高程测量的基本思想是根据由测站向照准点所观测的垂直角(或天顶距)和它们之间的水平距离,计算测站点与照准点之间的高差。这种方法简便灵活,受地形条件的限制较少,故适用于测定三角点的高程。三角点的高程主要是作为各种比例尺测图的高程控制的一部分。一般都是在一定密度的水准网控制下,用三角高程测量的方法测定三角点的高程。 如下图: 现在计划测量A、B间高差,在A点架设仪器,B点立标尺。量取仪器高,使 望远镜瞄准B上一点M,它距B点的高度为目标高,测出水平和倾斜视线的夹角α,若A、B水平距离S已知,则: 注意:上式中α可根据仰角或俯角有正负值之分,当取仪器高=目标高时,计算就方便了。在已知点架站测的高差叫直占、反之为反战。 2、地球曲率与大气对测量的影响

我们在水准测量中知道,高程的测量受地球曲率的影响,仪器架在中间可以消除,三角高程也能这样,但是对于一些独立交会点就不行了。三角高程还受大气折射的影响。如图: 加设A点的高程为,在A点架设仪器测量求出B点的高程。如图可以得出 但如图有两个影响: 1)、地球曲率,在前面我们已经知道,地球曲率改正 2)、大气折射不易确定,一般测量中把折射曲线近似看作圆弧,其平均半径为地球半径的6~7倍,则: ,在这里r就是图上的f2。 通常,我们令 下面求,如图,在三角形中:

,当测量范围在20km以内,可以用S代替L,然后对公式做一适当的改正,进行计算。 2.4.2竖盘的构造及竖角的测定 1、竖盘构造 1)、构造 有竖盘指标水准管,如图: 竖盘与望远镜连在一起,转动望远镜是竖盘一起跟着转动;但是竖盘指标和指标水准管在一起,他们不动,只有调节竖盘水准管微动螺旋式才会移动。通常让指标水准管气泡居中时进行读数。 竖盘自动归零装置 2)、竖盘的注记形式 主要有顺时针和逆时针 望远镜水平,读数为90度的倍数角度。 3)、竖角的表示形式

三角高程测量的计算公式

三角高程测量的计算公式 如图6.27所示,已知A点的高程H A,要测定B点的高程 H B,可安置经纬仪于A点,量取仪器高i A;在B点竖立标杆,量取其高度称 为觇 B 标高v B;用经纬仪中丝瞄准其顶端,测定竖直角α。如果已知AB两点间的水平距离D (如全站仪可直接测量平距),则AB两 点间的高差计算式为: 如果当场用电磁波测距仪测定两点间的斜距D′,则AB两点间的高差计算式为: 以上两式中,α为仰角时tanα或sinα为正,俯角时为负。求得高差h AB以后,按下式计算B 点的高程: 以上三角高程测量公式(6.27)、(6.28)中,设大地水准面和通过A、B点的水平面为相互平行的平面,在较近的距离(例如200米)内可 以认为是这样的。但事实上高程的起算面——大地水准面是一曲面,在第一章1.4中已介绍了水准面曲率对高差测量的影响,因此由三 角高程测量公式(6.27)、(6.28)计算的高差应进行地球曲率影响的改正,称为球差改正f1,如图6.28(见课本)所示。按(1.4)式: 式中:R为地球平均曲率半径,一般取R=6371km。另外,由于视线受大气垂直折光影响而成为一条向上凸的曲线,使视线的切线方向向 上抬高,测得竖直角偏大,如图6.28所示。因此还应进行大气折光影响的改正,称为气差改正f2,f2恒为负值。 图6.23 三角高程测量

图6.24 地球曲率及大气折光影响 设大气垂直折光使视线形成曲率大约为地球表面曲率K倍的圆曲线(K称为大气垂直折光系数),因此仿照(6.30)式,气差改正计算公式 为:

球差改正和气差改正合在一起称为球气差改正f,则f应为: 大气垂直折光系数K随气温、气压、日照、时间、地面情况和视线高度等因素而改变,一般取其平均值,令K=0.14。在表6.16中列出水 平距离D=100m-200m的球气差改正值f,由于f1>f2,故f恒为正值。 考虑球气差改正时,三角高程测量的高差计算公式为: 或 由于折光系数的不定性,使球气差改正中的气差改正具有较大的误差。但是如果在两点间进行对向观测,即测定h AB及h BA而取其平均 值,则由于f2在短时间内不会改变,而高差h BA必须反其符号与h AB取平均,因此f2可以抵消,f1同样可以抵消,故f的误差也就不起 作用,所以作为高程控制点进行三角高程测量时必须进行对向观测。

三角高程测量

§4-6 三角高程测量 一、三角高程测量原理及公式 在山区或地形起伏较大的地区测定地面点高程时,采用水准测量进行高程测量一般难以进行,故实际工作中常采用三角高程测量的方法施测。 传统的经纬仪三角高程测量的原理如图4-12所示,设A点高程及AB两点间的距离已知,求B点高程。方法是,先在A点架设经纬仪,量取仪器高i;在B点竖立觇标(标杆), 并量取觇标高L,用经纬仪横丝瞄准其顶端,测定竖直角δ,则AB两点间的高差计算公式为: 故(4-11) 式中为A、B两点间的水平距离。 图4-12 三角高程测量原理 当A、B两点距离大于300m时,应考虑地球曲率和大气折光对高差的影响,所加的改正 数简称为两差改正: 设c为地球曲率改正,R为地球半径,则c的近似计算公式为: 设g为大气折光改正,则g的近似计算公式为: 因此两差改正为:,恒为正值。 采用光电三角高程测量方式,要比传统的三角高程测量精度高,因此目前生产中的三角高程测量多采用光电法。

采用光电测距仪测定两点的斜距S,则B点的高程计算公式为: (4-12) 为了消除一些外界误差对三角高程测量的影响,通常在两点间进行对向观测,即测定hAB 和hBA,最后取其平均值,由于hAB和hBA反号,因此可以抵销。 实际工作中,光电三角高程测量视距长度不应超过1km,垂直角不得超过15°。理论分析和实验结果都已证实,在地面坡度不超过8度,距离在1.5km以内,采取一定的措施,电磁波测距三角高程可以替代三、四等水准测量。当已知地面两点间的水平距离或采用光电三角高程测量方法时,垂直角的观测精度是影响三角高程测量的精度主要因素。 二、光电三角高程测量方法 光电三角高程测量需要依据规范要求进行,如《公路勘测规范》中光电三角高程测量具体要求见表4-6。 表4-6 光电三角高程测量技术要求 往返各 注:表4-6中为光电测距边长度。 对于单点的光电高程测量,为了提高观测精度和可靠性,一般在两个以上的已知高程点上设站对待测点进行观测,最后取高程的平均值作为所求点的高程。这种方法测量上称为独立交会光电高程测量。 光电三角高程测量也可采用路线测量方式,其布设形式同水准测量路线完全一样。 1.垂直角观测 垂直角观测应选择有利的观测时间进行,在日出后和日落前两小时内不宜观测。晴天观测时应给仪器打伞遮阳。垂直角观测方法有中丝法和三丝法。其中丝观测法记录和计算见表4-7。表4-7 中丝法垂直角观测表 点名泰山等级四等 天气晴观测吴明 成像清晰稳定仪器Laica 702 全站仪记录李平 仪器至标石面高1.553m 1.554 平均值1.554m 日期2006.3.1

三角高程测量误差分析报告(精)

三角高程测量 1 三角高程测量的基本原理 三角高程测量是通过观测两点间的水平距离和天顶距(或高度角)求定两点间的高差的方法。它观测方法简单,不受地形条件限制,是测定大地控制点高程的基本方法。目前,由于水准测量方法的发展,它已经退居次要位置,但在山区和丘陵地带依然被广泛采用。 在三角高程测量中,我们需要使用全站仪或者经纬仪测量出两点之间的距离(水平距离或者斜距和高度角,以及测量时的仪器高和棱镜高,然后根据三角高程测量的公式推算出待测点的高程。三角高程测量 由图中各个观测量的表示方法,AB两点间高差的公式为: H=S0tanα+i1-i2① 但是,在实际的三角高程测量中,地球曲率、大气折光等因素对测量结果精度的影响非常大,必须纳入考虑分析的范围。因而,出现了各种不同的三角高程测量方法,主要分为:单向观测法,对向观测法,以及中间观测法。 1.1 单向观测法 单向观测法是最基本最简单的三角高程测量方法,它直接在已知点对待测点进行观测,然后在①式的基础上加上大气折光和地球曲率的改正,就得到待测点的高程。这种方法操作简单,但是大气折光和地球曲率的改正不便计算,因而精度相对较低。 1.2 对向观测法 对向观测法是目前使用比较多的一种方法。对向观测法同样要在A点设站进行观测,不同的是在此同时,还在B点设站,在A架设棱镜进行对向观测。从而 就可以得到两个观测量:直觇:

h AB= S往tanα往+i往-v往+c往+r往② 反觇: h BA= S返tanα返+i返-v返+c返+r返③ S——A、B间的水平距离; α——观测时的高度角; i——仪器高; v——棱镜高; c——地球曲率改正; r——大气折光改正。 然后对两次观测所得高差的结果取平均值,就可以得到A、B两点之间的高差值。由于是在同时进行的对向观测,而观测时的路径也是一样的,因而,可以认为在观测过程中,地球曲率和大气折光对往返两次观测的影响相同。所以在对向观测法中可以将它们消除掉。 h=0.5(hAB- hBA =0.5[( S往tanα往+i往-v往+c往+r往-( S返tanα返+i返-v返+c返+r返] =0.5(S 往tanα往-S返tanα返+i往-i返+v返-v往④ 与单向观测法相比,对向观测法不用考虑地球曲率和大气折光的影响,具有明显的优势,而且所测得的高差也比单向观测法精确。 1.3 中间观测法 中间观测法是模拟水准测量而来的一种方法,它像水准测量一样,在两个待测点之间架设仪器,分别照准待测点上的棱镜,再根据三角高程测量的基本原理,类似于水准测量进行两待测点之间的高差计算。此种方法要求将全站仪尽量架设在两个待测点的中间位置,使前后视距大致相等,在偶数站上施测控制点,从而有效地消除大气折光误差和前后棱镜不等高的零点差,这样就可以像水准测量一样将地球曲率的影响降到最低。而且这种方法可以不需要测量仪器高,这样在观测时可以相对简单些,而且减少了一个误差的来源,提高观测的精度。全站仪中间观测法三角高程测量可代替三、四等水准测量。在测量过程中,应选择硬地面作转点,用对中脚架支撑对中杆棱镜,棱镜上安装觇牌,保持两棱镜等高,并轮流作为前镜和后镜,同时将测段设成偶数站,以消除两棱镜不等高而产生的残余误差影响。

工程测量中三角高程测量的误差分析及解决方法.doc

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 工程测量中三角高程测量的误差分析及解决方 法.doc 工程测量中三角高程测量的误差分析及解决方法摘要:通过对三角高程测量公式的分析,发现影响三角高程测量精度的因子,引进当下较为先进的设备与方法,从而提高三角高程测量的精度,使其可以替代几何水准测量。 该方法的实现可以弥补几何水准受地形条件等因素限制使工作效率慢,测绘成本高,人身、设备安全无法保障等缺点。 关键词: 三角高程测量;几何水准;误差分析;大气折光系数 1 引言一直以来,为保证精度,高等级高程测量都采用几何水准的方法。 而在某些特定环境下,几何水准往往会耗费大量的人力、物力,且受地形等条件因素影响较大!鉴于几何水准在某些特定情形下无法进行的问题,探讨如何提高三角高程测量的精度,以保证其测量成果的可行性和可靠性,使得三角高程测量成果足以替代几何水准。 随着高精度全站仪的问世,结合合理的方式、方法,运用三角高程替代几何水准测量是切实可行的。 三角高程代替几何水准可以解决跨河水准及高边坡、危险地段无法进行精密几何水准测量的难题,保障危险地段测量人员和仪器设备的安全,提高了工作效率,降低了测量成本。 2 三角高程测量误差分析常见的三角高程测量有单向 1 / 6

观测法、中间法和对象观测法,对向观测法可以消除部分误差,故在三角高程测量中采用较为广泛。 对向观测法三角高程测量的高差公式为: 式中: D 为两点问的距离;a 为垂直角;(k2-k1)为往返测大气垂直折光系数差;i 为仪器高;v 为目标高;R 为地球曲率半径(6370km);为垂线偏差非线性变化量;令。 对式(1)微分,则由误差传播定律可得高差中误差: (2)由式(2)可知影响三角高程测量精度主要有: 1.竖直角(或天顶距)、 2.距离、 3.仪器高、 4.目标高、 5.球气差。 第 1、2 项可以通过试验观测数据分析选择精度合适的仪器及其配套的反光棱镜、温度计、气压表等,我们选择的是徕卡 TCA2003 及其配套的单棱镜、国产机械通风干湿温度计、盒式气压计;第 3、4 项,一般要求建立稳定的观测墩和强制对中装置,采用游标卡尺在基座 3 个方向量取,使 3 个方向量取的校差小于 0.2mm,并在测前、测后进行 2 次量测;第 5 项球气差也就是大气折光差,也是本课题的研究重点。 3 减弱大气折光差的方法和措施大气折光差: 是电磁波经过大气层时,由于传播路径产生弯曲及传播速度发生变化而引起观测方向或距离的误差。 大气折光对距离的影响,表现在电磁波测距中影响的量值相对较

三角高程测量原理及应用

三角高程测量及其误差分析与应用 一、 三角高程测量的基本原理 三角高程测量是通过观测两点间的水平距离和天顶距(或高度角)求定两点间的高差的方法。它观测方法简单,不受地形条件限制,是测定大地控制点高程的基本方法。 如图1,所示,在地面上A,B 两点间测定高差h AB , A 点设置仪器,在B 点竖立标尺。量取望远镜旋转轴中心I 至地面点上A 点的仪器高i 1,用望远镜中的十字丝的横丝照准B 点标尺上的一点M ,它距B 点的高度称为目标高i 2,测出倾斜视线与水平线所夹的竖角为a ,若A,B 两点间的水平距离已知为S 0,则由图可得 图1 如图1,所示,在地面上A,B 两点间测定高差h AB , A 点设置仪器,在B 点竖立标尺。量取望远镜旋转轴中心至地面点上A 点的仪器高i ,用望远镜中的十字丝的横丝照准B 点标尺,它距B 点的高度称为目标高v ,测出倾斜视线与水平线所夹的竖角为a ,若A,B 两点间的水平距离已知为s ,则由图可得,AB 两点间高差的公式为: 若A 点的高程已知为H A ,则B 点的高程为: 但是,在实际的三角高程测量中,地球曲率、大气折光等因素对测量结果精度的影响非常大,必须纳入考虑分析的范围。因而, 出现了各种不同的三角高程AB h s tg i v α=?+-B A AB A H H h H s tg i v α=+=+?+-

测量方法,主要分为:单向观测法,对向观测法,以及中间观测法。 1.1 单向观测法 单向观测法是最基本最简单的三角高程测量方法,它直接在已知点对待测点进行观测,然后在①式的基础上加上大气折光和地球曲率的改正,就得到待测点的高程。这种方法操作简单,但是大气折光和地球曲率的改正不便计算,因而精度相对较低。 1.2 对向观测法 对向观测法是目前使用比较多的一种方法。对向观测法同样要在A点设站进行观测,不同的是在此同时,还在B点设站,在A架设棱镜进行对向观测。从而就可以得到两个观测量: 直觇: h AB= S往tanα往+i往-v往+c往+r往②反觇: h BA= S返tanα返+i返-v返+c返+r返③ S——A、B间的水平距离; α——观测时的高度角; i——仪器高; v——棱镜高; c——地球曲率改正; r——大气折光改正。 然后对两次观测所得高差的结果取平均值,就可以得到A、B两点之间的高差值。由于是在同时进行的对向观测,而观测时的路径也是一样的,因而,可以认为在观测过程中,地球曲率和大气折光对往返两次观测的影响相同。所以在对向观测法中可以将它们消除掉。 h=0.5(h AB- h BA) =0.5[( S往tanα往+i往-v往+c往+r往)-( S返tanα返+i返-v返+c返+r返)] =0.5(S往tanα往-S返tanα返+i往-i返+v返-v往) ④与单向观测法相比,对向观测法不用考虑地球曲率和大气折光的影响,具有明显的优势,而且所测得的高差也比单向观测法精确。 1.3 中间观测法

最新 跨河水准测量方法及其平差处理方法-精品

跨河水准测量方法及其平差处理方法 1 概述 《国家一、二等水准测量规范》(GB/T12897-2006)规定:当一、二等水准路线跨越江河、峡谷、湖泊、洼地等障碍物的视线长度在 l00m以内时,可用一般观测方法进行施测,但在测站上应变换一次仪器高度,观测两次的高差之差应不超过 1.5mm,取用两次观测的中数。若视线长度超过 100m 时,则应根据视线长度和仪器设备等情况,选用特殊的方法进行观测。 某一等水准网跨河段长度约为 530 米为保证该工程顺利实施,选用合适的跨河水准测量方法是的关键工作之一,本工程实例,采用了三角高程测量方法,精度要求达到国家一等水准准测量精度,仪器采用徕卡 TS30(测角精度0.5“,测距精度 0.6mm+1ppm)。 2 观测网形及场地选择 2.1 观测网形布设 为提高跨河水准精度,减小气温、气压、大气折光的影响,测点C1、C2、D1、D2 近似在同一水平面上,且保证四个测点成一近似矩形。跨河水准示意图如图 1. 2.2 布设场地遵循原则 2.2.1 观测墩建在测线处于河段较狭窄处,保证其同意水平面上。跨河视线不得通过草丛,干丘、沙滩的上方,且保证避免正对日照方向。 2.2.3 两岸由仪器至水边的一段河岸,其距离应近于相等,其地貌、土质、植被等也应相似,仪器位置应选在开阔、通风之处,不得靠近墙壁及土、石、砖堆等。 3 施测方法 在 D1 架 TS30,分别照准 C1、C2、D2,得到一测回观测高差:(S为斜距,δ为竖角),两点之间的高差为S×sinδ+i-(li 为仪器高,l 为目标高),C1 点的高程为Hc1=HD1+S×sinδ+i-l,C2、D2 的高程同理可得。利用以上三点的高程求 C1 D2、C2 D2 之间的高差。HD1,i 均一样,相互抵消,若目标高相等则高差等于S×sinδ的差值。为了使目标高也相互抵消,可以先全部采用使用同一型号的棱镜及觇标,这样目标高可看成一致,但世上没有完全相同的两个物体,为消除不同的目标高对观测高差的影响,把棱镜及觇标分成 A、B 两组,A 组总与仪器在一起,B 组总是在仪器的对岸,这样往返测求平均高差则影响抵消。

全站仪三角高程测量的方法与误差分析

全站仪三角高程测量的方法与误差分析 南昌工程学院 毕业论文 水利与生态工程系院测绘工程专业 毕业论文题目全站仪三角高程测量的方法与误差分析 学生姓名倪忠利 班级 07测绘工程 学号 2007101191 指导教师陈伟 完成日期 2010年 06月 17 日

全站仪三角高程测量的方法与误差分析 Total Station trigonometric leveling method and error analysis 总计毕业设计论文 25 页 表格 2 个 插图 3 幅

本文介绍了三角高程测量原理以及全站仪三角高程测量的不同方法对于每种方法所能达到的精度进行分析在相同条件下采用不同的方法对高差精度的影响是不同的所能达到的测量精度等级要求也是不一样的从而在实际生产应用中可针对不同的精度要求和具体的客观实际情况选择不同的测量方法关键词三角高程测量单向观测对向观测中间自由设站精度分析

This paper introduces the measuring principle and triangular elevation of trigonal height measurement method for each different the precision of the method can be analyzedUnder the same conditions used different methods the influence of accuracy of elevation is different can achieve the measurement precision level requirement is differentThus in the actual production application can be in view of the different accuracy and the objective reality of specific select different measuring methods Key word trigonometric levelling One-way observation Two-way observation Free among set up observation Precision analysi

三角高程测量的原理

精 密 三 角 高 程 测 量 应 用 原 理 及 其 误 差 分 析 姓名:王朋辉 学号:2009108091 班级:测绘0941

精密三角高程测量 应用原理及其误差分析 王朋辉 河南工程学院09测绘 摘要:给出精密工程测量的定义,阐述精密工程测量的特点。简述精密三角高程控制测量的原理及优点。从数据处理的角度探讨了削减三角高程测量折光误差的问题,结合新安江电厂监测网的观测数据,对常用的平差模型进行分析、比较,探讨了大气折光对平差结果的影响规律. 在此基础上,利用最小二乘配置原理构造了处理折光误差的迭代平差模型,取得了良好的效果. 关键词:精密工程测量;三角高程测量;平差模型;折光误差 一、精密工程测量的定义和特点 工程测量分为普通工程测量和精密工程测量。仿照工程测量学的定义,精密工程测量主要是研究地球空间中具体几何实体的精密测量描绘和抽象几何实体的精密测设实现的理论、方法和技术。精密工程测量代表工程测量学的发展方向。所谓精密,顾名思义是精确严密。 精密工程测量的最大特点是要求的测量精度很高。精度这一概念包含的意义很广,分相对精度和绝对精度。相对精度又有两种,一种是一个观测量的精度与该观测量的比值,比值越小,相对精度越高,如边长的相对精度。但比值与观测量及其精度这两个量都有关,同样是1:1000 000,观测量是10m 和是10km 时,精度分别为0.01mm 和10mm,故有可比性较差的缺点;另一种是一点相对于另一点,特别是邻近点的精度,这种相对精度与基准无关,便于比较,但是各种组合太多,如有100个点,每一个点就有99个这样的相对精度。绝对精度也有两种,一是指一个观测量相对于其真值的精度,这一精度指标应用最多(下面所提精度,都指这种精度)。由于真值难求,通常用其最或是值代替。但这一绝对精度指标也有弊病,有时,它也与观测量的大小有关,如长度观测量。另一种是指一点相对于基准点的精度,该精度与基准有关,并且只能在相同基准下比较。 由于精度的含意较多,而且随测量技术的发展又在不断提高,有什么精度要求的测量才能称为精密工程测量就很难给出一个确切的定义。这里我们给出以下定义:凡是采用一般的、通用的测量仪器和方法不能满足工程对测量或测设精度要求的测量,统称精密工程侧量。 大型工程、特种工程中并非所有的测量都是精密工程测量。因此,大型工程、特种工程不能与精密工程并列。但是,大型特种工程中一定包括一些或许多精密工程测量。维工业测量、工程变形监测中的许多测量也属于精密工程测量。就精度而言,在工业测量中,在设备的安装、检测和质量控制测量中,精度可能在计量级,如微米乃至纳米;在工程变形监测中,精度可能在亚毫米级;在工程控制网建立中,精度可能在毫米级。长、大隧道的横向贯通精度虽然在厘米、分米级,但对测量精度要求很高,仍属于精密工程测量。

应用精密三角高程测量实现跨河水准的研究

应用精密三角高程测量实现跨河水准的研究 张艳 高飞 李晓莉 (合肥工业大学土木建筑工程学院 合肥 230009) 摘 要:本文从三角高程测量单向观测的高差计算公式入手,分析了三角高程测量的误差来源,推导了跨河水准网中测距三角高程的精度估算公式,并结合目前的全站仪,指出了精密三角高程测量实现精密跨河水准的可行性和便利性。 关键词:精密三角高程测量 全站仪 跨河水准 精度分析 1 引言 当水准路线必须跨越江河或峡谷时,视线将超出常规水准的长度或前后视距相差很大,造成一方面水准尺读数的精度将会降低,另一方面水准仪i 角误差及大气折光的影响也会急剧增大。按《国家一、二等水准测量规范》(GB12879—91)规定,当水准路线跨越江河,视线长度超过100m 时,应根据视线长度和仪器设备情况,选择适当的跨河水准测量方法。 三角高程测量是测量高程的传统方法,以其快速、简便且能保证一定精度而深受测绘工作者喜爱。特别是近年来全站仪的发展提高了测角和测距的精度,目前全站仪测角精度达到 ±0.5",测距精度达到m D =±(0.5mm+1ppm×D ),同时自动化程度越来越高。自动全站仪能自动识别、跟踪和精确照准目标,大大提高了工作效率。因此,以全站仪代替水准仪进行高程测量无疑具有明显的经济效益和社会效益。目前, 三角高程测量已可以代替三四等跨河水准测量,但用于代替精密跨河水准测量仍处在研究阶段,已有不少文献就此进行研究得出了一些结论。 2 三角高程测量单向观测的正高高差计算公式及误差分析 三角高程测量单向观测的高差计算公式为: 2 21tan D R k v i D h ??+?+?=α (1) 式中,D 为平距, α为垂直角, i 为仪高,v 为标 高,k 为大气垂直折光系数, R 为地球半径。 误差关系式为: () 2 2 22 2 2)( sec 1tan D h m D m D R k m +′′??+??? ??????+=ρα αα 2 222 2)2(k v i m R D m m ?+++ (2) 由此可以看出,三角高程测量的精度除了受测距中误差,垂直角观测中误差,仪器和觇标量高误差影响外,还受大气折光和地球曲率的影响。 由式②可知,D m 对 h m 的影响为 ?? ? ?????+D R k 1tan αD m , 跨河距离D <<R,故 ?? ? ?????+D R k 1tan αD m 可近似为D m ?αtan ;αm 对 h m 的影响为 ραα ′ ′? ?m D 2sec 。 使用TC2002全站仪,仪器标称精度为 )11(D ppm mm m D ×+±=;垂直角观测中误差αm 取 5.0′′±,现将α和D 分别取不同的值时,D m 和α m 对h m 的影响列于表1: 表1 从表1可以得出以下结论: αm 对h m 的影响远远大于D m 对h m 的影响。可见,测角误差是三角高程测量的主要误差来源之一, 因此要尽可能采用高精度的测角仪器,观测时要保证成像清晰稳定,并适当增加测回数。 D m 对h m 的影响随角度增加的变化量较大,而 随距离增加的变化量较小,因此观测角度不能超过 一定范围。 αm 对h m 的影响随角度增加的变化量较小,而随距离增加的变化量较大,因此跨河长度需控制在

跨河水准测量方法与精度分析

毕业设计 [论文] 题目:跨河水准测量方法与精度分析 学院:测绘工程学院 专业:测绘工程 姓名:黄玉鹏 学号:061411122 指导老师:朱淑丽 完成时间:2015.05.24

摘要 工程建设时水准线路布设过程中难免会遇到江河、宽沟、湖泊、山谷等障碍物,有时候根据测量任务的需要,必须通过这些障碍物进行精密水准测量。这个时候,通常的水准测量方法无法实现,因此需要采用特殊的方法和设备在保证一定测量精度和施测可行性的前提下,来完成障碍物的跨越测量。跨河水准测量的基本方法包括直接法几何水准测量、光学测微法水准测量、倾斜螺旋法水准测量、经纬仪倾角法水准测量、测距三角高程法水准测量、GNSS水准测量等方法。本文对这些方法分别进行了论述和精度分析。文章最后采用重庆朝天门观测数据,以表格的形式对整个测距三角高程法的计算过程进行了分析。 关键词:经纬仪倾角法,倾斜螺旋法,光学测微法,测距三角高程法,GNSS高程测量,精度分析

ABSTRACT When construction standard line layout process will inevitably encounter rivers, wide ditch, lakes, valleys and other obstacles, sometimes necessary measurement tasks must be precise leveling through these obstacles. This time, the usual method of leveling is not possible, and therefore require special methods and equipment at guaranteed measurement accuracy and test the feasibility of applying the prerequisite to complete the obstacle across measurements. River - crossing Leveling basic methods including direct geometric leveling method, optical micrometer method leveling, tilt leveling screw method, dip method theodolite leveling, EDM trigonometric leveling method leveling, GNSS leveling and other methods. In this paper, these methods were discussed and precision analysis. Finally, using the Chao tian men observation data in tabular form for the calculation of the entire EDM trigonometric leveling method were analyzed. Key words: Theodolite dip method, tilt spiral, optical micrometer law, EDM trigonometric leveling method, GNSS height measurement, precision analysis

相关文档