文档库 最新最全的文档下载
当前位置:文档库 › 《怪物猎人OL》武器数据分析:巨骨刀

《怪物猎人OL》武器数据分析:巨骨刀

《怪物猎人OL》武器数据分析:巨骨刀
《怪物猎人OL》武器数据分析:巨骨刀

《怪物猎?OL》武器数据分析:巨?? 怪物猎?o l巨??数据分析

逗游?——中国2亿游戏?户?致选择的”?站式“游戏服务平台

巨磁电阻效应及其应用 实验报告

巨磁电阻效应及其应用 【实验目的】 1、 了解GMR 效应的原理 2、 测量GMR 模拟传感器的磁电转换特性曲线 3、 测量GMR 的磁阻特性曲线 4、 用GMR 传感器测量电流 5、 用GMR 梯度传感器测量齿轮的角位移,了解GMR 转速(速度)传感器的原理 【实验原理】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=ρl/S 中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott 指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 无外磁场时顶层磁场方向 无外磁场时底层磁场方向 图2 多层膜GMR 结构图 图3是图2结构的某种GMR 材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。磁阻变化率 ΔR/R 达百分之十几,加反向磁场时磁阻特性是对称的。注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。 图3 某种GMR 材料的磁阻特性 磁场强度 / 高斯 电阻 \ 欧姆

磁电阻与巨磁电阻实验报告

磁电阻与巨磁电阻 姓名:刘一宁班级:核32 指导教师:王合英实验日期:2015.03.13 【摘要】:本实验使用了由基本电路原理配合巨磁电阻原件制作的一套巨磁电阻实验仪,通过改变巨磁电阻处的磁场测量了巨磁电阻的磁阻特性曲线、磁电转换特性曲线,并在体验了其在测量电流、测量转速、磁读写等方面的应用。最后获得了巨磁电阻词组特性曲线、GMR 模拟传感器的磁电转换曲线、GMR开关传感器的磁电转换特性曲线、巨磁电阻测量电流的数据、齿轮旋转过程中巨磁电阻梯度传感器输出电压曲线、磁信号读出情况,自旋阀磁电阻两个不同角度的磁阻特性曲线。发现巨磁电阻的磁阻随磁场变大而减小,且与方向无关,但是其存在磁滞现象。而自旋阀磁电阻则在磁场由一个方向磁饱和变化到另一个方向磁饱和的过程中磁电阻不断减小或增加,这与磁电阻和磁场的角度有关,且在0磁场附近变化特别明显。 关键词:巨磁电阻、自旋阀磁电阻、磁阻特性曲线、磁电转换特性 一、引言: 1988年法国巴黎大学的肯特教授研究小组首先在Fe/Cr多层膜中发现了巨磁电阻效应,在国际上引起了很大的反响。20世纪90年代,人们在Fe/Cu,Fe/Al,Fe/Au,Co/Cu,Co/Ag和Co/Au 等纳米结构的多层膜中观察到了显著的巨磁阻效应。 1994年,IBM公司研制成巨磁电阻效应的读出磁头,将磁盘记录密度一下子提高了17倍,达5Gbit/in2,最近达到11Gbit/in2,从而在与光盘竞争中磁盘重新处于领先地位。由于巨磁电阻效应大,易使器件小型化,廉价化,除读出磁头外同样可应用于测量位移,角度等传感器中,可广泛地应用于数控机床,汽车测速,非接触开关,旋转编码器中,与光电等传感器相比,它具有功耗小,可靠性高,体积小,

竞技场神牧也做SOLO英雄

竞技场神牧也做SOLO英雄 竞技场的战斗打得如火如荼,角斗士的装备成了人们的一种追求更是一种荣誉,于是,大量的玩家从团队要求繁琐、装备掉落随机的副本中逃离了出来,加入到了更刺激的竞技场的战斗中。 笔者现在是个神圣牧师,也就是传说中的最不能杀人不能打怪的那种纯辅助职业。原本我是个暗牧,而且很喜欢暗牧,毕竟输出远比治疗要轻松的多,更主要的是治疗职业经常性的会被盖上莫须有的罪名,将绝大多数的团铺的责任很无奈的顶起来,憋屈的很啊,而暗牧来个吸血鬼拥抱和吸血鬼之触,哈哈,大家乐不得队伍里有你的存在呢。但后来和朋友们一起组了一个副本团,不得不重新回到神圣状态,每天留着口水看着别人打材料做任务赚钱,自己囊中羞涩。 当竞技场越来越火爆起来的时候,我终于按耐不住了。即使每周输的多赢的少,只要参与了,就有竞技场点数拿,这无疑是一种诱惑。于是,我寻寻觅觅找人组队,5V5,3V3都勉强找到 队伍了,却一直没有人喜欢在2V2中,和一个纯炮灰职业搭档。直到终于找到一个潜行者朋友,刚满级不久的,手法还不错就是装备差了不少。 本来只是抱着要点数和打个乐和的态度,但几场下来,我终于看到了神牧的王者之气。 显然,在双人对决中,不少玩家喜欢也习惯也应该优先击杀治疗职业,尤其是一个没有无敌穿着布甲的治疗。一次次在炮灰中结束战斗终于让我看到了这血淋淋的现实,于是我终于认清了自己的位置——我不是用来救人了的,而是应该用来自保。 一个输出职业能不能短时间内解决一个治疗?答案是,如果他不想让你,而且装备和手法差距不是极端的,那么,等到他没有蓝的时候你在让自己有这种欲望吧。我罗列下我的出场后的惯用技能我想很多懂得牧师的玩家就明白了。 盾、绝望祷言、石像形态、心灵尖啸、快速治疗、恢复、愈合祷言,联结祷言,心灵之火,暗影魔。大家可以看出来了,我是矮人小牧师。 这些技能在刚刚进入竞技场是都没有冷却时间的,那么,配上神圣牧师天赋中的70%神圣法术不被打断的天赋点,不难想象,如果队友能稍微牵制一下对方的一个火力的话,稍微,一个半的火力想击杀这样的专心自保的神圣牧师,难度可想,而开场的这段时间,作为队友的非闲置 时间,也不是会让对方不掉血的。 当然,必须承认一点那就是各种职业间的克制问题,比如一个神牧如果遇到了一个兽王猎 人(开了狂暴让宝宝咬你)和术士(放着地狱犬,封锁吞噬,外加主人的一串BUFF)的组合, 那就要看对方的手法了,只要不是太傻的,我们可爱的神牧是很难顶住这样的炮火轰击的。 综上,如果是一个装备精良的神圣牧师搭配一个强力的DPS,不能想象,DPS职业会偷偷 的乐:你丫们就让炮火更猛烈些的打我们的炮灰吧,我专心秒杀一个之后,我家炮灰还是满血 的呢! 百度攻略&178网提供,更多精彩攻略访问https://www.wendangku.net/doc/c511925655.html, 1

巨磁电阻实验报告

巨磁电阻实验报告

巨磁电阻实验报告 【目的要求】 1、了解GMR效应的原理 2、测量GMR模拟传感器的磁电转换 特性曲线 3、测量GMR的磁阻特性曲线 4、用GMR传感器测量电流 5、用GMR梯度传感器测量齿轮的角 位移,了解GMR转速(速度)传感器的原理【原理简述】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律R=ρl/S中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm),可以忽略边界效应。当材料的几何尺

度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 电 阻 \ 欧 姆

龙之谷 灵魂舞者

只想对楼主说,以前我也是单修点。 但是自从昨天我66拿了洗点书洗了双修点后 我才体会到了灵魂双修的碉堡之处 --------------------------------------------- 说下我的加点吧: 0转的就你那样 -------------------- 1转开始: 2个强化舞11 灵魂系列:前面3个都只点1,风车11,将军11,灵魂40大1 刀锋系列:前面3个都只点1,螺旋11,傲慢11,刀锋40大2 ------------------------------------------------------- 然后2转: 广域6,执政官7. 前面2个EX不点,废除者EX,65被动,70EX ------------------------------------------------------- 这样下来输出简直完美 我装了个冷却减少的B的灵魂舞的板子 所以我的灵魂舞加上65被动是可以全程的,CD是11秒的样子持续时间刚好也是11 而刀锋舞就要多3秒的样子,因为没有65被动 ========================================================= 我的攻击套路: 灵魂技能系列: 灵魂舞+广域+执政官+将军+风车 (这一轮结束后刀锋舞的CD还有3秒的样子,这期间就衔接小技能,比如0转你加的11的那个技能、废除者、猎人之类的随便玩玩) ---------------------------------------------- 刀锋技能系列: 刀锋舞+螺旋+傲慢+热情(这个40大的使用看情况) 当然,吉米和九天之舞这2个强力的BUFF技能看时机 我喜欢用在刀锋舞系列里,配合热情似火的高爆发来用 当然,在用完了热情后的时间里,我还是会用在灵魂技能系列里 ============================================================= 灵魂的双修加点在刷图里来说简直是完美

[讲解]巨磁阻效应的原理及应用

[讲解]巨磁阻效应的原理及应用 巨磁阻效应的原理及应用 物质在一定磁场下电阻改变的现象,称为磁阻效应。磁性金属和合金材料一般都有这种现象。一般情况下,物质的电阻率在磁场中仅发生微小的变化,在某种条件下,电阻减小的幅度相当大,比通常情况下约高十余倍,称为巨磁阻效应(GMR)。 要说这种效应的原理,不得不说一下电子轨道及自旋。种角动量在原子物理学中,对于单电子原子(包括碱金属原子)处于一定的状态,有一定的能量、轨道角动量、自旋角动量和总角动量。表征其性质的量子数是主量子数n、角量子数1、自旋量子数s,l,2,和总角动量量子数j。主量子数5二1, 2, 3, 4…)会视电子与原子核间的距离(即半径座标"而定。平均距离会随着n增大,因此不同量子数的量子态会被说成属于不同的电子层。角量子数(1=0, 1…n-L)(乂称方位角量子数或轨道量子数)通过关系式来代表轨道角动量。在化学中,这个量子数是非常重要的,因为它表明了一轨道的形状,并对化学键及键角有重大形响。有些时候,不同角量子数的轨道有不同代号,1二0的轨道叫s轨道,1二1的叫p轨道,1二2的叫d 轨道,而1二3的则叫f轨道。磁量子数(ml= -1, -1+1 - 0…1-1, 1)代表特征值,。这是轨道角动量沿某指定轴的射影。从光谱学中所得的结果指出一个轨道最多可容纳两个电子。然而两个电子绝不能拥有完全相同的量子态(泡利不相容原理),故也绝不能拥有同一组量子数。所以为此特别提出一个假设来解决这问题,就是设存在一个有两个可能值的笫四个量子数一自旋量子数。这假设以后能被相对论性量子力学所解释。 “我们对过渡金属的电导率有了如下认识:电流由s电子传递,其有效质量近乎于自由电子。然而电阻则取决于电子从s带跃迁到d带的散射过程,因为跃迁

暗黑破坏神2-各职业加点,装备及雇佣兵选择

(1)1.10及其以上版本常见人物练法 亚马逊 弓系(导引箭+多重箭): 导引箭20、多重箭10、魔法箭20、致命攻击20、刺入1、穿刺1、闪避1、躲避1、回避1、急冻箭1,其余加女武神。 力量加到够穿所有装备即可,敏捷加到300,其余加体力,精力不加。 标枪系(充能一击+闪电之怒): 闪电之怒20、闪电攻击20、威力一击20、充能一击20、闪电球20,其余加穿刺。 力量加到够穿所有装备即可,敏捷加到盾牌格挡率75%,其余加体力,精力不加。 弓系标枪系双修(导引箭+闪电之怒): 导引箭20、闪电之怒20、急冻箭1、致命攻击20、刺入1、穿刺1、闪避1、躲避1、回避1、女武神20,其余加诱饵。 导引箭20、闪电之怒20、闪电攻击20、充能一击20、致命攻击1、刺入1、穿刺1、闪避1、躲避1、回避1,其余加闪电球。

力量加到够穿所有装备即可,敏捷加到300,其余加体力,精力不加。 刺客 武学系虎击(虎击+龙爪/双龙爪/神龙摆尾): 虎击20、龙爪20或双龙爪20或神龙摆尾20、支配利爪20、毒牙20、心灵爆震1,其余加影子大师。 力量加到够穿所有装备即可,敏捷加到龙爪或双龙爪或神龙摆尾命中率5000,其余加体力,精力不加。 武学系凤击(凤凰攻击+龙爪/双龙爪/神龙摆尾): 凤凰攻击20、龙爪20或双龙爪20或神龙摆尾20、支配利爪20、毒牙20、心灵爆震1,其余加影子大师。 凤凰攻击20、寒冰刃20或雷电爪20或焰拳20、龙爪20或双龙爪20或神龙摆尾20、支配利爪20、心灵爆震1,其余加影子大师。 力量加到够穿所有装备即可,敏捷加到龙爪或双龙爪或神龙摆尾命中率5000,其余加体力,精力不加。

巨磁电阻效应及其应用实验报告

巨磁电阻效应及其应用实 验报告 The following text is amended on 12 November 2020.

巨磁电阻效应及其应用 【实验目的】 1、了解GMR效应的原理 2、测量GMR模拟传感器的磁电转换特性曲线 3、测量GMR的磁阻特性曲线 4、用GMR传感器测量电流 5、用GMR梯度传感器测量齿轮的角位移,了解GMR转速(速度)传感器的原理【实验原理】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=l/S中,把电阻率视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 ;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 图3是图2结构的某种GMR材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。磁阻变化率ΔR/R 达百分之十几,加反向磁场时磁阻特性是对称的。注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。 有两类与自旋相关的散射对巨磁电阻效应有贡献。 其一,界面上的散射。无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,从一层铁磁膜进入另一层铁磁膜时都面临状态改变(平行-反平行,或反平行-平行),电子在界面上的散射几率很大,对应于高电阻状态。有外磁场时,上下两层铁磁膜的磁场方向一致,电子在界面上的散射几率很小,对应于低电阻状态。 其二,铁磁膜内的散射。即使电流方向平行于膜面,由于无规散射,电子也有一定的几率在上下两层铁磁膜之间穿行。无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,在穿行过程中都会经历散射几率小(平行)和散射几率大(反平行)两种过程,两类自旋电流的并联电阻相似两个中等阻值的电阻的并联,对应于高电阻状态。有外磁场时,上下两层铁磁膜的磁场方向一致,自旋平行的电子散射几率小,自旋反平行的电子散射几率大,两类自旋电流的并联电阻相似一个小电阻与一个大电阻的并联,对应于低电阻状态。

巨磁电阻实验报告

巨磁电阻实验报告 【目的要求】 1、 了解GMR 效应的原理 2、 测量GMR 模拟传感器的磁电转换特性曲线 3、 测量GMR 的磁阻特性曲线 4、 用GMR 传感器测量电流 5、 用GMR 梯度传感器测量齿轮的角位移,了解GMR 转速(速度)传感器的原理 【原理简述】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=ρl/S 中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott 指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 无外磁场时顶层磁场方向 无外磁场时底层磁场方向 图 2 多层膜GMR 结构图 图3是图2结构的某种GMR 材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减 图3 某种GMR 材料的磁阻特性 磁场强度 / 高斯 电阻 \ 欧姆

巨磁电阻效应及应用实验

巨磁电阻效应及其应用 2007年诺贝尔物理学奖授予了巨磁电阻( Giant magneto resistance,简称GMR)效应的发现者:法国物理学家阿尔贝·费尔(Albert Fert)和德国物理学家彼得·格伦贝格尔( Peter Grunberg )。诺贝尔奖委员会说明:“这是一次好奇心导致的发现,但其随后的应用却是革命性的,因为它使计算机硬盘的容量从几百、几千兆,一跃而提高几百倍,达到几百G乃至上千G。” 凝聚态物理研究原子,分子在构成物质时的微观结构,它们之间的相互作用力,及其与宏观物理性质之间的联系。 人们早就知道过渡金属铁、钴、镍能够出现铁磁性有序状态。量子力学出现后,德国科学家海森伯(W. Heisenberg,1932年诺贝尔奖得主)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用,这个交换作用是短程的,称为直接交换作用。 图 1 反铁磁有序 后来发现很多的过渡金属和稀土金属的化合物具有反铁磁有序状态,即在有序排列的磁材料中,相邻原子因受负的交换作用,自旋为反平行排列,如错误!未找到引用源。所示。则磁矩虽处于有序状态,但总的净磁矩在不受外场作用时仍为零。这种磁有序状态称为反铁磁性。法国科学家奈尔(L. E. F. Neel)因为系统地研究反铁磁性而获1970年诺贝尔奖。在解释反铁磁性时认为,化合物中的氧离子(或其他非金属离子)作为中介,将最近的磁性原子的磁矩耦合起来,这是间接交换作用。另外,在稀土金属中也出现了磁有序,其中原子的固有磁矩来自4f电子壳层。相邻稀土原子的距离远大于4f电子壳层直径,所以稀土金属中的传导电子担当了中介,将相邻的稀土原子磁矩耦合起来,这就是RKKY型间接交换作用。 直接交换作用的特征长度为0.1~0.3nm,间接交换作用可以长达1nm以上。1nm已经是实验室中人工微结构材料可以实现的尺度。1970年美国IBM实验室的江崎和朱兆祥提出了超晶格的概念,所谓的超晶格就是指由两种(或两种以上)组分(或导电类型)不同、厚度d极小的薄层材料交替生长在一起而得到的一种多周期结构材料。由于这种复合材料的周期长度比各薄膜单晶的晶格常数大几倍或更长,因此取得“超晶格”的名称。上世纪八十年代,由于摆脱了以往难以制作高质量的纳米尺度样品的限制,金属超晶格成为研究前沿,凝聚态物理工作者对这类人工材料的磁有序,层间耦合,电子输运等进行了广泛的基础方面的研究。 德国尤利希科研中心的物理学家彼得·格伦贝格尔一直致力于研究铁磁性金属薄膜表面和界面上的磁有序状态。研究对象是一个三明治结构的薄膜,两层厚度约10nm的铁层之间夹有厚度为1nm 的铬层。选择这个材料系统并不是偶然的,首先金属铁和铬是周期表上相近的元素,具有类似的电子壳层,容易实现两者的电子状态匹配。其次,金属铁和铬的晶格对称性和晶格常数相同,它们之间晶格结构也是匹配的,这两类匹配非常有利于基本物理过程的探索。但是,很长时间以来制成的三明治薄膜都是多晶体,格伦贝格尔和很多研究者一样,并没有特别的发现。直到1986年,他采用了分子束外延(MBE)方法制备薄膜,样品成分还是铁-铬-铁三层膜,不过已经是结构完整的单晶。在

《无尽之剑》秘籍:bug刷钱方法介绍

《无尽之剑》秘籍:bug刷钱方法介绍 【便玩家游戏4月2日消息】3、然后我们将这个价值30W的大宝石放到宝石切割匠的融合槽里,然后此时,我们会发现处于融合槽中的大宝石竟然可以卖掉。4、这样,我们果断的卖掉价值30W的大宝石,然后我们的金钱就会增加30W,但当我们再次的查看我们的宝石袋后,会发现我们当初卖掉的大宝石还在那里。 无尽之剑3bug刷钱方法介绍,在1.2版本奥萨的崛起发布之后,网上流出的刷钱BUG基本都已被修复了,下面小编这里给大家介绍下1.1.1版本的bug刷钱。 首先大体的说下无尽之剑3 1.1刷钱bug: 第一步,把三个要合成的宝石放入熔炉。 第二步,在熔炉中出售宝石。 第三步,然后点击熔合。 然后你会发现宝石卖了钱,最后还出来一个宝石。这样我们就可以利用次方法来不断的刷钱了。 下面为大家带来无尽之剑3 1.1刷钱bug的图文介绍: 1、首先我们需要赞筹码,我们需要攒够一千个筹码。 2、我们赞到一千个筹码是为了购买一个稀世宝石转轮,从而获得一个可以卖30W的大宝石。

3、然后我们将这个价值30W的大宝石放到宝石切割匠的融合槽里,然后此时,我们会发现处于融合槽中的大宝石竟然可以卖掉。 4、这样,我们果断的卖掉价值30W的大宝石,然后我们的金钱就会增加30W,但当我们再次的查看我们的宝石袋后,会发现我们当初卖掉的大宝石还在那里。 这样我们就可以反复的通过上述的步骤来获取金钱了。 《无尽之剑》下载:https://www.wendangku.net/doc/c511925655.html,/ku/ 手游礼包领取:https://www.wendangku.net/doc/c511925655.html,/ka/ 关注便玩家手游网官方微信公共账号(shoujiyouxilibao)免费赢取礼包!

巨磁电阻效应及其应用

巨磁电阻效应及其应用 巨磁电阻效应的发现和应用获得2007年诺贝尔物理学奖。本实 验重点理解磁性对电子散射的影响、双电流模型、RKKY理论和 巨磁电阻效应产生的物理机理,了解巨磁电阻效应的实际应用领 域和应用时所采用的技术设计。 【思考题】 1什么是磁电阻效应和巨磁电阻效应?巨磁电阻效应的发现对物理学和技术应用有什么重要贡献? 2为什么铁磁材料中电子散射与电子自旋状态有关? 3为什么非磁性层的厚度会影响巨磁电阻效应大小?用RKKY理论理解此现象。 4如何用双电流模型解释磁性多层膜的巨磁电阻效应?该模型除解释巨磁电阻效应外还有哪些应用? 5磁性多层膜与自旋阀磁电阻在薄膜结构、性能与应用方面有什么不同? 6磁硬盘记录的原理是什么?为什么磁电阻的应用能大大提高磁记录的密度和读写速度? 7将多层膜制成GMR元件时一般将其几何结构光刻成微米宽度迂回形状,目的是什么? 8将GMR元件用作传感器时,采用桥式电路有什么好处? 9在GMR桥式电路中,有时在电桥对角位置的两个电阻表面加磁屏蔽,有时不加,其原因是什么? 10如何提高GMR传感器的灵敏度?如何用磁电阻效应测量导线中的电流? 11对磁性样品测量应注意哪些问题?为什么先将样品磁化到饱和再进行测量?如何判断样品已经被磁化到饱和状态? 12你认为巨磁电阻效应的发现者能获得诺贝尔物理学奖的理由是什么? 13如果你自己要制备一个有巨磁电阻效应的磁性多层膜,薄膜结构应满足那些条件?

【引言】 2007年12月10日,法国物理学家阿尔贝·费尔(AlbertFert)和德国物理学家彼得·格伦贝格(Peter Crünberg)分别获得了一枚印着蓝白红标志的2007年诺贝尔物理奖章,他们各自独立发现的巨磁阻效应(giant magnetoresistance, GMR)[1,2]。 早在一百多年前, 人们对铁磁金属的输运特性受磁场影响的现象,就做过相当仔细的观测。莫特的双电流理论,把电子自旋引入对磁电阻的解释,而巨磁电阻恰恰是基于对具有自旋的电子在磁介质中的散射机制的巧妙利用。 目前巨磁电阻传感器已应用于测量位移、角度等传感器、数控机床、汽车测速、非接触开关、旋转编码器等很多领域,与光电等传感器相比,它具有功耗小,可靠性高,体积小,能工作于恶劣的工作条件等优点。利用巨磁电阻效应在不同的磁化状态具有不同电阻值的特点,可以制成随机存储器(MRAM),其优点是在无电源的情况下可继续保留信息。巨磁电阻效应在高技术领域应用的另一个重要方面是微弱磁场探测器。巨磁电阻薄膜材料的广泛应用,也是纳米材料的第一项实际应用,它使得人们对磁性尤其是纳米尺寸的磁性薄膜介质之输运特性的研究有了突飞猛进的发展,由此带来计算机存储技术的革命性变化,从而深刻地改变了整个世界。 【实验目的】 通过纳米结构层状薄膜的巨磁电阻效应及不同结构的GMR传感器特性测量和自旋阀磁电阻测量,了解磁性薄膜材料和自旋电子学的有关知识,并由磁电阻和巨磁电阻的历史发展,及关键人物解决问题的思想方法,认识诺贝尔物理奖项目巨磁电阻的原理、技术,和对科学技术发展的重要贡献。体会实验的设计与实施,理解其原理和方法,体验科学发现的精髓与快乐,促进学生逐步形成系统的物理思想,期望由此启发学生对物理科学和高新技术的浓厚兴趣。 【实验原理】 一磁电阻与巨磁电阻效应 磁电阻MR(magneto-resistance的缩写符号)效应是指物质在磁场的作用下电阻发生变化的物理现象。磁电阻效应按磁电阻值的大小和产生机理的不同可分为:正常磁电阻效应(Ordinary MR: OMR)、各向异性磁电阻效应(Anisotropic MR: AMR)、巨磁电阻效应(giant MR:GMR)和庞磁电阻效应(ColossalMR:CMR)等。 表征磁电阻效应大小的物理量为MR,其定义有两种,分别为:

巨磁阻效应实验报告

巨磁阻效应实验报告 篇一:磁阻效应实验报告 近代物理实验报告 专业2011级应用物理学班级(2) 指导教师彭云雄姓名同组人 实验时间 2013 年 12 月23 日实验地点 K7-108 实验名称磁阻效应实验 一、实验目的 1、 2、 3、 4、测量电磁铁的磁感应强度与励磁电流的关系和电磁铁磁场分布。测量锑化铟传感器的电阻与磁感应强度的关系。作出锑化铟传感器的电阻变化与磁感应强度的关系曲线。对此关系曲线的非线性区域和线性区域分别进行拟合。 二、实验原理 图1磁阻效应原理 1 一定条件下,导电材料的电阻值R随磁感应强度B的变化规律称为磁阻效应。如图1所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍耳电场。 如果霍耳电场作用和某一速度载流子的洛仑兹力作用刚好抵消,那么小于或大于该速度的载流子将发生偏转,因而沿外加电场方向运动的载流子数量将减少,电阻增大,表现出横向磁阻效应。若将图1中a端和b端短路,则磁阻效应更明显。通常以电阻率的相对改变量来表示磁阻的大小,即用Δρ/ρ(0)表示。其中ρ(0)为零磁场时的电阻率,设磁电阻在磁感应强度为B的磁场中电阻率为ρ(B),则

Δρ=ρ(B)-ρ(0)。由于磁阻传感器电阻的相对变化率ΔR/R(0)正比于 Δρ/ρ(0),这里ΔR=R(B)-R(0),因此也可以用磁阻传感器电阻的相对改变量 ΔR/R(0)来表示磁阻效应的大小。 图2 图2所示实验装置,用于测量磁电阻的电阻值R与磁感应强度B之间的关系。实验证明,当金属或半导体处于较弱磁场中时,一般磁阻传感器电阻相对变化率ΔR/R(0)正比于磁感应强度B的平方,而在强磁场中ΔR/R(0)与磁感应强度B呈线性关系。磁阻传感器的上述特性在物理学和电子学方面有着重要应用。 2 如果半导体材料磁阻传感器处于角频率为ω的弱正弦波交流磁场中,由于磁电阻相对变化量ΔR/R(0)正比于B,则磁阻传感器的电阻值R将随角频率2ω作周期性变化。即在弱正弦波交流磁场中,磁阻传感器具有交流电倍频性能。若外界交流磁场的磁感应强度B为 B=B0COSωt (1) (1)式中,B0为磁感应强度的振幅,ω为角频率,t为时间。 2设在弱磁场中ΔR/R(0)=KB(2) (2)式中,K为常量。由(1)式和(2)式可得 R(B)=R(0)+ΔR=R(0)+R(0)×[ΔR/R(0)] 22=R(0)+R(0)KB0COSωt 2 1212R(0)KB0+R(0)KB0COS2ωt (3) 22 1122(3)式中,R(0)+R(0)KB0为不随时间变化的电阻值,而R(0)KB0cos2ωt为以角频22=R(0)+ 率2ω作余弦变化的电阻值。因此,磁阻传感器的电阻值在弱正弦波交流磁场中,将产生倍频交流电阻阻值变化。

巨磁阻效应的原理及应用

巨磁阻效应的原理及应用 物质在一定磁场下电阻改变的现象,称为磁阻效应。磁性金属和合金材料一般都有这种现象。一般情况下,物质的电阻率在磁场中仅发生微小的变化,在某种条件下,电阻减小的幅度相当大,比通常情况下约高十余倍,称为巨磁阻效应(GMR )。 要说这种效应的原理,不得不说一下电子轨道及自旋。种角动量在原子物理学中,对于单电子原子(包括碱金属原子)处于一定的状态,有一定的能量、轨道角动量、自旋角动量和总角动量。表征其性质的量子数是主量子数n 、角量子数l 、自旋量子数s =1/2,和总角动量量子数j 。主量子数(n=1,2,3,4 …)会视电子与原子核间的距离(即半径座标r )而定。平均距离会随着n 增大,因此不同量子数的量子态会被说成属于不同的电子层。 角量子数(l=0,1 … n-1)(又称方位角量子数或轨道量子数)通过关系式来代表轨道角动量。在化学中,这个量子数是非常重要的,因为它表明了一轨道的形状,并对化学键及键角有重大形响。有些时候,不同角量子数的轨道有不同代号,l=0的轨道叫s 轨道,l=1的叫p 轨道,l=2的叫d 轨道,而l=3的则叫f 轨道。磁量子数(ml= -l ,-l+1 … 0 … l-1,l )代表特征值,。这是轨道角动量沿某指定轴的射影。 从光谱学中所得的结果指出一个轨道最多可容纳两个电子。然而两个电子绝不能拥有完全相同的量子态(泡利不相容原理),故也绝不能拥有同一组量子数。所以为此特别提出一个假设来解决这问题,就是设存在一个有两个可能值的第四个量子数—自旋量子数。这假设以后能被相对论性量子力学所解释。 “我们对过渡金属的电导率有了如下认识:电流由s 电子传递,其有效质量近乎于自由电子。然而电阻则取决于电子从 s 带跃迁到 d 带的散射过程,因为跃迁几率与终态的态密度成正比,而局域性的 d 带在费米面上的态密度是很大的。 这就是过渡金属电阻率高的原因。这种 s-d 散射率取决于 s 电子与 d 电子自旋的相对取向。 巨磁电阻(GMR )效应来自于载流电子的不同自旋状态与磁场的作用不同,因而导致的电阻值的变化。GMR 是一个量子力学效应,它是在层状的磁性薄膜结构中观察到的。这种结构由铁磁材料和非磁材料薄层交替叠合而成。当铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料有最小的电阻。当铁磁层的磁矩为反平行时,与自旋有关的散射最强,材料的电阻最大。关于这种效应可以用两自选电流模型来解释: 普通磁电阻 (正, 极小, 各向异性) 巨磁电阻 (负, 巨大 , 各向同性) [])(/)0()(H R R H R MR -=[][] ) ()()0() 0()()0(21S S S H R H R R MR R H R R MR -=-=

巨磁电阻效应及应用

实验十四巨磁电阻效应及应用 【实验目的】 1.了解GMR效应的原理 2.测量GMR模拟传感器的磁电转换特性曲线 3.测量GMR的磁阻特性曲线 4.测量GMR开关(数字)传感器的磁电转换特性曲线 5.用GMR传感器测量电流 6.用GMR梯度传感器测量齿轮的角位移,了解GMR转速(速度)传感器的原理 7.通过实验了解磁记录与读出的原理 【实验仪器】 巨磁电阻效应及应用实验仪 【实验原理】 2007年诺贝尔物理学奖授予了巨磁电阻( Giant magneto resistance,简称GMR)效应的发现者:法国物理学家阿尔贝·费尔(Albert Fert)和德国物理学家彼得·格伦贝格尔( Peter Grunberg )。诺贝尔奖委员会说明:“这是一次好奇心导致的发现,但其随后的应用却是革命性的,因为它使计算机硬盘的容量从几百、几千兆,一跃而提高几百倍,达到几百G 乃至上千G。” 凝聚态物理研究原子,分子在构成物质时的微观结构,它们之间的相互作用力,及其与宏观物理性质之间的联系。 GMR作为自旋电子学的开端具有深远的科学意义。传统的电子学是以电子的电荷移动为基础的,电子自旋往往被忽略了。巨磁电阻效应表明,电子自旋对于电流的影响非常强烈,电子的电荷与自旋两者都可能载运信息。自旋电子学的研究和发展,引发了电子技术与信息技术的一场新的革命。目前电脑,音乐播放器等各类数码电子产品中所装备的硬盘磁头,基本上都应用了巨磁电阻效应。利用巨磁电阻效应制成的多种传感器,已广泛应用于各种测量和控制领域。除利用铁磁膜-金属膜-铁磁膜的GMR效应外,由两层铁磁膜夹一极薄的绝缘膜或半导体膜构成的隧穿磁阻(TMR)效应,已显示出比GMR效应更高的灵敏度。除在多层膜结构中发现GMR效应,并已实现产业化外,在单晶,多晶等多种形态的钙钛矿结构的稀土锰酸盐中,以及一些磁性半导体中,都发现了巨磁电阻效应。 本实验介绍多层膜GMR效应的原理,并通过实验让学生了解几种GMR传感器的结构、特性及应用领域。 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规则散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自 221

巨磁电阻效应及其应用实验报告记录

巨磁电阻效应及其应用实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

巨磁电阻效应及其应用 【实验目的】 1、 了解GMR 效应的原理 2、 测量GMR 模拟传感器的磁电转换特性曲线 3、 测量GMR 的磁阻特性曲线 4、 用GMR 传感器测量电流 5、 用GMR 梯度传感器测量齿轮的角位移,了解GMR 转速(速度)传感器的原理 【实验原理】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=ρl/S 中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott 指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 无外磁场时顶层磁场方向 顶层铁磁膜 中间导电层 底层铁磁膜 无外磁场时底层磁场方向 图2 多层膜GMR 结构图 图3是图2结构的某种GMR 材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。磁阻变化率 ΔR/R 达百分之十几,加反向磁场时磁阻特性是对称的。注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。 图3 某种GMR 材料的磁阻特性 磁场强度 / 高斯 电阻 \ 欧姆

巨磁电阻效应及其应用-数据处理

五、实验数据及处理 1.GMR模拟传感器的磁电转换特性测量 实验数据及由公式B = μ0nI算得的磁感应强度如下表所示:(n=24000匝/m)

以B为横坐标,输出电压U为纵坐标,作图得: 误差分析: (1)在实验操作中,用恒流源调节励磁电流时距离要调到的值总会有部分偏差,其范围在正负0.2mA以内,反应在图像上就是最低处的输出都在y轴上,实际上应当是分别分布在y轴左右两侧的; (2)用恒流源调节励磁电流时,为保证调到需要调到的励磁电流的精确度,会有很小幅度的回调,可能因磁滞现象造成影响; (3)使用Excel表格处理数据的过程中可能会有精度损失;

2. GMR的磁阻特性曲线的测量 根据实验数据由公式B = μ0nI算得的磁感应强度,由R=U/I算得的电阻如下表所示:(磁阻两端电压U=4V)

作图如下: 误差分析: (1)在实验操作中,用恒流源调节励磁电流时距离要调到的值总会有部分偏差,其范围在正负0.2mA以内,反应在图像上就是最高处的输出都在y轴上,实际上应当是分别分布在y轴左右两侧的; (2)用恒流源调节励磁电流时,为保证调到需要调到的励磁电流的精确度,会有很小幅度的回调,可能因磁滞现象造成影响; (3)使用Excel表格处理数据的过程中可能会有精度损失;

3. GMR开关(数字)传感器的磁电转换特性曲线测量 实验数据及由公式B = μ0nI算得的磁感应强度如下表所示: 高电平:1V,低电平:-1V 作图如下: 误差分析: (1)在实验操作中,用恒流源调节励磁电流时距离要调到的值总会有部分偏差,其范围在正负0.2mA以内;(2)用恒流源调节励磁电流时,为保证调到需要调到的励磁电流的精确度,会有很小幅度的回调,可能因磁滞现象造成影响; (3)使用Excel表格处理数据的过程中可能会有精度损失;

巨磁阻效应实验要点

近代物理实验报告 专业应用物理学班级 11级指导教师马厂 姓名实验时间 2013 年月日实验地点 K7-402 实验名称巨磁阻效应实验 实验三巨磁阻效应实验 【实验目的】 1.了解巨磁阻效应原理,了解巨磁阻传感器的原理及其使用方法; 2.学习巨磁阻传感器定标方法,用巨磁阻传感器测量弱磁场; 3.测定巨磁阻传感器敏感轴与被测磁场间夹角与传感器灵敏度的关系; 4.测定巨磁阻传感器的灵敏度与其工作电压的关系; 5.用巨磁阻传感器测量通电导线的电流大小。 【实验原理】 1.巨磁阻效应 1988年,法国巴黎大学的研究小组首先在Fe/Cr多层膜中发现了巨磁阻效应,在国际上引起很大的反响。巨磁阻(Giant Magneto Resistance)是一种层状结构,外层是超薄的铁磁材料(Fe,Co,Ni等),中间层是一个超薄的非磁性导体层(Cr,Cu,Ag等),这种多层膜的电阻随外磁场变化而显著变化。 通常情况下,Cr,Cu,Ag等是良好的导体,但当它的厚度只有几个原子时,导体的电阻率会显著增加。在块状导体材料中,导体内电子由于会和其它微粒碰撞,所以在“散射”改变运动方向之前都要运动很长一段距离。在电子散射之前运动的距离的平均长度称为平均自由程。然而,在非常薄的材料中,电子的运动无法达到最大平均自由程。电子很可能直接运动到材料的表面并直接在那里产生散射,这导致了在非常薄的材料中平均自由程较短。因此导体中的电子要在这种材料中运动更加困难,导致导体电阻率的增大。 巨磁阻的磁性层是用来抗铁磁耦合的。当没有外界磁场作用时,这两层材料的磁化是相互对立的。可以假设为两根“头尾相连”的条形磁铁(两个磁铁是平行的,其中一个的北极与另一个的南极同向),中间隔着一张薄塑料纸。巨磁阻材料中磁性层的磁化方向也是“头尾相连”的,中间是非磁性层。 下图显示的是GMR材料结构内部的一些电子的射程。两个箭头指明了抗磁耦合。 图1 抗磁耦合图示 注意:电子是散射到两个GMR材料的表面。这是因为电子从上层自旋试图进入下层自旋,反之亦然。由于电子自旋的不同,电子比较有可能散射到两个表面。这种情况的结局是导电电子的平均自由程的长度相当短,从而导致了材料具有相对高的电阻率。 如果外加在GMR材料上的外界磁场足够大,它就能够克服两个磁性层之间磁化的抗磁耦合。这种条件下,两个薄层的电子都会做同样的自旋。这时,电子便容易在巨磁阻材料中运动,电子的平均自由程增长,导致巨磁阻材料的电阻率降低。

相关文档
相关文档 最新文档