文档库 最新最全的文档下载
当前位置:文档库 › 循环流化床烟气脱硫机理研究——物料平衡与脱硫效率

循环流化床烟气脱硫机理研究——物料平衡与脱硫效率

循环流化床烟气脱硫机理研究——物料平衡与脱硫效率
循环流化床烟气脱硫机理研究——物料平衡与脱硫效率

第32卷第4期辽 宁 化 工V ol.32,N o.4 2003年4月Liaoning Chemical Industry April,2003循环流化床烟气脱硫机理研究

物料平衡与脱硫效率

祁 宁,张 悦,陆诗诣,王志强

(国家电站燃烧工程技术研究中心,辽宁沈阳110034)

摘 要: 循环流化床烟气脱硫是一个开放式体系,床料随着时间的变化,其性质与化学成分在不

断的变化;在一定的运行参数范围内,经过一段时间后,床内物料达到一动态平衡;此时,床内物料各组

成成分,进、出入流化床的各组分,脱硫效率都达到平衡;由此建立一个物料平衡模型。此模型从脱硫试

验数据出发,经过合理的假设,建立一系列物料衡算式,计算结果与试验数据基本相符。本文主要对

CaO做脱硫剂进行物料平衡计算。

关 键 词: 循环流化床;烟气脱硫;物料平衡;脱硫效率

中图分类号: T Q125 文献标识码: A 文章编号: 10040935(2003)040180

02

1 前 言

目前,燃煤电站脱硫是减排大气中二氧化硫,治理环境污染的有效措施。循环流化床烟气脱硫技术是适用性广、占地面积小、脱硫效率高、运行费用低、不产生二次污染的半干法烟气脱硫方法,越来越受到能源、环保部门的重视。其中,反应系统中物料平衡的计算是该技术设计实施的基础。

2 试验基础

图1 试验装置及物料平衡简图

在国家电站燃烧工程技术研究中心的循环流化床烟气脱硫小、中试试验台的烟气脱硫试验的基础上,对所获得的数据进行整理分析,建立了物料平衡计算模型。试验台的装置流程及物料平衡简图如图1所示。

脱硫运行条件:温度为60~80℃,喷水量300 kg P h,循环灰浓度1400~2000,钙硫比1.2~1.7,处理烟气量6000~10000Nm3P h,S O2浓度为800~2500×10-6。

试验结果为脱硫效率80%~90%,钙利用率达50%以上。

3 模型建立基础

3.1 脱硫所发生的化学反应

循环流化床烟气脱硫发生以下基本化学反应:

CaO+H2O Ca(OH)2

Ca(OH)2+S O2CaS O3?1P2H O+1P2H2O

脱硫剂进入流化床,与喷入而雾化后的水形成浆滴,颗粒表面的CaO与水发生反应生成Ca

收稿日期: 2003202213

作者简介: 祁 宁(1972-),男,工程师。

(OH)

2

,同时也可能与床料,水滴相碰撞发生粘

附。烟气中的S O

2

进入循环流化床后,先是与底部浓相区的床料粒子接触。由于一些颗粒表面附

有CaO或Ca(OH)

2

,因此在物理吸附的同时,也发

生化学吸附。随着烟气的上升,S O

2

分子就会与喷入床内大水滴,浆滴以及刚刚裹上水滴或浆滴

的床料粒子相碰撞。在这个阶段,S O

2

有多种途径可能溶入不断蒸发的水滴,或与浆滴发生反应,

或与裹在床料粒子表面的浆滴反应,生成CaS O

3

?1P2H2O。随着过程的进行,水分不断蒸发,于是在颗粒表面上形成了许多气孔,这样又增大了反应物表面积,从而维持反应继续进行。直至水蒸发完毕,离开流化床,反应结束。

3.2 流化床内的动态平衡

随烟气进入系统的飞灰,循环灰和脱硫剂为进入流化床的固体物料,排尘及外排灰渣为排出系统的固体物料,在一定温度下经过一定的时间运行,进出系统的固体物料达到一稳定值,即进出系统各固体组分恒定,各运行参数亦保持不变,脱硫效率也不再随时间而变化。

入口飞灰浓度30g P Nm3,出口排尘浓度0.2g P Nm3,维持循环灰箱质量不变,在没有大颗粒固体物质生成的情况下,是系统平衡的基础。假设:

(1)化学反应均匀进行;

系统内各固体组分均匀混合,即由除尘器排尘的组成成分,灰箱内各组分均匀;

(2)从灰箱加入系统的各组分也均匀;

(3)CaO与S O2的反应瞬间完成,与环境无关,与颗粒的大小无关;

(4)循环灰箱内的固体物质假定只有飞灰中的惰性物质,反应剩余的CaO和反应生成的CaS O3?1P2H2O,不考虑其它组分。

这样,整个系统质量平衡为维持循环灰箱中质量一定,随烟气进入系统的飞灰,反应剩余的CaO,反应生成的CaS O3?1P2H2O质量和与从旋风除尘器外排尘及由循环灰箱外排灰质量和之间的差等于0。运用Visual FOETRAN语言编程进行计算,取得的结果与实际测量结果基本相符。程序结构如图2所示。

计算结果表明:在流化床内达到平衡时,脱硫效率不随时间而变化;运行一段时间(5~15h

)

图2 程序结构图

后,流化床内达到一物料平衡;之后,流化床内实际Ca P S,脱硫效率达到最大值,不再随运行时间而变化。由于脱硫剂的有效成分和脱硫剂的活性的影响,在实际运行中钙的利用率要比理论最大值有一定的差距。考察多次试验以及对脱硫剂及脱硫产物的物相分析的结果,可以看出,当Ca P S 为1.4,运行温度为70℃时,经过5~15h后,脱硫效率达到80%以上,钙的利用率为10%~15 %,与计算值符合得非常好

图3 Ca P S,

脱硫效率与时间的关系

图4 Ca P S,

脱硫效率与时间的关系

图5 Ca P S,脱硫效率与时间的关系

4 结 论

(1)在安全的最佳运行条件下,循环流化床

181

第32卷第4期 祁 宁等:循环流化床烟气脱硫机理研究物料平衡与脱硫效率

烟气脱硫系统(包括流化床反应器,循环灰箱,除尘分离器)内的固体床料就可以达到平衡;

(2)物料平衡时,循环流化床烟气脱硫系统(包括流化床反应器,循环灰箱,除尘分离器)内的各组分(循环灰,脱硫剂,脱流产物)的量都呈动态平衡,不随时间而变化;其中脱硫剂的累积,脱硫产物的累积都呈最大值,进出系统各固体组分呈现一定比例;

(3)循环流化床烟气脱硫系统(包括流化床反应器,循环灰箱,除尘分离器)内在一定运行参

数时达到物料平衡;当工况变化时,旧的平衡被破坏,只要工况达到新的稳定状态,经过一段时间的运行,重新达到另一动态平衡;

(4)此模型的计算结果给实际工业脱硫工程设计以一定参考价值。

Mechanism R esearch on CFB Flue G as Desulfurization :

Material B alance and Desulfurization E fficiency

PI Ning ,ZH ANG Yue ,LU Shi 2yi ,WANG Zhi 2qiang

Abstract :Circulating fluidized bed flue gas desulfurization was an open system ,whose materials changed in character and chemical composition with time ;In a limited range of operating parameter and after a period of time ,the material in bed reached a dynamic equi 2librium ,Thus a material equality m odel was setup.Based on the desulfurization experimental data ,and reas onable hypothesis ,the m odel set a series of material equalities.

K ey w ords :CF B ;Flue gas desulfurization ;Equilibrium ;Desulfurization efficiency

(上接第179页)年产由4.7万t 增加到5.5万t 年产品纯利润约为200万元。

4 结 论

将原有铜洗塔内件及工艺稍做改造,设置段间冷却器,使铜洗塔出口温度由25~30℃降至12

℃左右,将使吸收能力、气体净化率显著提高,吸收液消耗显著降低,即铜耗、酸耗、氨耗显著降低,延长氨合成催化剂使用寿命,提高了经济效益。而设备改造投入的费用在较短时间内便可得到收

回。

参考文献

1 赵育祥编.合成氨生产工艺[M].化学工业出版社,19982 梅安华主编.小合成氨厂工艺技术与设计手册[M].化学

工业出版社,1995

3 刘乃鸿主编.工业塔新型规整填料应用手册[M].天津大

学出版社,1993

4 Sujita A D.Hydrocarbon Proc and Pet Ref ,1961

5 吕惠生等.铜洗设备与工艺的改进[J ].化学工业与工程,

1997,14(2)

Optimization of Absorption T emperatue of Cuprammonium w ashing Tow er

LI Hong 2lin

(Liaoning Petro -chemical V ocational T echnical C ollege ,Jinzhou 121001,China )

Abstract :A method was proposed to improve the equipment and technology of cupramm onia washing according to the principle of cu 2

pramm onium washing tower ,chillers were set up between the sections ,s o the abs orption temperture of cupramm onium washing tower was optimized.The results showed that gas purity was raised and ads orption liquid consumption was reduced.K ey w ords :Cupramm onium washing tower ;Cupramm onia ;Abs orption temperature

2

81 辽 宁 化 工 2003年4月

烟气循环流化床一体化脱硫、脱硝技术

烟气循环流化床一体化脱硫、脱硝技术 摘要:利用烟气循环流化床在脱硫方面的技术已日渐成熟,但利用该装置同时 实现脱硝方面的研究在我国尚处于初级阶段。此文取石灰与粉煤灰制作的强活性 吸收剂,向里边投入氧化性M添加剂之后,将其变成拥有强活性和强氧化性的活性吸收剂,且运用烟气循环流化床和这一活性吸收剂实施一体化脱硫、脱硝的实验,以进一步研究烟气循环流化床一体化脱硫、脱硝技术。 关键词:烟气循环流化床;脱硫、脱硝技术;吸收剂 一、研究背景 我国近几年颇受雾霾天气的困扰,这种天气形成的一大因素是空气当中的 SO2与氮氧化物过多,火电厂等排出的烟气成分中这两种物质的比重就极大,纵 使浓度不算太高,但排放量太大,依然会对空气质量有很严重的影响。所以,要 加强火电厂等烟气污染企业的烟气处理,脱硫、脱硝一体化技术在这方面是强项,不但脱硫、脱硝的效率高,而且成本低,能够实现能源的循环利用,也是火电厂 等烟气污染企业的希望。 近些年,烟气循环流化床在脱硫技术方面的势头强劲,其与湿法脱硫比起来,于投入资金和维护费用两种情况下都体现出十分明显的优势,所以其在国际上的 使用越来越多。伴随新型烟气循环流化床脱硫装置的制造与引入,脱硫事业获得 了很好的成效。然而,该项技术并不涉及脱硝,导致该技术的应用前景大受影响。本文针对烟气循环床在脱硫的过程中如何脱硝进行分析,希望能够为拓展该技术 的使用范围提出有力依据。 二、实验研究 2.1一体化脱硫、脱硝实验 把流化床反应器安装于内径3000mm、高度5000mm圆筒内,于其主体设测 温处,实验中,运用SO2、NO、H2O与空气混合之后的气体仿效现实烟气,将该 气体热处理以后输入流化床反应器,由引风机提供动力,系统于负压情况下工作 应用螺旋式给料机把强活性吸收剂投入反应器里,然后对加料口打开程度予以适 度更改,可以控制吸收剂供应多少与快慢。旋风除尘器收敛经过反应过程排出来 的固态物质,这之后固态物质经过回料返回到烟气流化床。高压水泵中出现的零 划水滴基本上是自流化床下边流进去,这能针对烟气中湿度情况予以调整,系统 中进入及流出的SO2和NO两者浓度是利用烟气分析仪予以检测。 2.2制作氧化性、强活性吸收剂 氧化性、强活性吸收剂制作流程:把质量比例情况是3∶1的粉煤灰与工业石灰投入水中进行混合消化,保持于90℃上下,6个小时之后再对之进行热烘处理 使之干燥,往里边混入少许具备较高氧化能力的锰盐粉,也就是M添加剂,再行搅散,使之能够匀实分布于吸收剂表层,且出现氧化点,最后制作出可以一同脱硫、硝的强氧化性、强活性吸收剂。 2.3脱除效率确认和产物研究 将系统内烟气进口与出口处的NO与SO2浓度予以检测,这样能够对脱除成 效予以确认。利用电子显微镜对粉煤灰,强氧化性、强活性吸收剂,经过反应的 强氧化性、强活性吸收剂三者分别进行观测并记录,应用X射线能谱仪对三种物 质的表层形态予以研究,且通过化学方法对系统反应之后产生的物质予以探究, 利用锌粉还原法检测残留物质中硝酸盐的质量并予以确认。 2.4反应器固态颗粒物的浓度

双碱法脱硫物料平衡计算过程

双碱法 计算过程 标态:h Nm Q /4000030= 65℃:h m Q /4952340000273 6527331=?+= 还有约5%的水份 如果在引风机后脱硫,脱硫塔进口压力约800Pa ,出口压力约-200Pa ,如果精度高一点,考虑以上两个因素。 1、脱硫塔 (1)塔径及底面积计算: 塔内流速:取s m v /2.3= m v Q r r v vs Q 17.12 .314.33600/49532121=?==???==ππ D=2r=2.35m 即塔径为2.35米。底面积S=∏r 2=4.3m 2 塔径设定为一个整数,如2.5m (2)脱硫塔高度计算: 液气比取L/G= 4 烟气中水气含量设为8% SO2如果1400mg/m3,液气比2.5即可,当SO2在4000mg/m3时,选4 ①循环水泵流量:h m m l HG Q G L Q /1821000)08.01(495324) /(100033=-??=??= 取每台循环泵流量=Q 91m 。选100LZ A -360型渣浆泵,流量94m 3/h ,扬程22.8米, 功率30KW ,2台 ②计算循环浆液区的高度: 取循环泵8min 的流量 H 1=24.26÷4.3=5.65m

如此小炉子,不建议采用塔内循环,塔内循环自控要求高,还要测液位等,投资相应大一点。 采用塔外循环,泵的杨程选35m,管道采用碳钢即可。 ③计算洗涤反应区高度 停留时间取3秒 洗涤反应区高度H2=3.2×3=9.6m ④除雾区高度取6米 H3=6m ⑤脱硫塔总高度H=H1+H2+H3=5.65+9.6+6=21.3m 塔体直径和高度可综合考虑,直径大一点,高度可矮一点,从施工的方便程度、场地情况,周围建筑物配套情况综合考虑,可适当进行小的修正。如采用塔内循环,底部不考虑持液槽,进口管路中心线高度可设在2.5m,塔排出口设为溢流槽,自流到循环水池。塔的高度可设定在16~18m 2、物料恒算 每小时消耗99%的NaOH1.075Kg。每小时消耗85%的CaO60.585Kg。石灰浆液浓度:含固量15%,可得石灰浆液密度1.093。按半小时配置一次石灰浆液计算,每次配置石灰浆液的体积是185m3。 浆液区的体积是24.26 m3。 石灰浆液按浆液区体积的10% 的流量(即石灰浆液泵的流量为 2.4 m3/h)不间断往塔内输送浆液。石膏浆液排出泵按浆液区体积的20% 的流量(即石膏浆液排出泵的流量为4.8 m3/h)不间断往塔外输出石膏浆液。由计算可得每小时产石膏干重0.129吨。 蒸发水分量2.16 m3/h。除雾器及管道冲洗水量约为3 m3/h。补充碱液量按按浆液区体积的10% 的流量(即碱液泵的流量为 2.4 m3/h)不间断往塔内输送碱液 进塔部分:石灰浆液2.4 m3/h + 除雾器及管道冲洗水量3 m3/h + 补充碱液量2.4 m3/h 出塔部分:石膏浆液4.8m3/h +蒸发水分量2.16 m3/h

烟气循环流化床脱硫技术

大家先来看一道2017年的大气知识题: ?2017-1-P-50 50.关于循环流化床干法烟气脱硫,在正常运行条件下,以下哪些说法是正确的?【】(A)循环是指烟气循环(B)循环是指灰渣循环 (C)脱硫塔内温度越高,脱硫效率越高(D)塔内流速越低,脱硫效率越高 解析: 《教材上册(第四版)》P197,CFB-FGD借助循环流化床原理,通过脱硫剂(灰渣)的多次循环利用,增大脱硫剂与烟气的接触时间,从而提高脱硫剂的利用率,故A选项错误、B选项正确;《教材第1分册(第三版)》P759,近绝热饱和温度越低,浆液蒸发慢,液相存在时间长,脱硫剂与烟气中二氧化硫的离子反应时间长,脱硫效率高,另一方面必须保证脱硫剂到达脱硫塔出口前完全干燥,以及整个脱硫系统在露点以上安全运行,否则将引起系统黏壁堵塞和结露,这要求近绝热饱和温度大于℃,故C选项错误;塔内流速越低,接触时间长,脱硫效率越高,D选项正确。 张工培训答案:【BD】 上面这道题的“C选项”涉及到的是“CFB-FGD”设计参数对脱硫性能的影响因素,那么,现在咱们来看看《第一分册(第三版)》P759关于该部分知识点的介绍是怎么样的(如下):

再来看看《教材上册(第四版)》,P197也有关于“烟气循环流化床脱硫技术”相关知识点的介绍,但是相对于《第三版》教材来说,删除了“烟气循环流化床脱硫技术”的反应机理、主要性能设计参数及性能影响因素两个最重要的知识点,而2017年第一天下午的多选题-50题恰好就考到了,这充分说明:并不是第三版教材中删掉的内容就不考了,注册环保工程师考试的内容范围是不固定的,而且每年考试的范围比较广。 针对上述问题,笔者在张工培训注册环保工程师大气精讲班上特意补充了上述内容(如下),还请各位小伙伴们能补充到复习教材的相应位置处哦:

循环流化床脱硫效率影响因素浅谈.

循环流化床脱硫效率影响因素浅谈 1、引言 我国已经成为世界三大酸雨区之一,且我国的酸雨主要为硫酸型的。分析其主要原因是煤的不洁净燃烧所造成。控制和减少火电厂SO2的排放对于改善我国目前严峻的环境问题和实现电力行业的持续发展意义重大。我国目前火电厂燃煤中,优质低硫煤少,而高硫煤所占比重较大。所以,必须对电厂燃煤烟气中的SO2排放严格控制。烟气脱硫就显得尤为重要,烟气脱硫常用的方法有干法、半干法、湿法等。 循环流化床烟气脱硫属于半干法脱硫,以消石灰(Ca(OH)2)为脱硫剂。山西长治漳山发电公司2×300MW机组采用此法,效果良好。 2、循环流化床烟气脱硫系统的基本流程及脱硫原理 漳山发电公司循环流化床脱硫与电除尘器相结合,其基本工艺流程如图2-1所示。 烟气先进入预除尘器,预除尘器的作用是除去烟气中的大颗粒粉煤灰,收尘效率设计为85%左右。经预除尘的烟气进入脱硫塔,在位置2处喷入脱硫剂即消石灰,在位置1处进行喷水降温、增湿。烟气中的硫氧化物在脱硫塔内上升过程中与消石灰反应生成CaSO3和CaSO4,从而达到脱硫的目的。漳山发电公司的后除尘器共有四级即四个电场,其中一二电场共用一个灰斗,三电场和四电场各有一个灰斗。由于喷入脱硫塔的消石灰不可能完全反应。所以,一二电场将粉煤灰与消石灰的混合物回收参与再循环,通过回料斜槽的气动调阀控制回灰量的大小,三电场在一二电场灰量不足时也会参与循环以维持脱硫塔内的差压。四电场回收的灰中消石灰很少且活性低,所以将灰全部输走。后除尘器的收尘效率设计为99.9%,后除尘器出来的烟气经过烟囱排入大气。

半干法脱硫的基本原理是SO2和SO3与Ca(OH)2的化学反应,即: Ca(OH)2 + SO2 → CaSO3+ H2O (2-1) Ca(OH)2 + SO3 → CaSO4 + H2O (2-2) 其中,烟气中的硫氧化物以SO2为主,所以反应以2-1为主。 3、脱硫效率影响因素 如何让喷入的消石灰更加充分的与烟气中的硫氧化物反应,怎么样提高脱硫效率?这是我们要考虑的主要问题。一般情况下,其影响因素主要有温度、湿度、循环倍率、钙硫比等。下面我们结合漳山发电公司的实际应用作以简要分析。 3.1温度对脱硫效率的影响 温度是对脱硫效率影响最明显的一个因素,也最容易控制。 消石灰Ca(OH)2与二氧化硫SO2的反应是放热反应,温度高不利于反应的正向进行。如图3-1为漳山发电公司脱硫投运后的脱硫塔内的温度与脱硫率的关系曲线。 由图3-1可以看出,在烟气量,烟气中的二氧化硫SO2以及喷入脱硫塔内的消石灰等基本恒定的前提下,温度越低,脱硫率越高。所以,为了提高脱硫率我们应该尽可能降低温度。漳山发电公司根据本公司的实际情况,考虑到亚硫酸的露点温度在50~55℃之间,为了尽可能避免酸腐蚀保证设备的安全运行,将温度设定在70~75℃之间。这样既可以保证设备的安全,又可以有较高的脱硫率。 3.2湿度对脱硫效率的影响 湿度是影响脱硫效率的另一个重要因素。在其他条件不变的情况下,脱硫效率随着湿度的增大而增大。但是,当湿度增大到一定值以后,脱硫率几乎不再随着湿度的增大而变化。湿度与脱硫率的关系如图3-2所示。

烟气循环流化床(CFB-FGD)干法脱硫工艺

烟气循环流化床(CFB-FGD)干法脱硫工艺 gaojilu 发表于2006-2-20 20:40:31 工艺流程 从工艺流程图表明一个典型的 CFB-FGD 系统由吸收塔、除尘器、吸收剂制备系统、物料输送系统、喷水系统、脱硫灰输送及存储系统、电气控制系统等构成。 来自锅炉的空气预热器出来的烟气温度一般为 120~180℃左右,通过一级除尘器(当脱硫渣与粉煤灰须分别处理时),从底部进入吸收塔,在此处高温烟气与加入的吸收剂、循环脱硫灰充分预混合,进行初步的脱硫反应,然后通过吸收塔底部的文丘里管的加速,吸收剂、循环脱硫灰受到气流的冲击作用而悬浮起来,形成流化床,进行第二步充分的脱硫反应。在这一区域内流体处于激烈的湍动状态,循环流化床内的Ca/S值可达到40~50,颗粒与烟气之间具有很大的滑落速度,颗粒反应界面不断摩擦、碰撞更新,极大地强化了脱硫反应的传质与传热。 在文丘里出口扩管段设一套喷水装置,喷入的雾化水一是增湿颗粒表面,二是使烟温降至高于烟气露点20℃左右,创造了良好的脱硫反应温度,吸收剂在此与SO2充分反应,生成副产物CaSO3·1/2H2O,还与SO3、HF和HCl 反应生成相应的副产物CaSO4·1/2H2O、CaF2、CaCl2等。净化后的含尘烟气从吸收塔顶部侧向排出,然后进入脱硫除尘器(可根据需要选用布袋除尘器或电除尘器),通过引风机排入烟囱。由于排烟温度高于露点温度20℃左右,因此烟气不需要再加热,同时整个系统无须任何的防腐。 经除尘器捕集下来的固体颗粒,通过再循环系统,返回吸收塔继续反应,如此循环,少量脱硫灰渣通过物料输送至灰仓,最后通过输送设备外排。

240t循环流化床锅炉烟气脱硝脱硫除尘超低排放改造

240t/h循环流化床锅炉烟气脱硝、脱硫、除尘超低排放改造 技 术 方 案

4x240t/h循环流化床锅炉脱硫脱硝除尘超低排放改造方案 目录 公司简介 (3) 1 概述 (3) 1.1项目名称 (3) 1.2工程概况 (3) 1.3主要设计原则 (3) 2燃煤CFB锅炉烟气污染物超低排放方案 (4) 2.1总体技术方案简介 (4) 2.2脱硝系统提效方案 (4) 2.3脱硫除尘系统提效 (6) 2.4脱硫配套除尘改造技术 (7) 2.5引风机核算 (8) 3 主要设计依据 (10) 4 工程详细内容 (12) 5投资及运行费用估算 (14) 6 涂装、包装和运输 (15) 7 设计和技术文件 (17) 8 性能保证 (18) 9项目进度一览表 (20) 10 联系方式 (21)

公司简介 1概述 1.1项目名称 项目名称:XXXXXX机组超低排放改造工程 1.2工程概况 本工程为XXXX的热电机组工程。本期新建高温、高压循环流化床锅炉。不考虑扩建。同步建设脱硫和脱硝设施。机组实施烟气污染物超低排放改造,对现有的除尘、脱硫、脱硝系统进行提效,使机组烟气的主要污染物(烟尘、二氧化硫、氮氧化物)排放浓度达到燃气锅炉机组的排放标准(GB13223-2011)。 1.3主要设计原则 为了保证在满足机组安全、经济运行和污染物减排的条件,充分考虑老厂的运行管理现状,结合省环保厅要求,就电厂本期工程的主要设计原则达成了一致意见。主要设计原则包括有:1)燃煤锅炉烟气污染物污染物超低排放改造可行性研究,主要包括处理100%因气量 的除尘、脱硫和脱硝装置进行改造,同时增设臭氧氧化污染物深度脱除系统,改造后 烟囱出口烟尘排放浓度不大于10 mg/Nn3,SO2排放浓度不大于35 mg/Nn3; NO排放浓度不大于50 mg/Nn i,达到天然气燃气轮机污染物排放标准。 2)装置设计寿命为30年。系统可用率》98% 3)设备年利用小时数按7500小时考虑。 4)减排技术要求安全可靠。 5)尽量减少对原机组系统、设备、管道布置的影响。 6)改造时间合理,能够在机组停机检修期内完成改造。 7)工艺应尽可能减少噪音对环境的影响。 8)改造费用经济合理。 2燃煤CFB锅炉烟气污染物超低排放方案 2.1总体技术方案简介

循环流化床干法脱硫工艺描述

福建龙净环保循环流化床干法脱硫除尘一体化工艺描述 1.循环流化床干法脱硫系统(CFB-FGD)概述 CFB-FGD烟气循环流化床干法脱硫技术是循环流化床干法烟气脱硫技术发明人---世界著名环保公司德国鲁奇能捷斯公司(LLAG)公司具有世界先进水平的第五代循环流化床干法烟气脱硫技术(CirculatingFluidizedBedFlueGasDesulphurization,简称CFB-FGD),该技术是目前商业应用中单塔处理能力最大、脱硫综合效益最优越的一种干法烟气脱硫技术。该技术已先后在德国、奥地利、波兰、捷克、美国、爱尔兰、中国、巴西等国家得到广泛应用,最大机组业绩容量为660MW。简要介绍如下:发展历史 德国鲁奇能捷斯(LLAG)公司是世界上最早从事烟气治理设备研制和生产的企业,已有一百多年的历史(静电除尘器的除尘效率计算公式——多依奇公式,就是该公司的工程师多依奇先生发明的)。LLAG在上世纪六十年代末首先推出了循环流化床概念,此后把循环流化床概念应用到四十多个不同的工艺。LLAG在发明循环流化床锅炉的基础上,首创将循环流化床技术(CFB)应用于工业烟气脱硫,经过三十多年不断的完善和提高,目前其循环流化床干法烟气脱硫技术居于世界领先水平。 LLAG公司的循环流化床干法烟气脱硫技术(CFB-FGD)的应用业绩已达150多台套,居世界干法脱硫业绩第一位。 (90年代初,全世界还只有LLAG公司拥有循环流化床烟气脱硫技术。目前,全世界除了直接转让鲁奇能捷斯公司的烟气循环流化床技术的公司外,其它所有的烟气循环流化床脱硫技术均来自于鲁奇能捷斯公司90年代初从鲁奇公司离开的个别职工所带走的早期技术。) 2001年10月,福建龙净首家技术许可证转让LLAG公司的CFB-FGD技术;

湿法脱硫系统物料平衡计算资料

1 M M M M M 3 M M M M

湿法脱硫系统物料平衡 一、计算基础数据 (1)待处理烟气 烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry) 烟气温度:114℃ 烟气中SO2浓度:3600mg/Nm3 烟气组成: 组分分子量V ol% mg/Nm3 SO264.06 0.113 3600(6%O2) O232 7.56(dry) H2O 18.02 4.66 CO244.01 12.28(dry) N228.02 80.01(dry) 飞灰200 石灰石浓度:96.05% 二、平衡计算 (1)原烟气组成计算 组分V ol%(wet) mg/Nm3kg/h Kmol/h SO20.108 3226 (7.56%O2) 3797 59.33 O27.208 127116 3972.38 H2O 4.66 46214 2564.59 CO211.708 283909 6452.48 N276.283 1177145 42042.89 飞灰200(dry)235 合计1638416 55091.67 平均分子量(0.108×64.06+7.208×32+4.66×18.02+11.708×44.01+76.283×2 8.02)/100=29.74 平均密度 1.327kg/m3

(2)烟气量计算 1、①→②(增压风机出口→ GGH出口): 取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h×(1-0.5%)=1228324Nm3/h=1629634kg/h 泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。 温度为70℃。 组分V ol%(wet) mg/Nm3kg/h Kmol/h SO20.108 3226 (7.56%O2) 3778 59.03 O27.208 126480 3952.52 H2O 4.66 45983 2551.78 CO211.708 282489 6420.22 N276.283 1171259 41832.68 飞灰200 234 合计1630224 54816.21 2、⑥→⑦(氧化空气): 假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。 取O/S=4 需空气量=56.43×4/2/0.21=537.14kmol/h×28.86(空气分子量)=15499.60kg/h,约12000Nm3/h。 其中氧气量为537.14 kmol/h×0.21=112.80 kmol/h×32=3609.58kg/h 氮气量为537.14 kmol/h×0.79=424.34 kmol/h×28.02=11890.02kg/h。 氧化空气进口温度为20℃,进塔温度为80℃。 3、②→③(GGH出口→脱硫塔出口): 烟气蒸发水量计算: 1)假设烟气进塔温度为70℃,在塔内得到充分换热,出口温度为40℃。由物性数据及烟气中的组分,可计算出进口烟气的比热约为0.2536kcal/kg.℃,Cp (40℃) =0.2520 kcal/kg.℃。 Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃ 氧化空气进口温度为80℃,其比热约为0.2452 kcal/kg.℃,Cp(40℃)

烟气循环流化床脱硫CFB-FGD技术使用简介

烟气循环流化床脱硫CFB-FGD技术简介 1. 概况 烟气循环流化床(CFB)脱硫技术在最近几年中已有所发展,不但用户增多,而且系统的烟气处理能力也比过去增大了,达到950,000Nm3/h,用于300MW机组的烟气脱硫系统。 目前,已达到工业化应用的主要有三种流程, 它们是: 1.由德国Lurgi公司开发的烟气CFB脱硫技术; 2.由德国Wulff公司在Lurgi技术基础上进行改进后的RCFB脱硫技术; 3.由丹麦F.L.Smith公司开发的GSA烟气脱硫技术。 早在七十年代初,擅长于冶金工业工程建设的德国Lurgi公司就采用了烟气循环流化技术对炼铝设备的尾气进行处理。八十年代中期,由于开始对环境质量的严格控制以及政府的有关法规的强行规定,德国的动力工业对烟气脱硫设备有了巨大的需求。Lurgi公司在原来用于炼铝尾气处理的技术的基础上开发了一种新的适用于锅炉和其它燃烧设备的干法烟气脱硫工艺,即烟气循环流化床脱硫工艺。 这种工艺以循环流化床原理为基础,通过吸收剂的多次再循环,使吸收剂与烟气接触时间增加,一般可达30分钟以上,从而大大提高了吸收剂的利用效率。这种工艺不但具有干法工艺的许多优点,如流程简单、占地少、投资低以及脱硫副产品呈干态,因而易于处理或综合利用,而且能在很低的钙硫比的情况下(Ca/S=1.1-1.2)达到与湿法工艺相近的脱硫效率(95%)。 德国Wulff公司是一个成立较晚的设计和建造烟气CFB脱硫工程的小型企业。它的创始人R. Graf原是Lurgi公司在烟气CFB脱硫技术开发方面的主要负责人。脱离Lurgi公司后自建了Wulff公司,专门从事烟气CFB脱硫技术的开发工作,在Lurgi技术的基础上开发研制了一种叫做回流式烟气循环流化床的烟气CFB脱硫技术,对烟气CFB脱硫技术作了较大的改进,使之更加适用于动力工业(详见后)。 F.L.Smith公司是丹麦最大的工业企业,在水泥工业及散装物料输送机械制造方面享有很高的声誉。该公司的子公司F.L.Smith Mill 专门从事环保设备设计和环境工程建设,在静电除尘器及烟气脱硫方面有不少业绩。它们独自开发的

循环流化床锅炉烟气脱硫项目技术方案

循环流化床锅炉烟气脱硫项目技术文件

一、项目简介 1.1.工程概述 贵公司现有1台75t/h锅炉因燃料中含有一定的硫份,在高温燃烧过程中产生的粉尘及SO2会对周围的大气环境造成一定的污染,根据国家环保排放标准和当地环保部门的要求进行进一步除尘脱硫,确保锅炉尾部排放粉尘及SO2按照国家和当地环保排放要求达标排放,并按照环保总量控制要求在确保达标的同时进一步削减粉尘及SO2的排放量。 本期工程为锅炉烟气治理工程除尘脱硫系统的设计、制造、安装及运行调试,针对业主方的现场特点,结合我司的工艺技术和工程经验,从工艺技术、安全运行、排放指标、经济指标等各方面进行了细致的论证,提出以双碱法湿法脱硫工艺处理,新建使用喷淋雾化型脱硫塔(GCT-75),另外方案中还包含脱硫剂制备、脱硫循环水系统、再生、沉淀及脱硫渣处理系统等,供业主方决策参考。 本技术方案在给定设计条件下, SO2排放浓度≤300mg/m3的标准进行整体设计。技术方案包括脱硫系统正常运行所必须具备的工艺系统设计、设备选型、采购或制造、运输、土建(构)筑物设计、施工及全过程的技术指导、安装督导、调试督导、试运行、考核验收、人员培训和最终的交付投产。 1.2.国脱硫技术现状 我国电力部门在七十年代就开始在电厂进行烟气脱硫的研究工作,先后进行了亚钠循环法(W-L法)、含碘活性炭吸附法、石灰石-石膏法等半工业性试验或现场中间试验研究工作。进入八十年代以来,电力工业部门开展了一些较大规模的烟气脱硫研究开发工作,同时,近年来我国也加入了烟气脱硫技术的引进力度。目前国主要的脱硫工艺有:(1)石灰石-石膏湿法烟气脱硫工艺 石灰石(石灰)-石膏湿法烟气脱硫工艺主要是采用廉价易得的石灰石或石灰作为脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。在吸收塔,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被吸收脱除,最终产物为石膏。脱硫后的烟气依次经过除雾器除去雾滴,加热器加

火电厂烟气脱硫工程技术规范 烟气循环流化床法

附件3 火电厂烟气脱硫工程技术规范 烟气循环流化床法 (征求意见稿) 编制说明 《火电厂烟气脱硫工程技术规范烟气循环流化床法》编制组 2015年11月 —39—

项目名称:火电厂烟气脱硫工程技术规范烟气循环流化床法 项目统一编号:2013-GF-010 承担单位:中国环境保护产业协会、福建龙净环保股份有限公司、武汉凯迪电力股份有限公司 编制组主要成员:燕中凯、刘媛、陈树发、彭溶、韩旭、詹威全、王建春、吴孝敏、刘碧莲、赵红 标准所技术管理负责人:姚芝茂 标准处项目经办人:范真真 —40—

目录 1任务来源 (42) 2规范修订的必要性 (42) 3主要工作过程 (44) 4国内外相关标准研究 (45) 5同类工程现状调研 (46) 6标准主要技术内容及说明 (66) 7标准实施的环境效益及技术经济分析 (77) 8标准实施建议 (78) —41—

1任务来源 为适应国家环境保护工作需要,2012年环境保护部《关于开展2013年度环境技术管理项目承担单位的通知》(环科函〔2012〕59号)下达《火电厂烟气脱硫工程技术规范烟气循环流化床法》(HJ/T178-2005)的修订任务,项目统一编号2013-GF-010。 参编单位有中国环境保护产业协会、福建龙净环保股份有限公司、武汉凯迪电力股份有限公司。 2规范修订的必要性 我国是一个“富煤、缺油、少气”的国家,长期以来,一次能源中的70%左右依赖于煤炭。近几年,虽然我国加大了绿色能源的替代建设工作力度,但能源结构决定了我国一次能源主要依赖于煤炭的局面在短期内还很难得到改善,煤烟型污染在未来相当长的一段时间内仍将是我国工业烟气的主要特点。我国煤炭消耗量从2000年的14.9亿吨,增加到了2014年的35.1亿吨,增长了2.4倍。其中电力行业仍然是煤炭消耗的大户。2014年燃煤发电量达到4.23万亿千瓦时,占全国发电量的74.9%,发电供热燃煤超过19亿吨。在污染物排放方面,约70%的烟尘、85%的二氧化硫及67%的氮氧化物排放都来自于燃煤,同时燃煤产生的SO3、汞等重金属污染物给环境和人类健康所带来的危害也是不可估量的。 目前,我国政府已高度重视大气污染防治工作,国务院多次转发大气污染控制通知。2013年9月国务院发布了《大气污染防治行动计划》,进一步提出了燃煤电厂脱硫、脱硝、除尘改造工程建设。所有燃煤电厂都要安装脱硫设施,每小时20蒸吨及以上的燃煤锅炉要实施脱硫。2013年,《火电厂大气污染物排放标准》(GB13223-2011)的实施,将烟尘、SO2、NOx的排放限值降至20、50、100 mg/m3,还新增了汞及其化合物的排放限值(0.03mg/m3)。2015年底,环境保护部、国家发展和改革委员会、国家能源局联合发布《全面实施燃煤电厂超低排放和节能改造工作方案》,全面实施燃煤电厂超低排放要求,将烟尘、SO2、NOx 的排放限值再次降低至10、35、50mg/m3。 烟气循环流化床法是可以与湿式石灰石/石灰-石膏法在大型机组上应用上进行比选的一种干法/半干法脱硫工艺。相关数据表明,2012年全国投运燃煤机组 —42—

循环流化床烟气脱硫工艺设计 资料

1、前言 循环流化床燃烧是指炉膛内高速气流与所携带的稠密悬浮颗粒充分接触,同时大量高温颗粒从烟气中分离后重新送回炉膛的燃烧过程。循环流化床锅炉的脱硫是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,与石油焦中的硫份反应生成硫酸钙,达到脱硫的目的。较低的炉床温度(850℃~900℃),燃料适应性强,特别适合较高含硫燃料,脱硫率可达80%~95%,使清洁燃烧成为可能。 2、循环流化床内燃烧过程 石油焦颗粒在循环流化床的燃烧是流化床锅炉内所发生的最基本而又最为重要的过程。当焦粒进入循环流化床后,一般会发生如下过程:①颗粒在高温床料内加热并干燥;②热解及挥发份燃烧;③颗粒膨胀及一级破碎;④焦粒燃烧伴随二级破碎和磨损。符合一定粒径要求的焦粒在循环流化床锅炉内受流体动力作用,被存留在炉膛内重复循环的850℃~900℃的高温床料强烈掺混和加热,然后发生燃烧。受一次风的流化作用,炉内床料随之流化,并充斥于整个炉膛空间。床料密度沿床高呈梯度分布,上部为稀相区,下部为密相区,中间为过渡区。上部稀相区内的颗粒在炉膛出口,被烟气携带进入旋风分离器,较大颗粒的物料被分离下来,经回料腿及J阀重新回入炉膛继续循环燃烧,此谓外循环;细颗粒的物料随烟气离开旋风分离器,经尾部烟道换热吸受热量后,进入电除尘器除尘,然后排入烟囱,尘灰称为飞灰。炉膛内中心区物料受一次风的流化携带,气固两相向上流动;密相区内的物料颗粒在气流作用下,沿炉膛四壁呈环形分布,并沿壁面向下流动,上升区与下降区之间存在着强烈的固体粒子横向迁移和波动卷吸,形成了循环率很高的内循环。物料内、外循环系统增加了燃料颗粒在炉膛内的停留时间,使燃料可以反复燃烧,直至燃尽。循环流化床锅炉内的物料参与了外循环和内循环两种循环运动,整个燃烧过程和脱硫过程就是在这两种形式的循环运动的动态过程中逐步完成的。 3、循环流化床内脱硫机理 循环流化床锅炉脱硫是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,石油焦和石灰石自锅炉燃烧室下部送入,一次风从布风板下部送入,二次风从燃烧室中部送入。石灰石在850℃~900℃床温下,受热分解为氧化钙和二氧化碳。气流使石油焦、石灰石颗粒在燃烧室内强烈扰动形成流化床,燃料烟气中的SO2与氧化钙接触发生化学反应被脱除。为了提高吸收剂的利用率,将未反应的氧化钙、脱硫产物及飞灰等送回燃烧室参与循环利用。按设计,II电站CFB锅炉钙硫比达到1.97时,脱硫率可达90%以上。 高硫石油焦在加热到400℃就开始有硫份析出,经历下列途径逐步形成SO2,即硫的燃烧过程: S--→H2S--→HS--→SO--→SO2 硫的燃烧需要一定的时间,石油焦床内停留时间将影响硫的燃烧完全程度,其随时间同步增长。同时床温对硫的燃烧影响很大,硫的燃烧速率随床温升高呈阶梯增高。 以石灰石为脱硫剂在炉膛内受高温煅烧发生分解反应: △CaCO3--→CaO + CO2 - 179 MJ/mol 上式是吸热反应。由于在反应过程中分子尺寸变小,石灰石颗粒变成具有多孔结构的CaO颗粒,在有富余氧气时与床内石油焦的析出硫分燃烧生成的SO2气体发生硫酸盐化反应:CaO + SO2 + 1/2 O2--→CaSO4 + 500 MJ/mol 使Ca0变成CaSO4即达到脱硫目的。但是生成的CaSO4密度较低,容易堵塞石灰石的细孔,使SO2分子不能深人到多孔性石灰石颗粒内部,所以,Ca0在脱硫反应中只能大部分被利用。 4:影响脱硫的因素与清洁燃烧控制 影响脱硫的因素有许多,一部分属于设计方面的因素,诸如给料方式的不同会有不同的脱硫效果;炉膛的高度影响脱硫时间等。另一部分属于运行方面的因素,如Ca/S摩尔比、床温、物料滞留时间、石灰石粒度、石灰石脱硫活性等,本文仅从运行角度,对II电站CFB锅炉的脱硫工艺进行研究分析。 4.1:Ca/S摩尔比的影响 当Ca/S比增加时,脱硫效率提高。由于II电站CFB锅炉燃烧用高硫石油焦的硫含量基本上为4%~4.5%,

最新烟气脱硫 设计工艺实例

烟气脱硫工艺设计说明书

目录 1 概述 1.1 工程概况 1.2 脱硫岛的设计范围 2 设计基础数据及主要设计原则 2.1 设计基础数据 2.2 吸收剂分析资料 2.3 脱硫用水资料 2.4 主要工艺设计原则 2.5 脱硫工艺部分设计接口 3 吸收剂供应和脱硫副产物处置 3.1 吸收剂来源 3.2 脱硫副产物 4 工艺系统及主要设备 4.1 工艺系统拟定 4.2 吸收剂系统 4.3 烟气系统 4.4 SO2吸收系统 4.5 排放系统 4.6 石膏脱水系统 4.7 工艺水系统

4.8 压缩空气系统 4.9 物料平衡计算(二台锅炉BMCR工况时烟气量) 4.10 主要设备和设施选择 5 起吊与检修 6 保温油漆及防腐 6.1 需要保温、油漆的设备、管道及设计原则 6.2 防腐 7 脱硫装置的布置 8 劳动安全及职业卫生 8.1 脱硫工艺过程主要危险因素分析 8.2 防尘、防毒、防化学伤害 8.3 防机械伤害及高处坠落 8.4 防噪声、防震动 8.5 检修安全措施 8.6 场地安全措施 9 烟气脱硫工艺系统运行方式 9.1 FGD启动 9.2 FGD系统整组正常停运 9.3 FGD紧急停运 9.4 FGD装置负荷调整 9.5 FGD停运措施

1 概述 1.1 工程概况 锅炉:华西能源工业股份有限公司生产的超高压自然循环汽包炉,单炉膛,一次中间再热,固态排渣,受热面采用全悬吊方式,炉架采用全钢结构、双排布置。 汽轮机:东方电气集团东方汽轮机有限公司公司生产的超高压参数、一次中间再热、单轴、双缸双排汽、6级回热、直接空冷抽汽凝汽式汽轮机。 发电机:山东济南发电设备厂生产的空冷却、静止可控硅励磁发电机。 本期工程需同步建设烟气脱硫装置,因有大量石灰石资源,且生产电石亦需要大量石灰石,故暂定采用石灰石—石膏湿法烟气脱硫装置(以下简称FGD),不设GGH,脱硫装置效率不低于95%,设备可用率不低于95%,按照《GB13223-2003 火电厂大气污染物排放标准》执行。 本章所述采用的环境保护标准、脱硫方式、脱硫效率等环保措施均以批复的环境影响报告书为准。 1.2 脱硫岛的设计范围 本工程脱硫岛设计范围包括:烟气脱硫工程需要的工艺、电气、控制、供水、消防、建筑、结构、暖通等,本卷册说明中包括的内容为工艺、起吊检修、保温防腐方面内容,其它见相关专业说明书中内容。脱

脱硫系统常用计算公式

1) 由于烟气设计资料,常常会以不同的基准重复出现多次,(如:干基湿基,标态实际态,实际O2 等),开始计算前一定要核 算统一,如出现矛盾,必须找出正确的一组数据,避免原始数据代错。 常用折算公式如下: 烟气量(dry)=烟气量(wet) >(1-烟气含水量%) 实际态烟气量=标态烟气量>气压修正系数x温度修正系数 烟气量(6%02) = ( 21-烟气含氧量)/ ( 21 -6%) S02 浓度(6%02 ) = ( 21 - 6%) / (21 -烟气含氧量) S02 浓度( mg/Nm3 ) =S02 浓度( ppm) x2.857 物料平衡计算 1 )吸收塔出口烟气量G2 G2= (G1 x (1 - mw1) X(P2/(P2-Pw2)) (X —mw2 )+ G3X (1- 0.21/K) ) >(P2/(P2-Pw2)) G1: 吸收塔入口烟气流量 mw1: 入口烟气含湿率 P2:烟气压力 Pw2 :饱和烟气的水蒸气分压 说明: Pw2 为绝热饱和温度下的水蒸气分压,该值是根据热平衡计算的反应温度,由烟气湿度表查得。(计算步骤见热平衡计 算) 2) 氧化空气量的计算 根据经验,当烟气中含氧量为6%以上时,在吸收塔喷淋区域的氧化率为50 - 60 %。采用氧枪式氧化分布技术,在浆池中氧化 空气利用率n 02=25-30%,因此,浆池内的需要的理论氧气量为: S=(G1 x q1-G2 x q2) x(1-0.6)/2/22.41 所需空气流量Qreq Qreq=S x22.4/(0.21 0.x3) G3= Qreq >K G3:实际空气供应量 K :根据浆液溶解盐的多少根据经验来确定,一般在 2.0-3左右。 3) 石灰石消耗量计算 W1=100x qs xns W1: 石灰石消耗量 qs: :入口S02 流量 n S兑硫效率 4) 吸收塔排出的石膏浆液量计算 W2=172xx qs xn s/Ss W2:石膏浆液量 Ss石膏浆液固含量 5) 脱水石膏产量的计算 W3=172xx qs xn s/Sg W3: 石膏浆液量 Sg:脱水石膏固含量(1-石膏含水量) 6) 滤液水量的计算 W4=W3-W2 W3: 滤液水量 7) 工艺水消耗量的计算 W5=18x (G4-G1-G3 x(1-0.21/K))+W3 (1x-Sg)+36x qs x n+W s WT

脱硫计算公式比较全

湿法脱硫系统物料平衡 一、计算基础数据 (1)待处理烟气 烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry) 烟气温度:114℃ 烟气中SO2浓度:3600mg/Nm3 烟气组成: 组分分子量V ol% mg/Nm3 SO264.06 0.113 3600(6%O2) O232 7.56(dry) H2O 18.02 4.66 CO244.01 12.28(dry) N228.02 80.01(dry) 飞灰200 石灰石浓度:96.05% 二、平衡计算 (1)原烟气组成计算 组分V ol%(wet) mg/Nm3kg/h Kmol/h SO20.108 3226 (7.56%O2) 3797 59.33 O27.208 127116 3972.38 H2O 4.66 46214 2564.59 CO211.708 283909 6452.48 N276.283 1177145 42042.89 飞灰200(dry)235 合计1638416 55091.67 平均分子量(0.108×64.06+7.208×32+4.66×18.02+11.708×44.01+76.283×2 8.02)/100=29.74 平均密度 1.327kg/m3

(2)烟气量计算 1、①→②(增压风机出口→ GGH出口): 取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h×(1-0.5%)=1228324Nm3/h=1629634kg/h 泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。 温度为70℃。 组分V ol%(wet) mg/Nm3kg/h Kmol/h SO20.108 3226 (7.56%O2) 3778 59.03 O27.208 126480 3952.52 H2O 4.66 45983 2551.78 CO211.708 282489 6420.22 N276.283 1171259 41832.68 飞灰200 234 合计1630224 54816.21 2、⑥→⑦(氧化空气): 假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。 取O/S=4 需空气量=56.43×4/2/0.21=537.14kmol/h×28.86(空气分子量)=15499.60kg/h,约12000Nm3/h。 其中氧气量为537.14 kmol/h×0.21=112.80 kmol/h×32=3609.58kg/h 氮气量为537.14 kmol/h×0.79=424.34 kmol/h×28.02=11890.02kg/h。 氧化空气进口温度为20℃,进塔温度为80℃。 3、②→③(GGH出口→脱硫塔出口): 烟气蒸发水量计算: 1)假设烟气进塔温度为70℃,在塔内得到充分换热,出口温度为40℃。由物性数据及烟气中的组分,可计算出进口烟气的比热约为0.2536kcal/kg.℃,Cp (40℃) =0.2520 kcal/kg.℃。 Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃ 氧化空气进口温度为80℃,其比热约为0.2452 kcal/kg.℃,Cp(40℃)

循环流化床干法脱硫工艺描述-龙净

附件一附件一 循环流化床干法脱硫工艺描述循环流化床干法脱硫工艺描述 1. 循环流化床干法脱硫循环流化床干法脱硫系统系统系统((CFB -FGD )概述 CFB -FGD 烟气循环流化床干法脱硫技术是循环流化床干法烟气脱硫技术发明人---世界著名环保公司德国鲁奇能德国鲁奇能捷斯捷斯捷斯公司公司公司((LLAG )公司具有世界先进水平的第五代循环流化床干法烟气脱硫技术(CirculatingFluidizedBedFlueGasDesulphurization ,简称CFB-FGD ),该技术是目前商业应用中单塔处理能力最大、脱硫综合效益最优越的一种干法烟气脱硫技术。该技术已先后在德国、奥地利、波兰、捷克、美国、爱尔兰、中国、巴西等国家得到广泛应用,最大机组业绩容量为660MW 。简要介绍如下: 发展历史 德国鲁奇能捷斯德国鲁奇能捷斯((LLAG )公司是世界上最早从事烟气治理设备研制和生产的企业,已有一百多年的历史(静电除尘器的除尘效率计算公式——多依奇公式,就是该公司的工程师多依奇先生发明的)。LLAG 在上世纪六十年代末首先推出了循环流化床概念,此后把循环流化床概念应用到四十多个不同的工艺。LLAG 在发明循环流化床锅炉的基础上,首创将循环流化床技术(CFB )应用于工业烟气脱硫,经过三十多年不断的完善和提高,目前其循环流化床干法烟气脱硫技术居于世界领先水平。 LLAG 公司的循环流化床干法烟气脱硫技术(CFB-FGD )的应用业绩已达150多台套,居世界干法脱硫业绩第一位。 (90年代初,全世界还只有LLAG 公司拥有循环流化床烟气脱硫技术。目前,全世界除了直接转让鲁奇能捷斯公司的烟气循环流化床技术的公司外,其它所有的烟气循环流化床脱硫技术均来自于鲁奇能捷斯公司90年代初从鲁奇公司离开的个别职工所带走的早期技术。) 2001年10月,福建龙净首家技术许可证转让LLAG 公司的CFB-FGD 技术;

湿法脱硫系统物料平衡计算资料

1 M M M M M 3 M M M M

湿法脱硫系统物料平衡 一、计算基础数据 (1)待处理烟气 烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry) 烟气温度:114℃ 烟气中SO2浓度:3600mg/Nm3 烟气组成: 组分分子量Vol% mg/Nm3 SO264.06 0.113 3600(6%O2) O232 7.56(dry) H2O 18.02 4.66 CO244.01 12.28(dry) N228.02 80.01(dry) 飞灰200 石灰石浓度:96.05% 二、平衡计算 (1)原烟气组成计算 组分Vol%(wet) mg/Nm3kg/h Kmol/h SO20.108 3226 (7.56%O2) 3797 59.33 O27.208 127116 3972.38 H2O 4.66 46214 2564.59 CO211.708 283909 6452.48 N276.283 1177145 42042.89 飞灰200(dry)235 合计1638416 55091.67 平均分子量(0.108×64.06+7.208×32+4.66×18.02+11.708×44.01+76.283×2 8.02)/100=29.74 平均密度 1.327kg/m3

(2)烟气量计算 1、①→②(增压风机出口→ GGH出口): 取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h× (1-0.5%)=1228324Nm3/h=1629634kg/h 泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。 温度为70℃。 组分Vol%(wet) mg/Nm3kg/h Kmol/h SO20.108 3226 (7.56%O2) 3778 59.03 O27.208 126480 3952.52 H2O 4.66 45983 2551.78 CO211.708 282489 6420.22 N276.283 1171259 41832.68 飞灰200 234 合计1630224 54816.21 2、⑥→⑦(氧化空气): 假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。 取O/S=4 需空气量=56.43×4/2/0.21=537.14kmol/h× 28.86(空气分子量) =15499.60kg/h,约12000Nm3/h。 其中氧气量为537.14 kmol/h×0.21=112.80 kmol/h× 32=3609.58kg/h 氮气量为537.14 kmol/h×0.79=424.34 kmol/h× 28.02=11890.02kg/h。 氧化空气进口温度为20℃,进塔温度为80℃。 3、②→③(GGH出口→脱硫塔出口): 烟气蒸发水量计算: 1)假设烟气进塔温度为70℃,在塔内得到充分换热,出口温度为40℃。由物性数据及烟气中的组分,可计算出进口烟气的比热约为0.2536kcal/kg.℃,Cp (40℃)=0.2520 kcal/kg.℃。 Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃ 氧化空气进口温度为80℃,其比热约为0.2452 kcal/kg.℃,Cp(40℃)

相关文档
相关文档 最新文档