文档库 最新最全的文档下载
当前位置:文档库 › 铁路光伏电站

铁路光伏电站

铁路光伏电站
铁路光伏电站

铁路光伏项目案例

目录

一、济青高铁光伏电站 (3)

二、杭州火车东站光伏项目 (4)

三、杭州火车南站项目 (5)

四、武汉火车站——中国最美的火车站 (7)

五、最环保的隧道 (8)

六、大秦铁路 (10)

一、济青高铁光伏电站

济青高铁共设济南东客站、邹平站、章丘北站、淄博北站、临淄北站、青州北站、潍坊北站、高密北站、胶州北站、青岛机场站、红岛站等11站,正线全长公里。

其光伏项目包括站房雨棚光伏发电和沿线线下光伏发电两大部分,其中站房雨棚光伏发电项目是在济南东客站、淄博北站、潍坊北站、红岛站4个站房雨棚上建设光伏发电设施,项目装机容量约计10兆瓦,铺装面积约为12万平方米,预计总投资1亿元。

沿线线下光伏发电项目是充分利用济青高铁沿线栅栏内南侧及护坡、预留地等闲置空间安装光伏发电设备,总装机容量34兆瓦,总投资亿元。该项目预计2018年6月30日前并网发电,预计2018年底建成通车。

二、杭州火车东站光伏项目

应用类型:建筑屋面和风雨棚一体

电池类型:单晶硅、非晶硅薄膜电池

建成时间:2013年6月(光伏系统)

安装面积:万m2

装机容量:10MWp

年发电量:10GWh

该项目投资亿元建设屋顶光伏面,安装太阳能板44000块,装机容量10兆瓦。

项目建成后,将成为目前国内最大的单体建筑光伏发电系统,预计每年可发电万度,发的电可供5000户家庭、20000余人的全年生活用电。与火力发电相比,预计每年可节约标准煤吨,减少二氧化碳排放吨、二氧化硫排放吨、粉尘吨,节约用水吨。

三、杭州火车南站项目

杭州火车南站建成兆瓦屋顶光伏杭州火车南站屋顶分布式光伏发电项目。2017年 6月29日,位于浙江省杭州市萧山区的杭州火车南站屋顶分布式光伏发电项目通过验收,正式并入国家电网。该项目占用屋顶面积约万平方米,总装机容量兆瓦,预计年发电量420万千瓦时.

四、武汉火车站——中国最美的火车站

光伏应用:建筑屋面和风雨棚

电池类型:单晶硅电池

建成时间:2009年12月

光伏面积:万m2

装机功率:

年发电量:2GWh

系统集成方:武汉日新科技有限公司

武汉火车站动工较早,其太阳能光伏并网发电项目是铁道部未来发展各火车站屋面光伏系统的重要的示范项目,工程投运后年上网发电量为万度,每年可以减少吨二氧化碳的排放,减排吨煤。

五、最环保的隧道

项目概述

地点:比利时安特卫普

完成时间:2011年6月

业主:比利时铁路运营商Infrabel

安装商:比利时可再生能源开发商Enfinity

项目大小:兆瓦

组件数量:16,000块

产品型号:晶科能源功率高达245瓦的多晶组件JKM-245P-60

年发电量:330万度电

2011年6月6日,在熙熙攘攘的街道旁,比利时铁路运营商Infrabel与开发商Enfinity共同为兆瓦的太阳能高铁隧道项目举行了落成仪式。这座长约公里的太阳能隧道位于安特卫普,连接着欧洲两座重要的城市巴黎与阿姆斯特丹,是太阳能发电与现代铁路交通完美结合的典范。

该项目的能源组件的总覆盖面积达5万平方米,相当于8个标准足球场。组件产生的电力主要用于车站的信号,照明、供暖等铁路基础设施,同时也为途经该隧道的高速列车提供充足的电力。提供的总计16000多块245瓦高效能组件.

太阳能组件产生的电力主要供应比利时铁路交通系统,剩下的则并入国家电网。通过太阳能发电与传统电力不间断的平衡转换,无论白天或黑夜,铁路系统都会得到充足的电力供应。

根据第三方机构的统计数据显示,太阳能隧道在6个月内为当地铁路运输能源消耗降低方面发挥了巨大作用,不仅使二氧化碳排放量减少了近1200吨,而且太阳能所提供的近165万度电足以供应2000辆列车的正常运行。根据目前运营情况预计,在未来将近30年的时间内,将可以至少减少72000吨二氧化碳排放量。

220kV智能变电站继电保护及自动化分析 吴宗俞

220kV智能变电站继电保护及自动化分析吴宗俞 发表时间:2018-06-27T09:41:38.153Z 来源:《电力设备》2018年第6期作者:吴宗俞吕日龙 [导读] 摘要:智能变电站是集先进、可靠、集成和环保于一体的智能设备,能实现信息数字化、通信平台网络化和信息共享标准化的要求。 内蒙古电力(集团)有限责任公司巴彦淖尔电业局内蒙古自治区巴彦淖尔市 015000 摘要:智能变电站是集先进、可靠、集成和环保于一体的智能设备,能实现信息数字化、通信平台网络化和信息共享标准化的要求。从智能变电站继电保护相关介绍入手,重点阐述分析220kV智能变电站继电保护及自动化。220kV智能变电站继电保护高效、有效,在满足供电需求的同时,逐步完善电力系统。 关键词:220kV智能变电站;继电保护;自动化 1、220kV智能变电站的继电保护及自动化系统设计实例 变电站是国家电网建设的一个重要组成部分,如今我国的智能变电站建设工作已经得到了快速地发展。在变电站的建设过程中,想要实现系统的稳定运行,提升系统建设效率,就需要制定一个继电保护和自动化系统的设计方案。文章以某市的智能变电站为例,对智能变电站的系统设计方案进行探讨。 1.1工程基本情况概述 L市计划建设一个智能变电站,既有220kV变电站的情况是有3台主变,每台主变的容量为180MVA;其中220kV出线4回、66kV出线10回。L市打算进行智能变电站的建设,变电站建成之后有4台主变,并且它们每台的容量要达到240MVA;并且要求220kV出线8回、66kV出线26回。 1.2智能变电站继电保护及自动化系统设计方案分析 进行设计方案确定之前,要求工作人员明确该智能变电站的设计原则,在实际的工作中需要坚持标准一致、安全第一、技术过硬等原则。在工作开展中需要按照设计方案开展工作,并且要注重各类先进技术的使用,保障智能变电站的智能化程度。 L市智能变电站在设计中首先明确的就是变电站的总体结构。该220kV的智能变电站主要分为三个结构层次:①过程层。这一部分的结构主要负责三个工作,分别是设备的运行状态监测、电器运行实时监测以及控制操作的驱动和执行。这是智能变电站设备实现自动化运行的基础和前提;②间隔层。该机构的设计运行后的功能主要是对于各类数据进行收集,并且对系统的运行数据进行收集和控制。实际上,这一结构的就是承上启下,接受各类系统信息,然后进行设备的指挥操作;③变电层。变电层的工作任务就是将整体变电站的信息进行总汇之后,将其发送到电网指挥中心。同时变电层还可以接收各类指令,完成人们给系统下达的工作。这个系统主要应用的是电子信息技术、电气自动化技术、以及网络通信技术等。 2、220kV智能变电站的继电保护 2.1要求 例举220kV智能变电站中,继电保护的基本要求,如: 2.1.1可靠性 继电保护的范围内,准确、可靠的检测220kV智能变电站的运行,辅助规划出故障的范围及故障点。 2.1.2灵敏性 继电保护检测220kV智能变电站的故障时,要具备足够的灵敏度,围绕故障特征,给与及时的保护反馈,预防220kV智能变电站失控。 2.1.3检测性 220kV智能变电站的继电保护,其检测性的特征,目的是可以合理的判断系统故障,缩小故障影响的范围,以便准确的切除故障。 2.2原理 220kV智能变电站继电保护的运行原理方面,表现出综合性的特征,继电保护全面检测智能变电站的运行,通过点流量、电压以及功率等特征,判断智能变电站的故障信息,及时提示报警信息,识别相关的故障。例如:220kV智能变电站运行期间,继电保护分析智能变电站的点流量,进而执行相关的跳闸保护,也就是反时限保护,智能变电站的电流量增大,跳闸的速度越快,除此以外,继电保护还可以实行定时间保护,检测超出规范标准的电流量,特定的时间中,有跳闸动作,220kV智能变电站继电保护,在温度、瓦斯方面的保护,汇总为非电量保护。变电站继电保护原理中,设置了比较固定的可靠性系统,其为继电保护的经验值,按照系数计算,决定继电保护的动作值。 2.3职能 220kV智能变电站中的继电保护,负责故障维护,变电站正常运行期间,继电保护没有任何动作,如有故障问题,继电保护及时、快速的动作,反馈智能变电站系统、元件等的故障信息,表现为跳闸的状态,提示管理人员对智能变电站进行检修。继电保护的断路器迅速断开,防止220kV智能变电站的电气元件损坏,避免影响其它的元件应用。 2.4分类 例举220kV智能变电站继电保护的分类,如: 2.4.1变压器保护 继电保护检测变压器的接线、接地灯,利用电流、电压以及负荷检测,完成保护工作,进而解决了变压器的风险问题。 2.4.2电容器保护 此项结构容易发生内部故障,导致连线短路,继电保护在电容器组内,通过过电压检测,实行保护工作。 2.4.3电动机保护 运行时容易有低电压、过负荷的故障,同步电动机的继电保护中,运用非同步冲击电流等方法进行保护。 2.4.4线路保护 继电保护根据220kV智能变电站的电压等级、接地方式以及运输过程,展开接地类型的故障维护。

铁路智能运输系统构成及作用

铁路智能运输系统构成及作用

铁路智能运输系统构成及作用 北京交通大学交通运输学院摘要:本文总结了国内外铁路智能运输系 统的研究进展,介绍了我国铁路智能运输系 统的主要构成及其作用,通过对铁路智能运 输系统构成及主要研究内容的分析,总结出 了ITS的实际意义。 关键词:智能交通;铁路智能运输系统;构成;作用 中图分类号:U29-39 文献标志码:A Composition and Function of Railway Intelligent Transportation System School of Traffic and Transportation,Beijing Jiaotong University,Beijing,100044,China Abstract: This paper summarizes the research progress of railway intelligent transportation systems, introduces the main components and their role in China's railway intelligent transportation systems, intelligent transportation system through the railway structure and main content of the analysis, summed up the practical significance of ITS. Keywords: Intelligent Transportation; RITS; Composition ; Function 铁路作为服务于社会的一种公共运输形式,其始终不变的目的是安全、迅速、可靠、准确和经济地运送旅客和货物。铁路作为社会的主导产业和新兴科学技术的推动者和体现者,在各国社会和经济发展中起着不可替代的作用。以货物重载化和客运高速化为典型特征和发展方向的中国铁路不仅是国民经济发展水平和国家综合科技水平的重要标志,而且是相关产业和技术发展的巨大推动力。 20世纪80年代以后,社会对铁路运输业的

光伏系统设计计算公式

光伏发电系统设计计算公式 1、转换效率: η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率) 其中:Pin=1KW/㎡=100mW/cm2。 2、充电电压: Vmax=V额×1.43倍 3.电池组件串并联 3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah) 3.2电池组件串联数=系统工作电压(V)×系数1.43/组件峰值工作电压(V) 4.蓄电池容量 蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度 5平均放电率 平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度 6.负载工作时间 负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率 7.蓄电池: 7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数 7.2蓄电池串联数=系统工作电压/蓄电池标称电压 7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量 8.以峰值日照时数为依据的简易计算 8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数 损耗系数:取1.6~2.0,根据当地污染程度、线路长短、安装角度等; 8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数 系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等; 9.以年辐射总量为依据的计算方式 组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量 有人维护+一般使用时,K取230;无人维护+可靠使用时,K取251;无人维护+环境恶劣+要求非常可靠时,K取276; 10.以年辐射总量和斜面修正系数为依据的计算 10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量 系数5618:根据充放电效率系数、组件衰减系数等;安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.3; 10.2蓄电池容量=10×负载总用电量/系统工作电压;10:无日照系数(对于连续阴雨不超过5天的均适用) 11.以峰值日照时数为依据的多路负载计算 11.1电流: 组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数 系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。 11.2功率:

发电效率PR计算公式

光伏电站发电效率的计算与监测 1、影响光伏电站发电量的主要因素 光伏发电系统的总效率主要由光伏阵列的效率、逆变器的效率、交流并网效率三部分组成。 1.1光伏阵列效率: 光伏阵列的直流输出功率与标称功率之比。光伏阵列在能量转换与传输过程中影响光伏阵列效率的损失主要包括:组件匹配损失、表面尘埃遮挡损失、不可利用的太阳辐射损失、温度的影响以及直流线路损失等。 1.2逆变器的转换效率: 逆变器输出的交流电功率与直流输入功率之比。影响逆变器转换效率的损失主要包括:逆变器交直流转换造成的能量损失、最大功率点跟踪(MPPT)精度损失等。 1.3交流配电设备效率: 即从逆变器输出至高压电网的传输效率,其中影响交流配电设备效率的损失最主要是:升压变压器的损耗和交流电气连接的线路损耗。 1.4系统发电量的衰减: 晶硅光伏组件在光照及常规大气环境中使用造成的输出功率衰减。 在光伏电站各系统设备正常运行的情况下,影响光伏电站发电量的主要因素为光伏组件表面尘埃遮挡所造成太阳辐射损失。 2、光伏电站发电效率测试原理 2.1光伏电站整体发电效率测试原理 整体发电效率E PR公式为: E PDR PR PT = —PDR为测试时间间隔(t?)内的实际发电量;—PT为测试时间间隔(t?)内的理论发电量;

理论发电量PT 公式中: i o I T I =,为光伏电站测试时间间隔(t ?)内对应STC 条件下的实际有效发电时间; -P 为光伏电站STC 条件下组件容量标称值; -I 0为STC 条件下太阳辐射总量值,Io =1000 w/m 2; -Ii 为测试时间内的总太阳辐射值。 2.2光伏电站整体效率测试(小时、日、月、年) 气象仪能够记录每小时的辐射总量,将数据传至监控中心。 2.2.1光伏电站小时效率测试 根据2.1公式,光伏电站1小时的发电效率PR H i H i PDR PR PT = 0I I i i T = —PDRi ,光伏电站1小时实际发电量,关口计量表通讯至监控系统获得; —P ,光伏电站STC 条件下光伏电站总容量标称值; —Ti ,光伏电站1小时内发电有效时间; —Ii ,1小时内最佳角度总辐射总量,气象设备采集通讯至监控系统获得; —I 0=1000w/m 2 。 2.2.2光伏电站日效率测试 根据气象设备计算的每日的辐射总量,计算每日的电站整体发电效率PR D D PDR PR PT = 0I I T = —PDR ,每日N 小时的实际发电量,关口计量表通讯至监控系统获得; —P ,光伏电站STC 条件下光伏电站总容量标称值; —T ,光伏电站每日发电有效小时数

铁路项目勘察设计

铁路项目勘察设计分为项目前期、项目实施、项目投产三个大阶段,这三个大阶段又可分为以下十一个环节:规划研究→预可行性研究→初测(初步现场测量)→可行性研究→定测(定线现场测量)→初步设计→补定测(补充定线现场测量)→施工图设计→配合施工→竣工验收→项目建成销号。其中,从规划研究到可行性研究属项目前期阶段,从定额到配合施工属项目实施阶段,从竣工验收到项目建成销号属项目投产阶段。环环相扣,本阶段必须以上阶段为依托和基础。各环节工作要点如下: 规划研究,主要对全国或者区域的路网进行系统分析研究,在总结过去建设成果的基础上,对目前存在的问题进行分析,提出未来发展方向和重点规划建设任务。这个阶段一般都是比较宏观性的研究。 预可行性研究,主要对某一条线路(或者车站、桥隧等重点工程)在区域路网中的功能定位进行分析研究,说简单点就是确定这条铁路按照什么类型建设,是客运专线、是客货共线铁路、还是重载货运铁路。在此基础上,确定线路主要技术标准(这个词大家可以去百度或者去图书馆借本铁道工程查阅),选定线路的大致走向和主要建设方案,并对项目的投资进行匡算。上级部门(业主)在组织审查预可行研究的基础上,批复项目建议书。 初测工作,主要是对工程现场的水文、气象、地质、地形、地貌、当地材料人工价格、既有铁路平纵断面等进行初步调查和测量,为项目可行性研究奠定基础。 可行性研究,主要是在初测成果的基础上,对项目建设方案进行深入选定,并对站前站后(对站前站后不太明白的同学查阅楼主前面的帖子)各个专业进行较为详尽的设计,对项目投资进行估算,并对项目的社会效益、经济效益进行测定。上级部门(业主)在组织审查可行研究的基础上,由相关单位履行土地、环保等必要前置手续后,批复项目可研报告。可研的批复是一个标志,意味着本项目经过前期充分论证和调查研究,具备建设的必要性和可行性,可以进入实施阶段。 定测(定线现场测量),顾名思义就是要定线了,设计单位将可研阶段审定的建设方案到建设现场放线,对工程现场的水文、气象、地质、地形、地貌、当地材料人工价格、既有铁路平纵断面等进行详尽调查和测量(注意对比初测阶段,一个是初步、另一个是详尽),为项目初步设计奠定基础。 初步设计,主要是在可研和定测的基础上,对站前站后各个专业的工程内容和建设方案进行较为详尽的设计工作,对项目投资进行较为准确的测算。上级部门(业主)在组织审查初步设计的基础上,批复初步设计。 补定测,即在定测的基础上,对初步设计较可研变化的段落重新进行详尽测量,为施工图设计奠定基础。 施工图设计,即在初步设计和补定测的基础上,对项目所涉及的每处工点进行详尽设计,满足现场施工需求。施工图设计是设计院勘察设计各环节最为繁琐、最耗费时间和精力的,也是最需要细心的!一旦现场按照你的图纸施工出现问题后,你的责任就难持其咎。 配合施工,设计单位派出较有经验的工程师作为设计代表到现场配合施工单位进行现场施工作业,及时协助建设单位办理变更设计等。 竣工验收,铁路项目在完成各项主要工程内容建设,并顺利进行联调联试后,国家和行业主管部门对项目进行各类验收(包含环保、工程质量等等诸多方面),合格后对铁路项目颁发相应证明。 项目建成销号,铁路项目在获得验收后,正式开通运营,面向社会大众提供客货运输服务,并运营一定阶段后,对项目各专业(主要是概算)进行归口,最终销号,即这个项目已成功完成建设。 以上就是铁路项目勘察设计的十一个主要环节。 一个铁路项目从规划研究到建成销号,短则数年,长则十余载甚至二十余载,例如著名

2021年智能铁路

1、智能铁路总体研究现状 欧阳光明(2021.03.07) (1)我国铁路发展及面临挑战 根据中国铁道部发布的《中国铁路中长期发展规划》,到2020年,为满足快速增长的旅客运输需求,将建立省会城市及大中城市间的快速客运通道,规划“四纵四横”铁路快速客运通道以及三个城际快速客运系统。其中,预计到2012年,中国将有1.3万公里高速铁路投入运营。省会城市都将通过快速客运专线连接,时速200公里以上的铁路线路将达到5万公里以上。预计到2020年,中国200公里及以上时速的高速铁路建设里程将超过1.8万公里,将占世界高速铁路总里程的一半以上。同时,中国铁路的运营里程仅占世界铁路的6%,却完成了世界铁路总运量的22%。 中国铁路目前正面临着有史以来最深刻的变革和社会经济发展所提出的越来越高、越来越多样化和越来越复杂的需求。目前和未来相当长的时期内,铁路运输系统所面临的挑战主要归结为几个方面:①在运输能力的保持与优化方面:需要提供集成化的列车运营管理系统、智能化的列车运行控制系统和智能化检测、诊断和维修系统以实现“高速度、高密度”的铁路运输。建立全国通用的铁路数据共享平台,实现铁路运输各子系统之间信息的高度共享和充分利用以及资源的优化管理。提供可靠的高速、宽带的车地高速数据接入手段,以实现铁路移动设备和固定设备间的一体化协同管理。

②在提高效率方面: 建立综合化的调度指挥系统,以实现运输、机务、电务等相关资源的综合利用,以便充分挖掘基础设施的潜力,提高调度指挥的效率和水平。提供面向局部和全国的客货运输营销决策支持体系,以增强铁路适应市场需求的能力、提高运营效率和效益。 ③在提高安全保障能力方面: 提供保障运营安全和维修效率的移动 设备和固定设备状态的实时检测、评估和维修支持的手段,以及在安全数据共享基础上的安全评估决策体系。提供完善的以状态实时检测系统为基础,以包括语音、数据、静态及动态图像传输系统为信息支持,以GPS/GIS为定位手段的具备快速响应能力的铁路防灾、救援、决策与指挥信息系统。提供基于图像识别技术的智能化平交道口监控和车站监控系统,以保障列车运行的安全和防止铁路与其它相关系统的冲突。 ④在提高服务品质方面:为旅客提供详尽的信息查询服务、客票电子交易服务及导航服务等,辅助旅客制定出行决策,以及提供相关信息在车站及车上的传输、显示等。为货主提供与货运资源相关的实时位臵、状态等信息查询服务,以满足货主对货运过程全程监督的需要。 面临这些需求和挑战,单纯依靠设备设施在速度和载重等方面的提高来提升铁路能力、效率、安全和服务已愈来愈受到限制。同时,随着运输能力瓶颈问题的逐步解决,铁路运输系统的优化和低成本运维等问题愈来愈显著。而且,客运专线已逐步成网,和既有线一起构成规模巨大的中国铁路网,网络化运营带来了信息获取共享、协同、优化和决策支持等空前复杂问题。因此,重新审视铁路发展

光伏电站发电量计算方法

光伏电站平均发电量计算方法小结 一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出与计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 光伏电站在做前期可行性研究的过程中,需要对拟建光伏电站的发电量做理论上的预测,以此来计算投资收益率,进而决定项目就是否值得建设。一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出与计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算 /估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 一、计算方法 1)国家规范规定的计算方法。 根据最新的《光伏发电站设计规范 GB50797-2012》第6 6条:发电量计算中规 疋: 1、光伏发电站发电量预测应根据站址所在地的太阳能资源情况,并考虑光伏发电站系统设计、光伏方阵布置与环境条件等各种因素后计算确定。 2、光伏发电站年平均发电量 Ep计算如下: Ep=HA< PAZX K 式中: HA为水平面太阳能年总辐照量(kW? h/m2); Ep——为上网发电量(kW?h); PAZ ――系统安装容量(kW); K ――为综合效率系数。 综合效率系数K就是考虑了各种因素影响后的修正系数,其中包括: 1)光伏组件类型修正系数; 2)光伏方阵的倾角、方位角修正系数 3)光伏发电系统可用率 ;

4)光照利用率; 5)逆变器效率 ; 6)集电线路、升压变压器损耗 ; 7)光伏组件表面污染修正系数 ; 8)光伏组件转换效率修正系数。 这种计算方法就是最全面一种 ,但就是对于综合效率系数的把握 , 对非资深光伏从业人员来讲 ,就是一个考验 ,总的来讲 ,K2 的取值在 75%-85%之间,视情况而定。 2)组件面积——辐射量计算方法 光伏发电站上网电量Ep计算如下: Ep=HA< SX K1X K2 式中: HA为倾斜面太阳能总辐照量(kW? h/m2); S――为组件面积总与(m2) K1 ——组件转换效率 ; K2 ——为系统综合效率。 综合效率系数K2就是考虑了各种因素影响后的修正系数,其中包括: 1)厂用电、线损等能量折减 交直流配电房与输电线路损失约占总发电量的3%,相应折减修正系数取为 97%。 2)逆变器折减 逆变器效率为 95%~98%。 3)工作温度损耗折减光伏电池的效率会随着其工作时的温度变化而变化。当它们的温度升高时 , 光伏组件发电效率会呈降低趋势。一般而言 , 工作温度损耗平均值为在 2、5%左右。 其她因素折减

六大铁路设计院基本情况

1. 铁一院所属建总总部西安铁道第一勘察设计院1953年1月在甘肃天水诞生,是新中国成立的第一批铁路勘测设计单位。同年3月,迁至甘肃省省会兰州市。2003年11月,从铁道部整体划入中国铁道建筑总公司。2005年12月总部迁至陕西省会西安市。半个世纪以来,铁一院完成的国家和省部级重点建设项目遍及全国26个省、市、自治区以及伊拉克、尼日利亚、坦赞等国家和地区。仅铁路累计完成各阶段研究及勘测设计40万公里,建成正线里程近20000公里,其中包括兰新铁路、青藏铁路、包兰铁路、宝中铁路等国家长大干线。同时,还进入了全国十个城市的地铁项目,先后承揽了全国10多个省市的公路项目,主持设计了在全国极具影响力的大型立交枢纽。铁一院持有国家颁发的工程勘察、工程设计、工程建设监理、工程咨询、地质灾害评估、智能化建筑和测绘等15项国家甲级资质证书;是国际咨询工程师联合会(FIDIC)会员协会正式会员;拥有国家对外经济技术合作经营权;业务范围覆盖六大设计行业;现有员工4000余人,其中高级专业技术人员900余人,获国家各类注册执业资格人员800余人;拥有中国工程院院士1名、全国工程勘察设计大师3人、享受国务院特殊津贴专家21名。近20年来,铁一院先后荣获国家和省部级优秀工程勘察、设计、优秀软件及科技进步奖250多项。1995年在全国大型综合性甲级勘察设计单位中,第一个通过覆盖工程勘察、设计,工程咨询、监理、总承包诸领域的ISO9001质量体系认证;1997年,获全国推行全面质量管理先进单位;是工商银行、建设银行AAA级信誉单位;2003年,被国家工商行政管理总局批准为国家级“守合同、重信用”企业。 2. 铁二院工总成都铁二院与2007年2月8日更名为中铁二院工程集团有限责任公司,原名铁道第二勘察设计院,成立于1952年9月。现隶属于世界企业500强、世界品牌500强的中国铁路工程集团有限公司。中铁二院属全国大型综合甲级勘察设计企业,自1992年以来始终位于全国勘察设计综合百强单位排名前列。2006年被中国勘察设计协会表彰为全国优秀勘察设计企业。现中铁二院工程集团有限责任公司持有国家甲级勘察、设计、咨询、工程总承包、工程监理、环境评价等资质证书和对外经营资格证书,设有线路、轨道、地质、路基、桥梁、水文、隧道及地下工程、站场、通信、信号、信息化、机车车辆、机械、结构、建筑、给排水、暖通、环保、电力、电气化、造价及航测等近三十个专业,依托铁路,业务拓展到公路、地铁、城市轻轨、市政工程、房地产、轮渡码头、工程总承包、工程监理、岩土工程施工等各类工程建设领域。目前是国内铁路行业勘察设计企业唯一获建设部颁发的具有公路勘察设计“四甲”资质证书 的企业。1997年获取ISO9001质量体系认证证书和英国皇家认可委员会(UKAS)颁发的“国际标准认证证书”。2003年实现了ISO9001:2000标准转换,获得中国船级社质量认证公司颁发的“质量管理体系认证书”。中铁二院现有职工四千多人。其中:全国工程设计大师1人,四川省工程设计大师1人,四川省工程勘察大师1人,教授级高级工程师54人,高级工程师815人、工程师1219人,其他各类专业技术人员1269人;省部级突出贡献专家16人,省部级学术技术带头人及后备人选34人,中铁工程总公司突出贡献专家3人、拔尖人才31人,詹天佑奖获得者6人, 中铁二院专业学术带头人100多人。现国家人事部、全国博士后管理委员会在中铁二院设有“博士后科研工作站”;中国铁路工程集团有限公司在中铁二院设有“中铁西南技术研发中心”。半个多世纪以来,中铁二院伴随着共和国前进的步伐,先后勘察设计了包括新中国第一条铁路成(都)渝(重庆)铁路在内等铁路重要干线、支线上百条,其中先后勘察设

高速铁路和城市轨道交通智能化系统应用与发展.

高速铁路和城市轨道交通智能化系统应用与发展 1、序言 2010年6月,在中国(长春)国际轨道交通与城市发展高峰论坛上,铁道部总工程师、中国工程院院士何华武介绍,今年国家将投入7000亿元加快高速铁路建设,计划新线投产4613公里。目前我国在建的高速铁路有1万公里,包括京哈、哈大、合福、京武、沪宁等多条线路。何华武还表示,目前我国投入运营的高速铁路已经达到6552营业公里。据悉,我国在今年将进一步扩大并完善铁路网布局,扩大西部路网规模,完善中东部路网结构,规划新建1万公里铁路。 预计到2020年,中国200公里及以上时速的高速铁路建设里程将超过1.8万公 里,将占世界高速铁路总里程的一半以上。 目前我国25个城市正在进行城市轨道交通的前期工作,总规划里程超过5000公里,总投资估算超过8000亿元。据了解,目前全国已开通城市轨道交通的城市有北京、上海、天津、广州、长春、大连、重庆、武汉、深圳、南京10个城市20条线,其中,北京、上海、广州三个城市近几年每年新增的线路长度都达到了30—50公里。“十五”期间,中国城市轨道交通建设投资达2000亿元。在“十一五”期间,全国特大城市的地铁和轻轨通车里程将超过1500公里,还将投资约6000亿元。据不完全统计,目前全国48个百万人口以上的特大城市中25个城市正在进行轨道交通的前期工作,总规划里程超过5000公里,总投资估算超过8000亿元。“在今后的20年内,轨道交通将始终处于高速发展时期,轨道交通建设不会减速,反而会提速,甚至现在根本不是减速的问题,而是发展太慢。” 2、高速铁路信息化数字化系统简介 高速铁路信息化数字化系统,也称高速铁路智能化系统,主要包括五个系统:通信系统、信号系统、电力系统、电气化系统和信息系统,其中前四个系统在行业内又 称“四电”系统。 1、通信系统是保障高速铁路安全、稳定、高效、舒适运营的基本设施,可满足高速铁路语音、数据和图像等综合业务通信的需要。它包括通信承载网、通信业务网和通信支撑网,是高速铁路安全运营和高效管理的信息基础平台,是能与既有铁路

光伏电站发电量的计算方法

光伏电站发电量计算方法 ①理论发电量 1)1MW屋顶光伏电站所需电池板面积一块235MW的多晶电池板面积 1.65*0.992=1.6368㎡,1MW需要1000000/235=4255.32块电池,电池板总面积 1.6368*4255.32=6965㎡ 2)年平均太阳辐射总量计算 上海倾角等于当地纬度斜面上的太阳总辐射月平均日辐照量H 由于太阳能电池组件铺设斜度正好与当地纬度相同,所以在计算辐照量时可以直接采 用表中所列数据(2月份以2 8天记)。 年平均太阳辐射总量=Σ(月平均日辐照量×当月天数) 结算结果为5 5 5 5.3 3 9 MJ/(m 2·a)。 3)理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率 =5555.339*6965*17.5% =6771263.8MJ=6771263.8*0.28KWH=1895953.86KWH =189.6万度 ②系统预估实际年发电量 太阳电池板输出的直流功率是太阳电池板的标称功率。在现场运行的太阳电池板往往 达不到标准测试条件,输出的允许偏差是5%,因此,在分析太阳电池板输出功率时 要考虑到0.9 5的影响系数。 随着光伏组件温度的升高,组f:l二输出的功率就会下降。对于晶体硅组件,当光伏组件内部的温度达到5 0-7 5℃时,它的输出功率降为额定时的8 9%,在分析太阳 电池板输出功率时要考虑到0.8 9的影响系数。 光伏组件表面灰尘的累积,会影响辐射到电池板表面的太阳辐射强度,同样会影响太 阳电池板的输出功率。据相关文献报道,此因素会对光伏组件的输出产生7%的影响,在分析太阳电池板输出功率时要考虑到0.9 3的影响系数。

光伏并网项目的效率及损耗

将各种损耗都算进来后光伏并网电站系统效率通常为多少呢? 光伏组件虽然使用寿命可达25-30年,但随着使用年限增长,组件功率会衰减,会影响发电量。另外,系统效率对发电量的影响更为重要。 1组件的衰减 1,由于破坏性因素导致的组件功率骤然衰减,破坏性因素主要指组件在焊接过程中焊接不良、封装工艺存在缺胶现象,或者由于组件在搬运、安装过程中操作不当,甚至组件在使用过程中受到冰雹的猛烈撞击而导致组件内部隐裂、电池片严重破碎等现象; 2,组件初始的光致衰减,即光伏组件的输出功率在刚开始使用的最初几天内发生较大幅度的下降,但随后趋于稳定,一般来说在2%以下; 3,组件的老化衰减,即在长期使用中出现的极缓慢的功率下降现象,每年的衰减在0.8%,25年的衰减不超过20%;25年的效率质保已经在日本和德国两家光伏公司的组件上得到证实。2012年以后国内光伏组件已经基本能够达到要求,生产光伏组件的设备及材料基本采用西德进口。 2系统效率 个人认为系统效率衰减可以不必考虑,系统效率的降低,我们可以通过设备的局部更新或者维护达到要求,就如火电站,水电站来说,不提衰减这一说法。 影响发电量的关键因素是系统效率,系统效率主要考虑的因素有:灰尘、雨水遮挡引起的效率降低、温度引起的效率降低、组件串联不匹配产生的效率降低、逆变器的功率损耗、直流交流部分线缆功率损耗、变压器功率损耗、跟踪系统的精度等等。 1)灰尘、雨水遮挡引起的效率降低 大型光伏电站一般都是地处戈壁地区,风沙较大,降水很少,考虑有管理人员人工清理方阵组件频繁度一般的情况下,采用衰减数值:8%; 2)温度引起的效率降低 太阳能电池组件会因温度变化而输出电压降低、电流增大,组件实际效率降低,发电量减少,因此,温度引起的效率降低是必须要考虑的一个重要因素,在设计时考虑温度变化引起的电压变化,并根据该变化选择组件串联数量,保证组件能在绝大部分时间内工作在最大跟踪功率范围内,考虑0.45%/K的功率变化、考虑各月辐照量计算加权平均值,可以计算得到加权平均值,因不同地域环境温度存在一定差异,对系统效率影响存在一定差异,因此考虑温度引起系统效率降低取值为3%。 3)组件串联不匹配产生的效率降低 由于生产工艺问题,导致不同组件之间功率及电流存在一定偏差,单块电池组件对系统影响不大,但光伏并网电站是由很多电池组件串并联以后组成,因组件之间功率及电流的偏差,对光伏电站的发电效率就会存在一定的影响。组件串联因为电流不一致产生的效率降低,选择该效率为2%的降低。 4)直流部分线缆功率损耗 根据设计经验,常规20MWP光伏并网发电项目使用光伏专用电缆用量约为350km,汇流箱至直流配电柜的电力电缆(一般使用规格型号为ZR-YJV22-1kV-2*70mm2)用量约为35km,经计算得直流部分的线缆损耗3%。 5)逆变器的功率损耗 目前国内生产的大功率逆变器(500kW)效率基本均达到97.5%的系统效率,并网逆变器采用无变压器型,通过双分裂变压器隔离2个并联的逆变器,逆变器内部不考虑变压器效率,即逆变器功率损耗可为97.5%,取97.5%。 6)交流线缆的功率损耗 由于光伏并网电站一般采用就地升压方式进行并网,交流线缆通常为高压电缆,该部分

光伏发电年发电量计算

以1MW装机容量为例(300KW即0.3MW),你可以自己换算下。 电力系统的装机容量是指该系统实际安装的发电机组额定有效功率的总和。 由于光伏发电必然有损耗,所以实际发电量是无法达到理论值的。 1、1MW光伏电站理论年发电量: =年平均太阳辐射总量*电池总面积*光电转换效率 =5555.339*6965*17.5% =6771263.8MJ =6771263.8*0.28 KWH =1895953.86 KWH =189.6万度 2、实际发电效率 太阳电池板输出的直流功率是太阳电池板的标称功率。在现场运行的太阳电池板往往达不到标准测试条件,输出的允许偏差是5%,因此,在分析太阳电池板输出功率时要考虑到0.9 5的影响系数。 随着光伏组件温度的升高,组f:l二输出的功率就会下降。对于晶体硅组件, 当光伏组件内部的温度达到50-75℃时,它的输出功率降为额定时的89%,在分析太阳电池板输出功率时要考虑到0.89的影响系数。 光伏组件表面灰尘的累积,会影响辐射到电池板表面的太阳辐射强度,同样会影响太阳电池板的输出功率。据相关文献报道,此因素会对光伏组件的输出产生7%

的影响,在分析太阳电池板输出功率时要考虑到0.93的影响系数。 由于太阳辐射的不均匀性,光伏组件的输出几乎不可能同时达到最大功率输出,因此光伏阵列的输出功率要低于各个组件的标称功率之和。 另外,还有光伏组件的不匹配性和板问连线损失等,这些因素影响太阳电池板输出功率的系数按0.9 计算。 并网光伏电站考虑安装角度因素折算后的效率为0.88。 所以实际发电效率为:0.9 5 * 0.8 9 * 0.9 3*0.9 5 *0.8 8 =65.7%。 3、系统实际年发电量: =理论年发电量*实际发电效率 =189.6*0.9 5 * 0.8 9 *0.9 3*0.9 5 * 0.8 8 =189.6*65.7% =124.56万度

编写铁路工程岩土工程勘察报告心得

编写铁路工程岩土工程勘察报告心得 本人写铁路工程岩土工程勘察报告心得 本人所写铁路工程岩土工程勘察报告心得 铁路工程岩土工程勘察报告是工程地质勘察的最终成果,是铁路 地基基础设计和施工的重要依据。报告是否正确反映工程地质条件和 岩土工程特点,关系到工程设计唯有和铁路施工能否安全可靠、措施 得当、经济合理。根据有关规、规程对报告的本人写的要求,在不同的 勘察阶段,报告反映的信息内容和侧重说明有所不同。现就如何本人 铁路工程岩土工程勘察报告进行如下说明:1、报告的本人制程序 项勘察任务在完成现场放点、测量、钻探、取样、原位测试、现 场地质本人录和实验室测试等前期工作的基础上,即转入资料整理工作,并着手本人写勘察调查结果。铁路工程岩土工程勘察报告本人写工 作应遵循定的程序,才能前后照应,顺当进行。不然的话,出现明显常 会出现现场本人录与实验者资料的矛盾、图表间的矛盾、图间的矛盾,改动起来费时费力,影响效率,影响质量。通常的本人制处理程序是: (1)外业和试验资料的汇集、检查和统计。此项工作应于外业结束 随后即进行。首先资讯应检查诸项资料是否齐全,特别是实验资料是 否出全,同时可本人制测定成果表、勘察工作量管理成本统计表和勘探 点(钻孔)平面位置图。 (2)对照原位测试和土工试验资料,校正现场地质本人录。这是项 很重要的工作,但往往被忽视,从而出现野外定名与实验资料相矛盾, 鉴定砂土的状态与原位测试和实验资料相矛盾。例如:野外定名为黏 土的,物理出来的塑性指数却报告应叙述工程项目、地点、类型、规模、荷载、拟采用的基础形式;工程勘察的发包单位、承包单位;勘察任 务和技术要求;勘察场地的位置、形状、大本人;钻孔的布置本人和布 置方针,孔位和孔口标高的测量方法以及测点;施工机具、仪器设备 和钻探,取样及原位测试方法;勘察的起止时间;完成的工作量和质量

分布式光伏发电项目系统效率测试方法

附件十一 光伏电站系统效率保证协议 (发包方)与(承包方)经友好协商,一致同意将以下内容作为光伏发电项目总承包合同技术协议的补充协议。 一、光伏电站系统效率要求 发包方要求光伏电站的系统效率(Performance Ratio,即PR值)≥80%。 二、光伏电站系统效率测试方法 1. 目的 光伏电站系统效率测试(PR性能测试)用于证明光伏电站的整体转换效率能够满足电站设计转换效率的要求。 本测试方法是参照《Functional test,Seven day performance test criteria and procedure》,如有不明确的地方,以《Functional test,Seven day performance test criteria and procedure》为准。 2. 最小辐照度要求 测试期间的最小辐照度要求:每15分钟记录一个数据,至少获得40个光伏阵列倾斜面的太阳辐照度采样值数据,并且所测数据不小于600瓦每平方米。如果在测试初期最小辐照度要求不能达到上述要求,应该延长测试周期直至满足最小辐照度要求,或者由合同双方来确定测试周期。 简言之,在测试周期内,至少获得40个数据,每个数据持续15分钟,并且每个数据均满足辐照度大于600瓦每平方米的要求。 3. 性能测试方 合同双方应指定一个经双方认可的性能测试方(独立第三方)来负责测试事宜。性能测试方应起草一份详细的测试方案,并至少在测试开始前30天将方案提交给业主,经业主审核同意后才能实施。性能测试方应保证测试的权威性、公正性。 4. 一般测试条件 测试应该从测试周期第一天的零点开始,到测试周期最后一天的零点结束,

智能变电站自动化系统

智能变电站自动化系统 1 智能变电站简介 智能变电站作为智能电网的物理基础,同时作为高级调度中心的信息采集和命令执行单元,是智能电网的重要组成部分。作为智能电网当中的一个重要节点,智能变电站以变电站一、二次设备为数字化对象,以高速网络通信平台为基础,通过对数字化信息进行标准化,实现站内外信息共享和互操作,并以网络数据为基础,实现测量监视、控制保护、信息管理等自动化功能的变电站。智能变电站既是下一代变电站的发展方向,又是建设智能电网的物理基础和要求。为了实现智能化电网的目标,智能变电站的研究和建设具有重要的意义。 1.1智能变电站的特点及功能 随着智能电网的提出和建立,变电站将由数字化演变为智能化,更突出“智能”的特点。智能化变电站在数字化变电站的基础之上,赋予了以下十二个“智能特征”或“智能化功能”。 1.1.1 一次设备智能化 与数字化变电站描述的一次设备智能化相比,智能变电站加大了一次设备信息化,可监测更多自身状态信息,也可通过网络获知系统及其他设备的运行状态等信息。自动化程度更高,具有比常规自动化设备更多、更复杂的自动化功能。具备互动化能力,与上级监控设备、系统及相关设备、调度及用户等及时交换信息,分布协同操作。 1.1.2 信息建模统一化 除了基于 IEC61850 标准的建模外,智能变电站能实时监测辖区电网的运行状态,自动辨识设备和网络模型,从而为控制中心提供决策依据。 1.1.3 数据采集全景化 智能变电站利用对时系统,同步区域和站内时钟,完善和标准化站内设备的静态和动态信息模型,向智能电网提供统一断面的全景数据。采用新型传感技术、同步测量技术、状态检测技术等逐步提高数字化程度,逐步实现潮流数据的精确时标,实时信息共享、支撑电网实时控制和智能调节,支撑各级电网的安全稳定运行和各类高级应用。 1.1.4 设备检修状态化 全面采集能够反映系统主设备运行的电脉冲、气体生成物、局部过热等各种特征量。智能变电站配置用于监测系统主设备的传感器,或者由智能一次设备直接提供其功能。利用 DL/T860 提供的建模方法,建立设备状态检修的信息模型,构建具备较为可靠实用的状态监测预警算法和机制、支撑状态检修实践的专家系统。 1.1.5 控制操作自动化 程序化操作。智能变电站具备程序化操作功能,除站内的一键触发,还可接收和执行监控中心、调度中心和当地后台系统发出的操作指令,自动完成相关运行方式变化要求的设备操作。程序化操作具备直观的图形界面,在站层和远端均可实现可视化的闭环控制和安全校验,且能适应不同的主接线和不同的运行方式,满足无人值班及区域监控中心站管理模式的要求。

大型光伏电站系统效率计算方法优化分析

大型光伏电站系统效率计算方法优化分析 曹晓宁康巍连乾钧 光伏产业近年来继风力发电后发展最快的行业,据不完全统计,目前全世界范围内光伏发电系统的装机容量已超过40GWp,而且在持续高速增长。近几年我国光伏产业发展速度迅猛,2010年国内光伏发电新增装机容量达到520MWp,大大的超过了2009年的228MWp,而2011年国内光伏发电新增装机容量预计达到2GWp。对于大批进入运营阶段的光伏电站,电站运行状况的检测和运行维护工作将成为研究重点。 系统效率是表征光伏电站运行性能的最终指标,对于一个投入运行的光伏电站,在电站容量和光辐照量一致的情况下,系统效率越高就代表发电量越大。因此系统效率的准确性重要,本文就系统效率的计算方法的优化进行讨论。 一、系统效率的定义 一个发电系统的年发电量衡量这个系统优劣的最直接的标准,在进行一个发电系统的设计时,都要对发电系统的年发电量进行估算,作为后期运行维护的参考标准。进行发电量的估算首先要算出并网光伏发电系统的总效率,并网光伏发电系统的总效率由太阳电池阵列的效率、逆变器的效率、交流并网效率三部分组成。 太阳电池阵列效率η1,太阳电池阵列在太阳辐射强度下,实际的直流输出功率与理论功率之比。太阳电池阵列在能量转换与传输过程中的损失包括:组件匹配损失、表面尘埃遮挡损失、光谱失配损失、温度的影响以及直流线路损失等。 逆变器转换效率η2,逆变器输出的交流电功率与直流输入功率之比。包括逆变器转换的损失、最大功率点跟踪(MPPT)精度损失等。 并网效率η3,即从逆变器输出汇流并入南区10kV变电站400V低压母线段的传输效率,其中最主要的是升压变压器的效率和交流电气连接的线路损耗。 综上,光伏电站系统的总效率为η=η1*η2*η3,在进行光伏电站的设计和设备选型时,可针对性的进行优化设计,提高光伏电站的系统效率。 二、系统效率的算法 对于一个光伏电站,进行系统效率的测算时,通常是用实际计量的发电量与理论发电量相比得到,具体如下所示。

铁路工程地质勘察

铁路工程地质勘察概要 一、铁路工程各专业所需的地质设计参数 (一)路基 1、路堤 1)一般路堤:基底土承载力小于200kP地段土的沉降计算,设计参数为e、e-p曲线 2)高路堤(粗粒土>20m,细粒土>12m) (1)填料的γ、c、φ值—稳定计算,最佳含水量—稳定分析,用于沉落加宽计算 (2)基底土的γ、c、φ值,e、e-p,e-Lgp曲线—沉降计算 3)陡坡路堤(横坡>1:1.25,即22°) (1) 填料的γ、c、φ值稳定计算 —稳定计算 (2)基底土的γ、c、φ、σ (3)支挡建筑物基底与岩土的摩擦系数f 4)浸水路堤 (1) 填料的γ、c、φ值—稳定计算 、f等 (2)防水措施所需的设计参数,如支挡的σ 2、路堑 1)土质路堑 (1)边坡土的γ、c、φ地下水位—稳定计算 (2)基底土的σ 、e、e-p,e-Lgp曲线—沉降计算 (3)边坡率 (4)支挡工程的设计参数(挡土墙、抗滑桩、锚杆等) 2)石质路堑 (1)石质边坡的γ、c、φ或φe(岩体,结构面) (2)边坡率 (3)加固工程所需的设计参数 3、不良地质地段路基 1)崩塌地段 (1)石块的弹跳高度、块度 (2)各类防护和支挡建筑所需的设计参数 ①遮挡建筑—棚洞、明洞(按隧道要求) ②支挡建筑—按支挡建筑要求 ③拦截建筑—拦石墙等 2)岩堆地段 (1)路堑边坡率 (2)路堑边坡土的γ、c、φ、σ 、f—稳定计算 (3)支挡建筑的设计参数 3)岩溶及人工洞穴地段 (1)洞穴顶板的安全厚度:完整基岩厚跨比为0.5,不完整基岩,顶板厚度>5倍洞高 (2)洞穴距路基的安全距离:坡脚距洞穴的水平距离必须满足路堤填料扩散角的要求 (3)处理工程的设计参数(视处理工程的种类而定) 4)煤矿采空区地段 (1)确定移动盆地范围 (2)在路基范围内埋深<40m,宽度>2m的坑道必须处理 5)地震地区路基

相关文档
相关文档 最新文档