文档库 最新最全的文档下载
当前位置:文档库 › 兰州大学运筹学——线性规划在管理中的应用 课后习题题解

兰州大学运筹学——线性规划在管理中的应用 课后习题题解

兰州大学运筹学——线性规划在管理中的应用 课后习题题解
兰州大学运筹学——线性规划在管理中的应用 课后习题题解

第五章线性规划在管理中的应用

5.1 某企业停止了生产一些已经不再获利的产品,这样就产生了一部分剩余生产力。管理层考虑将这些剩余生产力用于新产品Ⅰ、Ⅱ、Ⅲ的生产。可用的机器设备是限制新产品产量的主要因素,具体数据如下表:

量,使得公司的利润最大化。

1、判别问题的线性规划数学模型类型。

2、描述该问题要作出决策的目标、决策的限制条件以及决策的总绩效测度。

3、建立该问题的线性规划数学模型。

4、用线性规划求解模型进行求解。

5、对求得的结果进行灵敏度分析(分别对最优解、最优值、相差值、松驰/剩余量、对偶价格、目标函数变量系数和常数项的变化范围进行详细分析)。

6、若销售部门表示,新产品Ⅰ、Ⅱ生产多少就能销售多少,而产品Ⅲ最少销售18件,请重新完成本题的1-5。

解:首先将上述问题编制成如下关系表格:

1、本问题的约束条件都是机器设备,所以是资源分配型的线性规划数学模型。

2、该问题的决策目标是公司总的利润最大化,

分别设x1、x2、x3为新产品Ⅰ、新产品Ⅱ、新产品Ⅲ的产量,

则总利润为:

0.5x1+ 0.2x2+ 0.25x3

决策的限制条件:

8x1+ 4x2+ 6x3≤500 铣床限制条件

4x1+ 3x2≤350 车床限制条件

3x1+ x3≤150 磨床限制条件

即总绩效测试(目标函数)为:

max z= 0.5x1+ 0.2x2+ 0.25x3

3、本问题的线性规划数学模型

max z= 0.5x1+ 0.2x2+ 0.25x3

S.T.8x1+ 4x2+ 6x3≤500

4x1+ 3x2≤350

3x1+ x3≤150

x1≥0、x2≥0、x3≥0

4、用Excel线性规划求解模板求解

即:最优解(50,25,0),最优值:30元。

5、

变量最优解相差值

x1 50 0

x2 25 0

x3 0 .083

约束松弛/剩余变量对偶价格

1 0 .05

2 75 0

3 0 .033

目标函数系数范围 :

变量下限当前值上限

x1 .4 .5 无上限 x2 .1 .2 .25

x3 无下限 .25 .333

常数项数范围 :

约束下限当前值上限

1 400 500 600

2 275 350 无上限

3 37.5 150 187.5

(1)最优生产方案:

新产品Ⅰ生产50件、新产品Ⅱ生产25件、新产品Ⅲ不安排。最大利润值为30元。

(2)x3 的相差值是0.083意味着,目前新产品Ⅲ不安排生产,是因为新产品Ⅲ的利润太低,若要使新产品Ⅲ值得生产,需要将当前新产品Ⅲ利润0.25元/件,提高到0.333元/件。

(3)三个约束的松弛/剩余变量0,75,0,表明铣床和磨床的可用工时已经用完,而车床的可用工时还剩余75个工时;

三个对偶价格0.05,0,0.033表明三种机床每增加一个工时可使公司增加的总利润额。

(4)目标函数系数范围

表明新产品Ⅰ的利润在0.4元/件以上,新产品Ⅱ的利润在0.1到0.25之间,新产品Ⅲ的利润在0.333以下,上述的最佳方案不变。

(5)常数项范围

表明铣床的可用条件在400到600工时之间、车铣床的可用条件在275工时以上、磨铣床的可用条件在37.5到187.5工时之间。各自每增加一个工时对总利润的贡献0.05元,0元,0.033元不变。

6、若产品Ⅲ最少销售18件,原数学模型就要修改,即增加一个约束条件:

x3≥18

因此问题的数学模型就是:

max z= 0.5x1+ 0.2x2+ 0.25x3

S.T.8x1+ 4x2+ 6x3≤500

4x1+ 3x2≤350

3x1+ x3≤150

x3≥18

x1≥0、x2≥0、x3≥0

这是一个混合型的线性规划问题。

代入求解模板得结果如下:

即:最优解(44,10,18),最优值:28.5元。

灵敏度报告:

可变单元格

单元格名字终值递减成本目标式系数允许的增量允许的减量

$C$34 x1 44 0 0.5 1E+30 0.1

$D$34 x2 10 0 0.2 0.05 0.1

$E$34 x3 18 0 0.25 0.083333333 1E+30

约束

单元格名字终值阴影价格约束限制值允许的增量允许的减量

$R$11 实际值500 0.05 500 192 40

$R$12 实际值206 0 350 1E+30 144

$R$13 实际值150 0.033333333 150 15 132

$R$30 实际值0 0 0 1E+30 0

$R$14 实际值18 -0.083333333 18 12 18

即:目标函数最优值为 : 28.5

变量最优解相差值

x1 44 0

x2 10 0

x3 18 0

约束松弛/剩余变量对偶价格

1 0 .05

2 144 0

3 0 .033

4 0 -.083

目标函数系数范围 :

变量下限当前值上限

x1 .4 .5 无上限

x2 .1 .2 .25

x3 无下限 .25 .333

常数项数范围 :

约束下限当前值上限

1 460 500 692

2 206 350 无上限

3 18 150 165

4 0 18 30

(1)最优生产方案:

新产品Ⅰ生产44件、新产品Ⅱ生产10件、新产品Ⅲ生产18件。最大利润值为28.5元。

(2)因为最优解的三个变量都不为0,所以三个相关值都为0。

(3)四个约束的松弛/剩余变量0,144,0,0,表明铣床和磨床的可用工时已经用完,新产品Ⅲ的产量也刚好达到最低限制18件,而车床的可用工时还剩余144个工时;

四个对偶价格0.05,0,0.033,-0.083表明三种机床每增加一个工时可使公司增加的总利润额,第四个对偶价格-0.083表明新产品Ⅲ的产量最低限再多规定一件,总的利润将减少0.083元。

(4)目标函数系数范围

表明新产品Ⅰ的利润在0.4元/件以上,新产品Ⅱ的利润在0.1到0.25之间,新产品Ⅲ的利润在0.333以下,上述的最佳方案不变。

(5)常数项范围

表明铣床的可用条件在460到692工时之间、车铣床的可用条件在206工时以上、磨

铣床的可用条件在18到165工时之间、新产品Ⅲ产量限制在30件以内。各自每增加一个工

时对总利润的贡献0.05元,0元,0.033元,-.083元不变。

5.2 某铜厂轧制的薄铜板每卷宽度为100cm,现在要在宽度上进行切割以完成以下订货任务:32cm的75卷,28cm的50卷,22cm的110卷,其长度都是一样的。问应如何切割可使所用的原铜板为最少?

解:本问题是一个套材下料问题,先用穷举法找到所有可能切割的方式:

表中列出了所有可能的10种切割方法

设上述每种切割方法数量为x i(i=1,2…..10)卷

2、确定目标函数

本问题的目标是使所用的原铜板为最少,而所用原铜板数量为:

x1+x2+x3+x4+x5+x6+x7+x8+x9+x10

因此,目标函数为:

min f=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10

3、确定约束条件

3x1+2x2+2x3+x4+x5+x6+x7≥75 32cm规格的薄铜板数量要求

x2+2x4+x6+3x7+2x8+x9≥50 28cm规格的薄铜板数量要求

x3+3x5+x6+2x8+3x9+4x10≥110 22cm规格的薄铜板数量要求所以本问题的线性规划数学模型为:

min f=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10

S.T. 3x1+2x2+2x3+x4+x5+x6≥75

x2+2x4+x6+3x7+2x8+x9≥50

x3+3x5+x6+2x8+3x9+4x10≥110

x i≥0 (i=1,2…..10)

用Excel线性规划求解模型板求解:

即最优解:(18.33 ,0,0,0,20,0,0.25,0,0,0),最优值:63.3333

因为铜板切割时必须整卷切割所以需要做整数近似。即其结果为:

即最优解:(19 ,0,0,0,20,0,0.25,0,0,0),最优值:64

灵敏度分析报告:

可变单元格

单元格名字终值递减成本目标式系数允许的增量允许的减量$C$34 最优解18.33333333 0 1 0.071428571 0.25 $D$34 x2 0 0.055555556 1 1E+30 0.055555556 $E$34 x3 0 0.111111111 1 1E+30 0.111111111 $F$34 x4 0 0.111111111 1 1E+30 0.111111111 $G$34 x5 20 0 1 0.083333333 0.166666667 $H$34 x6 0 0.166666667 1 1E+30 0.166666667 $I$34 x7 0 0.166666667 1 1E+30 0.166666667 $J$34 x8 25 0 1 0.111111111 0.555555556 $K$34 x9 0 0.055555556 1 1E+30 0.055555556 $L$34 x10 0 0.111111111 1 1E+30 0.111111111

约束

单元格名字终值阴影价格约束限制值允许的增量允许的减量$R$11 实际值75 0.333333333 75 1E+30 55 $R$12 实际值50 0.277777778 50 60 50 $R$13 实际值110 0.222222222 110 165 60 即:

目标函数最优值为 : 63.333

变量最优解相差值

x1 18.333 0

x2 0 .056

x3 0 .111

x4 0 .111

x5 20 0

x6 0 .167

x7 0 .167

x8 25 0

x9 0 .056

x10 0 .111

约束松弛/剩余变量对偶价格

1 0 -.333

2 0 -.278

3 0 -.222

目标函数系数范围 :

变量下限当前值上限

x1 .75 1 1.071

x2 .944 1 无上限

x3 .889 1 无上限

x4 .889 1 无上限

x5 .833 1 1.083

x6 .833 1 无上限

x7 .833 1 无上限

x8 .444 1 1.111

x9 .944 1 无上限

x10 .889 1 无上限

常数项数范围 :

约束下限当前值上限

1 20 75 无上限

2 0 50 110

3 50 110 275

这是一个统计型的线性规划问题,所以分析价值系数的取值范围和相差都没有意义。

松弛/剩余变量都为0,表示最优方案已达到三种规格薄铜板数量的最低限。

三个约束条件的对偶价格-.333、-.278、-.222分别表示三种规格薄铜板数量的最低限再增加一个,将增加原铜板.333cm、.278cm、.222cm。这个数字实际跟薄铜板长度规格相一致。

常数项数范围表示三种规格薄铜板数量的最低限在这些范围内,每增一个限额所原原铜板.333cm、.278cm、.222cm不变。这里需要特别指出的是,第一种规格的薄铜板32cm宽,已使三块组合就能比较恰当地用完原铜板,所以这种规格的薄铜板无论增加多少,都不改变用原铜板的比例。

5.3 某医院对医生工作的安排为4小时一个工作班次,每人要连续工作二个班次。各班次需要医生人数如下表:

其中,第6班报到的医生要连续上班到第二天的第1班。问在各班开始时应该分别有几位医生报到。若参加1、2、6班的医生需要支付夜班津贴,为了使支付总的夜班津贴为最少,应如何安排各班开始时医生的报到人数。

解:第一步:不考虑夜班津贴。

1、确定决策变量

设每个班次开始时安排人数为x i(i=1,2,3,4,5,6)

2、确定目标函数

本问题的目标是每天安排的总人数为最少,而每天安排的总人数为

x1+x2+x3+x4+x5+x6

所以目标函数为:min f=x1+x2+x3+x4+x5+x6

3、确定约束条件

x6+x1≥4 第一班的人数要求

x1+x2≥7 第二班的人数要求

x2+x3≥9 第三班的人数要求

x3+x4≥12 第四班的人数要求

x4+x5≥8 第五班的人数要求

x5+x6≥6 第六班的人数要求

所以本问题的线性规划数学模型为:

min f=x1+x2+x3+x4+x5+x6

S.T. x6+x1≥4

x1+x2≥7

x2+x3≥9

x3+x4≥12

x4+x5≥8

x5+x6≥6

x i≥0(i=1,2,3,4,5,6)

用Excel线性规划求解模板求解得:

即:第一班安排7人,第三班安排10人,第四班安排2人,第五班安排6人,第二、第六班不安排人。总人数为25人。

灵敏度分析报告:

可变单元格

单元格名字终值递减成本目标式系数允许的增量允许的减量

$C$34 最优解7 0 1 0 1

$D$34 x2 0 0 1 1E+30 0

$E$34 x3 10 0 1 0 1

$F$34 x4 2 0 1 1 0

$G$34 x5 6 0 1 0 1

$H$34 x6 0 0 1 1E+30 0

约束

单元格名字终值阴影价格约束限制值允许的增量允许的减量

$R$11 实际值7 0 4 3 1E+30

$R$12 实际值7 1 7 1E+30 3

$R$13 实际值10 0 9 1 1E+30

$R$14 实际值12 1 12 1E+30 1

$R$15 实际值8 0 8 1 2

$R$16 实际值 6 1 6 2 1 目标函数最优值为 : 25

变量最优解相差值

x1 7 0

x2 0 0

x3 10 0

x4 2 0

x5 6 0

x6 0 0

约束松弛/剩余变量对偶价格

1 3 .0

2 0 -1

3 1 .0

4 0 --1

5 0 . 0

6 0 --1

目标函数系数范围 :

变量下限当前值上限

x1 0 .1 1

x2 1 1 无上限. x3 0 . 1 1

x4 1 . 1 2

x5 0 1 1

x6 1 1 无上限

常数项数范围 :

约束下限当前值上限

1 无下限 4 7

2 4 7 无上限

3 无下限 9 10

4 11 12 无上限

5 6 8 9

6 5 6 8

松弛/剩余变量一栏就是上表的“多余人数”一列是各时间段安排所剩余的人数。

“对偶价格”一栏。

第一个常数项由4增加到5,因为还剩下2人,所以不会改变最优值;

第二个常数项由7增加到8,因为再没有剩余的人,所以本班必须再多安排一个人最优值解也必须增加1,因为是求最小化问题,所以对偶价格为-1;

第三个常数项由9增加到10,刚好将原来剩余的人用上,所以不会改变最优值;

第四个、第六个常数项与第二个常数项一样;

第五个常数项由2增加到3,因为再没有剩余的人,所以本班必须再多安排一个人,但下个班就可以再少安排一个人,所以不会改变最优值;

本题的这种情况是每一个变量都会影响到两个时段的结果,所以在进行灵敏度分析时也必定要考虑这个因素,这里第一个时段是特殊情况(有资源剩余),其余的时段分析时相邻两个是相互影响的。因此,第2时段为-1,第3时段为0,后面的依次相反。若第2时段为0,则第3时段就为-1。

第二步:考虑夜班津贴。

因为1、2、6班为夜班,与这三班安排人员有x1、x2、x3、x5、x6

所以目标函数为:

min f=x1+x2+x3+x5+x6

约束条件不变

所以其线性规划数学模型为:

min f=x1+x2+x3+x5+x6

S.T. x6+x1≥4

x1+x2≥7

x2+x3≥9

x3+x4≥12

x4+x5≥8

x5+x6≥6

x i≥0(i=1,2,3,4,5,6)

用Excel线性规划求解模板求解得:

即:总人数还是25人,但每班安排人数有所调整:

第一班不安排人,第二班安排7人,第三班安排2人,第四班安排10人,第五班安排0人,第六班安排6人。

灵敏度分析报告:

可变单元格

单元格名字终值递减成本目标式系数允许的增量允许的减量

$C$34 x10111E+301

$D$34 x270110

$E$34 x320101

$F$34 x4100010

$G$34 x50011E+300

$H$34 x660101

约束

单元格名字终值阴影价格约束限制值允许的增量允许的减量

$R$11 实际值60421E+30

$R$12 实际值70722

$R$13 实际值91922

$R$14 实际值120121E+302

$R$15 实际值100821E+30

$R$16 实际值6161E+302

目标函数最优值为 : 15

变量最优解相差值

x1 0 1

x2 7 0

x3 2 0

x4 10 0

x5 0 0

x6 6 0

约束松弛/剩余变量对偶价格

1 2 0

2 0 0

3 0 -1

4 0 0

5 2 0

6 0 -1

目标函数系数范围 :

变量下限当前值上限

x1 0 1 无上限

x2 1 1 2

x3 0 1 1

x4 0 0 1

x5 1 1 无上限

x6 0 1 1

常数项数范围 :

约束下限当前值上限

1 无下限 4 6

2 5 7 9

3 7 9 11

4 10 12 无上限

5 无下限 8 10

6 4 6 无上限

“对偶价格”一栏。

第一个常数项由4增加到5,因为还剩下2人,所以不会改变最优值;

第二个常数项由7增加到8,由于上段时间已增一个人,这个人本班还上班,所以本也不需要增加人。

第三个常数项由9增加到10,前面安排的人都已下班,本班刚好只朋9人,若需求再增加一人,就需要新安排一人所以对偶价格-1;

第四个、第五个、第六个常数项与前三个常数项一样;

5.4 某塑料厂要用四种化学配料生产一种塑料产品,这四种配料分别由A、B、C三种化学原料配制,三种化学原料的配方及原料价格如下表:

要配制的塑料产品中,要求含有20%的原料A,不少于30%的材料B和不少于20%的原料C。由于技术原因,配料1的用量不能超过30%,配料2的用量不能少于40%。第一次配制

的塑料产品不能少于5公斤。请设计一套配料方案,使总的成本为最低。

解:设配料用量x i (i=1,2,3,4)

总成本=11×(0.3x 1+0.4x 2+0.2x 3+0.15x 4)+13×(0.2x 1+0.3x 2+0.6x 3+0.4x 4)+12×(0.4x 1+0.25x 2+0.15x 3+0.3x 4)

=10.7x 1+11.3x 2+11.8x 3+9.45x 4 约束条件:

0.3x 1+0.4x 2+0.2x 3+0.15x 4=0.2(x 1+x 2+x 3+x 4) 原料A 含量 0.2x 1+0.3x 2+0.6x 3+0.4x 4≥0.3(x 1+x 2+x 3+x 4) 原料B 含量

0.4x 1+0.25x 2+0.15x 3+0.3x 4≥0.2(x 1+x 2+x 3+x 4) 原料C 含量 x 1≥0.3(x 1+x 2+x 3+x 4) 配料1含量 x 2≤0.4(x 1+x 2+x 3+x 4) 配料2含量 x 1+x 2+x 3+x 4≥5 产量要求 x i ≥0(i=1,2,3,4,) 可得线性规划数学模型:

min f =10.7x 1+11.3x 2+11.8x 3+9.45x 4 S.T. 0.1x 1+0.2x 2 -0.05x 4=0 -0.1x 1 +0.3x 3+0.1x 4≥0

0.2x 1+0.05x 2-0.05x 3+0.1x 4≥0

0.7x 1-0.3x 2-0.3x 3-0.3x 4≥0 -0.4x 1+0.6x 2-0.4x 3-0.4x 4≤0 x 1+x 2+x 3+x 4≥5 x i ≥0(i=1,2,3,4,)

将模型代入到线性规划求解模板,得结果:

即:用配料1,1.5公斤;用配料2,0.1公斤;用配料3,0公斤;用配料4,3.4公斤; 花费总的最低成本49.31元。

灵敏度分析报告: 可变单元格

单元格 名字 终值 递减成本 目标式

系数

允许的增量 允许的减量

$C$34 x1 1.5 0 10.7 1.47623E+11 0.14 $D$34 x2 0.1 0 11.3 0.233333333 493.1000001 $E$34 x3 0 1.98 11.8 1E+30 1.98 $F$34 x4 3.4 0 9.45 0.35 14.50294118

约束

单元格名字终值阴影价格约束限

制值

允许的增量允许的减量

$R$11 实际值0 7.4 0 0.475 0.025 $R$12 实际值0.19 0 0 0.19 1E+30 $R$13 实际值0.645 0 0 0.645 1E+30 $R$15 实际值0 0.14 0 0.166666667 1.5 $R$14 实际值-1.9 0 0 1E+30 1.9 $R$16 实际值 5 9.862 5 1E+30 5

目标函数最优值为 : 49.31

变量最优解相差值

x1 1.5 0

x2 .1 0

x3 0 1.98

x4 3.4 0

约束松弛/剩余变量对偶价格

1 0 -7.4

2 .19 0

3 .645 0

4 0 -.14

5 1.9 0

6 0 -9.862

目标函数系数范围 :

变量下限当前值上限

x1 10.56 10.7 无上限

x2 -481.8 11.3 11.533

x3 9.82 11.8 无上限

x4 -5.053 9.45 9.8

常数项数范围 :

约束下限当前值上限

1 -.025 0 .475

2 无下限 0 .19

3 无下限 0 .645

4 -1.

5 0 .167

5 -1.9 0 无上限

6 0 5 无上限

本问题的相差值栏,x3的相差值为1.98,表示目前配料3的成本11.8太高,无法选用,若该配料的成本再降低1.98元就可以选取用。

松弛/剩余变量栏:前五个给条件都表示的是配料或原料的配比关系。松弛/剩余变量为0 关系表示已完全按要求配比,不为0 的表示没有达到配比要求。第五个约束是总产品的产量最低限,松弛/剩余变量为0 表示已达到产量要求。

关五个约束的对偶价格表示配料或者说原料不匹配时,对总费用的影响。不为0的对偶价格表示配比每差一个单位都会使总费用的增加量。第五个对偶价格是每增加一公斤的产品,需要增加的费用值。

在学数项取值范围栏:前五个约束在常数项在这个范围内,保持上述的对偶价格,而此时的上限都不高,说明这个最优方案中的匹配关系失衡并不严重,若比例失衡将会导致费用的增加比例更大。对五个对偶价格实际上说明了该产品的绝对成本,在这个方案下,生产多少的产品都是这个成本构成。

5.5 某工厂生产Ⅰ、Ⅱ、Ⅲ、Ⅳ四种产品,产品Ⅰ需经过A、B两种机器加工,产品Ⅱ需经过A、C两种机器加工,产品Ⅲ需经过B、C两种机器加工,产品Ⅳ需经过A、B两种

利润=产品价格-原料成本-机器成本

=(65-16)×x1+(80-25)×x2+(50-12)×x3+(70-18)×x4

-200×(x1/10+x2/20+x4/20)-150×(x1/20+x3/10+x4/10)-225×(x2/10+x3/15)=(65-16-20-150/20)×x1+(80-25-10-225/10)×x2+(50-12-15-225/15)×x3+(70-18-10-15)×x4

=21.5 x1+22.5 x2+8 x3+27 x4

约束条件:x1/10+x2/20+x4/20≤150 提供可使用的机时数限制

x1/20+x3/10+x4/10≤120

x2/10+x3/15≤70

因此可得线性规划数学模型:

max Z=21.5 x1+22.5 x2+8 x3+27 x4

S.T. 2x1+x2+x4≤3000

x1+2x3+2x4≤2400

3x2+2x3≤2100

x i≥0(i=1,2,......4)

用Excel线性规划求解模板求解得:

即:最优生产方案:产品Ⅰ生产733.3件;

产品Ⅱ生产700件;

产品Ⅲ不安排生产;

产品Ⅳ生产833.3件。

可获得的最高利润:54016.7元。

灵敏度分析报告:

可变单元格

单元格名字终值递减成本目标式系数允许的增量允许的减量$C$34最优解733.3333333021.522.68 $D$34x2700022.51E+3017.16666667 $E$34x30-25.11111111825.111111111E+30 $F$34833.33333330271616.14285714

约束

单元格名字终值阴影价格约束限制值允许的增量允许的减量$R$11实际值3000 5.333333333300025001100 $R$12实际值240010.83333333240022001250 $R$13实际值2100 5.722222222210033002100

即:目标函数最优值为 : 54016.6505

变量最优解相差值

------- -------- --------

x1 733.333 0

x2 700 0

x3 0 25.111

x4 833.333 0

约束松弛/剩余变量对偶价格

------- ------------- --------

1 0 5.333

2 0 10.833

3 0 5.722

目标函数系数范围 :

变量下限当前值上限

------- -------- -------- --------

x1 13.5 21.5 44.1

x2 5.333 22.5 无上限

x3 无下限 8 33.111

x4 10.857 27 43

常数项数范围 :

约束下限当前值上限

------- -------- -------- --------

1 1900 3000 5500

2 1150 2400 4600

3 0 2100 5400

此模型的最优解中,四个变量有三个变量不为0,即需要安排生产,另一个为0 的变量表示产品Ⅲ由于成本高或价格低,使所获的利润太低,不值得生产。从相差值栏可见,该产品的单位利润需要再增加25.111元才值得生产。

松弛/剩余变量栏中三个数据都为0,表示该决策中所提供三种设备的机时都已全部利用,没有剩余;从对偶价格栏还可以看到三种设备的机时虽然都已用尽,但此时对三种设备增加机时,则设备B所带来的总利润为最多。因此设备B是瓶径。从约束条件的取值范围也可以看到这一点,因为设备B的机时取值范围最小,因此该设备是关键。

5.6 某企业生产Ⅰ、Ⅱ两种产品,市场两种产品的需求量为:产品Ⅰ在1-4月份每月需1万件,5-9月份每月需3万件,10-12月份每月需10万件;产品Ⅱ在3-9月份每月需1.5万件,其他月份每月需5万件。该企业生产这两种产品的成本为:产品Ⅰ在1-5月份生产时每件5元,6-12月份生产时每件4.5元;产品Ⅱ在1-5月份生产时每件8元,6-12月份生产时每件7元;该企业每月生产两种产品的能力总和不超过12万件。产品Ⅰ容积为每件0.2立方米,产品Ⅱ容积为每件0.4立方米。该企业仓库容积为1.5万立方米。要求:

1、问该企业应如何安排生产,使总的生产加工储存费用为最少,建立线性规划数学模型并求解,若无解请说明原因。

2、若该企业的仓库容积不足时,可从外厂租借。若占用本企业的仓库每月每立方米需1万元的储存费,而租用外厂仓库时其储存费用为每月每立方米1.5万元,试问在满足市场需求情况下,该企业又应如何安排生产,使总的生产加储存费用为最少。

解:

1、

(1)确定决策变量

我们先将问题的关系整理如下表:

(2)确定目标函数

本问题的目标是全年总的生产加工储存费用为最少,而加工和存储总费用为:

费用=5×(x1+ x2+ x3+ x4+ x5)+4.5×(x6+ x7+x8+ x9+ x10+ x11+ x12)+8×(x13+ x14+ x15+ x16+ x17)+7×(x18+ x19+x20+ x21+ x22+ x23+ x24)+(x49+ x50+x51+ x52+ x53+ x54+ x55+ x56+ x57+ x58+ x59+ x60)

所以,目标函数为:

Min f=5×(x1+ x2+ x3+ x4+ x5)+4.5×(x6+ x7+x8+ x9+ x10+ x11+ x12)+8×(x13+ x14+ x15+ x16+ x17)+7×(x18+ x19+x20+ x21+ x22+ x23+ x24)+(x49+ x50+x51+ x52+ x53+ x54+ x55+ x56+ x57+ x58+ x59+ x60)

(3)确定约束条件

(3.1)产量关系(以件为单位):

x1+ x13≤120000

x2+ x14≤120000

x3+ x15≤120000

x4+ x16≤120000

x5+ x17≤120000

x6+ x18≤120000

x7+ x19≤120000

x8+ x20≤120000

x9+ x21≤120000

x10+ x22≤120000

x11+ x23≤120000

x12+ x24≤120000

(3.2)月末剩余数关系(以件为单位):

x25=x1-10000

x26= x2+ x25-10000

x27= x3+ x26-10000

x28= x4+ x27-10000

x29= x5+ x28-30000

x30= x6+ x29-30000

x31= x7+ x30-30000

x32= x8+ x31-30000

x33= x9+ x32-30000

x34= x10+ x33-100000

x35= x11+ x34-100000

x36= x12+ x35-100000

x37= x13-50000

x38= x14+ x37-50000

x39= x15+ x38-15000

x40= x16+ x39-15000

x41= x17+ x40-15000

x42= x18+ x41-15000

x43= x19+ x42-15000

x44= x20+ x43-15000

x45= x21+ x44-15000

x46= x22+ x45-50000

x47= x23+ x45-50000

x48= x24+ x47-50000

(3.3)自有仓容限制(m3):

x49≤15000

x50≤15000

x51≤15000

x52≤15000

x53≤15000

x54≤15000

x55≤15000

x56≤15000

x57≤15000

x58≤15000

x59≤15000

x60≤15000

(3.4)仓容与库存量关系(m3):

0.2 x25+0.4 x37= x49

0.2 x26+0.4 x38= x50

0.2 x27+0.4 x39= x51

0.2 x28+0.4 x40= x52

0.2 x29+0.4 x41= x53

0.2 x30+0.4 x42= x54

0.2 x31+0.4 x43= x55

0.2 x32+0.4 x44= x56

0.2 x33+0.4 x45= x57

0.2 x34+0.4 x46= x58

0.2 x35+0.4 x47= x59

0.2 x36+0.4 x48= x60

因此得本问题的纯属规划数学模型:

Min f=5×(x1+ x2+ x3+ x4+ x5)+4.5×(x6+ x7+x8+ x9+ x10+ x11+ x12)+8×(x13+ x14+ x15+ x16+ x17)+7×(x18+ x19+x20+ x21+ x22+ x23+ x24)+(x49+ x50+x51+ x52+

x53+ x54+ x55+ x56+ x57+ x58+ x59+ x60)S.T. x1+ x13≤120000

x2+ x14≤120000

x3+ x15≤120000

x4+ x16≤120000

x5+ x17≤120000

x6+ x18≤120000

x7+ x19≤120000

x8+ x20≤120000

x9+ x21≤120000

x10+ x22≤120000

x11+ x23≤120000

x12+ x24≤120000

x1-x25=10000

x2+ x25-x26=10000

x3+ x26-x27=10000

x4+ x27-x28=10000

x5+ x28-x29=30000

x6+ x29-x30=30000

x7+ x30-x31=30000

x8+ x31-x32=30000

x9+ x32-x33=30000

x10+ x33-x34=100000

x11+ x34-x35=100000

x12+ x35-x36=100000

x13- x37=50000

x14+ x37-x38=50000

x15+ x38-x39=15000

x16+ x39-x40=15000

x17+ x40-x41=15000

x18+ x41-x42=15000

x19+ x42-x43=15000

x20+ x43-x44=15000

x21+ x44-x45=15000

x22+ x45-x46=50000

x23+ x46-x47=50000

x24+ x47-x48=50000

x49≤15000

x50≤15000

x51≤15000

x52≤15000

x53≤15000

x54≤15000

x55≤15000

《管理运筹学》第二版课后习题参考答案

《管理运筹学》(第二版)课后习题参考答案 第1章 线性规划(复习思考题) 1.什么是线性规划线性规划的三要素是什么 答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。 建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。 2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解; (3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。 当无界解和没有可行解时,可能是建模时有错。 3.什么是线性规划的标准型松弛变量和剩余变量的管理含义是什么 答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。 如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。 4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。 答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。 基可行解:满足非负性约束的基解,称为基可行解。 可行基:对应于基可行解的基,称为可行基。 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 它们的相互关系如右图所示:

运筹学II习题解答

第七章决策论 1.某厂有一新产品,其面临的市场状况有三种情况,可供其选择的营销策略也是 三种,每一钟策略在每一种状态下的损益值如下表所示,要求分别用非确定型 (1)悲观法:根据“小中取大”原则,应选取的经营策略为s3; (2)乐观法:根据“大中取大”原则,应选取的经营策略为s1; (3)折中法(α=0.6):计算折中收益值如下: S1折中收益值=0.6?50+0.4?(-5)=28 S2折中收益值=0.6?30+0.4?0=18 S3折中收益值=0.6?10+0.4?10=10 显然,应选取经营策略s1为决策方案。 (4)平均法:计算平均收益如下: S1:x_1=(50+10-5)/3=55/3 S2:x_2=(30+25)/3=55/3 S3:x_3=(10+10)/3=10 故选择策略s1,s2为决策方案。 (5)最小遗憾法:分三步 第一,定各种自然状态下的最大收益值,如方括号中所示; 第二,确定每一方案在不同状态下的最小遗憾值,并找出每一方案的最大遗憾值如圆括号中所示; 第三,大中取小,进行决策。故选取S1作为决策方案。

2.如上题中三种状态的概率分别为: 0.3, 0.4, 0.3, 试用期望值方法和决策树方法决策。 (1)用期望值方法决策:计算各经营策略下的期望收益值如下: 故选取决策S2时目标收益最大。 (2)用决策树方法,画决策树如下: 3. 某石油公司拟在某地钻井,可能的结果有三:无油(θ1),贫油(θ2)和富油(θ3), 估计可能的概率为:P (θ1) =0.5, P (θ2)=0.3,P (θ3)=0.2。已知钻井费为7万元,若贫油可收入12万元,若富油可收入27万元。为了科学决策拟先进行勘探,勘探的可能结果是:地质构造差(I1)、构造一般(I2)和构造好(I3)。根据过去的经验,地质构造与出油量间的关系如下表所示: P (I j|θi) 构造差(I1) 构造一般(I2) 构造好(I3) 无油(θ1) 0.6 0.3 0.1 贫油(θ2) 0.3 0.4 0.3 富油(θ3) 0.1 0.4 0.5 假定勘探费用为1万元, 试确定:

《运筹学》课后习题答案

第一章线性规划1、 由图可得:最优解为 2、用图解法求解线性规划: Min z=2x1+x2 ? ? ? ? ? ? ? ≥ ≤ ≤ ≥ + ≤ + - 10 5 8 24 4 2 1 2 1 2 1 x x x x x x 解: 由图可得:最优解x=1.6,y=6.4

Max z=5x 1+6x 2 ? ?? ??≥≤+-≥-0 ,23222212 121x x x x x x 解: 由图可得:最优解Max z=5x 1+6x 2, Max z= + ∞

Maxz = 2x 1 +x 2 ????? ? ?≥≤+≤+≤0,5242261552121211x x x x x x x 由图可得:最大值?????==+35121x x x , 所以?????==2 3 21x x max Z = 8.

12 12125.max 2328416412 0,1,2maxZ .j Z x x x x x x x j =+?+≤? ≤?? ≤??≥=?如图所示,在(4,2)这一点达到最大值为2 6将线性规划模型化成标准形式: Min z=x 1-2x 2+3x 3 ????? ??≥≥-=++-≥+-≤++无约束 321 321321321,0,05232 7x x x x x x x x x x x x 解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥ 0,x 3’’≥0 Max z ’=-x 1+2x 2-3x 3’+3x 3’’ ????? ? ?≥≥≥≥≥≥-=++-=--+-=+-++0 ,0,0'',0',0,05 232 '''7'''543321 3215332143321x x x x x x x x x x x x x x x x x x x

《管理运筹学》第四版课后习题解析(上)

《管理运筹学》第四版课后习题解析(上) 第2章 线性规划的图解法 1.解: (1)可行域为OABC 。 (2)等值线为图中虚线部分。 (3)由图2-1可知,最优解为B 点,最优解1x = 127,2157x =;最优目标函数值697 。 图2-1 2.解: (1)如图2-2所示,由图解法可知有唯一解12 0.2 0.6x x =??=?,函数值为3.6。 图2-2 (2)无可行解。 (3)无界解。 (4)无可行解。 (5)无穷多解。

(6)有唯一解 12203 8 3x x ?=????=?? ,函数值为923。 3.解: (1)标准形式 12123max 32000f x x s s s =++++ 1211221231212392303213229,,,,0 x x s x x s x x s x x s s s ++=++=++=≥ (2)标准形式 1212min 4600f x x s s =+++ 12112212121236210764,,,0 x x s x x s x x x x s s --=++=-=≥ (3)标准形式 1 2212min 2200f x x x s s ''''=-+++ 12 211 2212221 2212355702555032230,,,,0x x x s x x x x x x s x x x s s '''-+-+=''''-+=''''+--=''''≥ 4.解: 标准形式 1212max 10500z x x s s =+++ 1211221212349528,,,0 x x s x x s x x s s ++=++=≥ 松弛变量(0,0) 最优解为 1x =1,x 2=3/2。 5.解:

第四版运筹学部分课后习题解答

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题 a) 12 12 12 12 min z=23 466 ..424 ,0 x x x x s t x x x x + +≥ ? ? +≥ ? ?≥ ? 解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为 最优解,即该问题有无穷多最优解,这时的最优值为 min 3 z=2303 2 ?+?= P47 1.3 用图解法和单纯形法求解线性规划问题 a) 12 12 12 12 max z=10x5x 349 ..528 ,0 x x s t x x x x + +≤ ? ? +≤ ? ?≥ ? 解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点, 即 1 12 122 1 349 3 528 2 x x x x x x = ? += ?? ? ?? +== ?? ? ,即最优解为* 3 1, 2 T x ?? = ? ?? 这时的最优值为 max 335 z=1015 22 ?+?=

单纯形法: 原问题化成标准型为 121231241234 max z=10x 5x 349 ..528,,,0x x x s t x x x x x x x +++=?? ++=??≥? j c → 10 5 B C B X b 1x 2x 3x 4x 0 3x 9 3 4 1 0 0 4x 8 [5] 2 0 1 j j C Z - 10 5 0 0 0 3x 21/5 0 [14/5] 1 -3/5 10 1x 8/5 1 2/5 0 1/5 j j C Z - 1 0 - 2 5 2x 3/2 0 1 5/14 -3/14 10 1x 1 1 0 -1/7 2/7 j j C Z - -5/14 -25/14

管理运筹学课后习题

第一章 思考题、主要概念及内容 1、了解运筹学的分支,运筹学产生的背景、研究的内容和意义。 2、了解运筹学在工商管理中的应用。 3、体会管理运筹学使用相应的计算机软件,注重学以致用的原则。 第二章 思考题、主要概念及内容 图解法、图解法的灵敏度分析 复习题 1. 考虑下面的线性规划问题: max z=2x1+3x2; 约束条件: x1+2x2≤6, 5x1+3x2≤15, x1,x2≥0. (1) 画出其可行域. (2) 当z=6时,画出等值线2x1+3x2=6. (3) 用图解法求出其最优解以及最优目标函数值. 2. 用图解法求解下列线性规划问题,并指出哪个问题具有惟一最优解、无穷多最优解、无界解或无可行解. (1) min f=6x1+4x2; 约束条件: 2x1+x2≥1, 3x1+4x2≥3, x1,x2≥0. (2) max z=4x1+8x2; 约束条件: 2x1+2x2≤10, -x1+x2≥8, x1,x2≥0. (3) max z=3x1-2x2; 约束条件: x1+x2≤1, 2x1+2x2≥4, x1,x2≥0. (4) max z=3x1+9x2; 约束条件:

-x1+x2≤4, x2≤6, 2x1-5x2≤0, x1,x2≥0 3. 将下述线性规划问题化成标准形式: (1) max f=3x1+2x2; 约束条件: 9x1+2x2≤30, 3x1+2x2≤13, 2x1+2x2≤9, x1,x2≥0. (2) min f=4x1+6x2; 约束条件: 3x1-x2≥6, x1+2x2≤10, 7x1-6x2=4, x1,x2≥0. (3) min f=-x1-2x2; 约束条件: 3x1+5x2≤70, -2x1-5x2=50, -3x1+2x2≥30, x1≤0,-∞≤x2≤∞. (提示:可以令x′1=-x1,这样可得x′1≥0.同样可以令x′2-x″2=x2,其中x′2,x″2≥0.可见当x′2≥x″2时,x2≥0;当x′2≤x″2时,x2≤0,即-∞≤x2≤∞.这样原线性规划问题可以化为含有决策变量x′1,x′2,x″2的线性规划问题,这里决策变量x′1,x′2,x″2≥0.) 4. 考虑下面的线性规划问题: min f=11x1+8x2; 约束条件: 10x1+2x2≥20, 3x1+3x2≥18, 4x1+9x2≥36, x1,x2≥0. (1) 用图解法求解. (2) 写出此线性规划问题的标准形式. (3) 求出此线性规划问题的三个剩余变量的值. 5. 考虑下面的线性规划问题: max f=2x1+3x2; 约束条件: x1+x2≤10, 2x1+x2≥4,

管理学管理运筹学课后答案——谢家平

管理运筹学 ——管理科学方法谢家平 第一章 第一章 1. 建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量(Decision Variable)是决策问题待 定的量值,取值一般为非负;约束条件(Constraint Conditions)是指决策变量取值时受到的各种资源条件的限制, 保障决策方案的可行性;目标函数(Objective Function)是决策者希望实现的目标,为决策变量的线性函数表达式, 有的目标要实现极大值,有的则要求极小值。 2.(1)设立决策变量; (2)确定极值化的单一线性目标函数; (3)线性的约束条件:考虑到能力制约,保证能力需求量不能突破有效供给量; (4)非负约束。 3.(1)唯一最优解:只有一个最优点 (2)多重最优解:无穷多个最优解 (3)无界解:可行域无界,目标值无限增大 (4)没有可行解:线性规划问题的可行域是空集 无界解和没有可行解时,可能是建模时有错。 4. 线性规划的标准形式为:目标函数极大化,约束条件为等式,右端常数项bi≥0 , 决策变量满足非负性。 如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。 5. 可行解:满足约束条件AX =b,X≥0的解,称为可行解。 基可行解:满足非负性约束的基解,称为基可行解。 可行基:对应于基可行解的基,称为可行基。 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 6. 计算步骤: 第一步,确定初始基可行解。 第二步,最优性检验与解的判别。 第三步,进行基变换。 第四步,进行函数迭代。 判断方式: 唯一最优解:所有非基变量的检验数为负数,即σj< 0 无穷多最优解:若所有非基变量的检验数σj≤ 0 ,且存在某个非基变量xNk 的检验数σk= 0 ,让其进基,目标函数

(完整版)运筹学基础及应用第四版胡运权主编课后练习答案【精】

运筹学基础及应用 习题解答 习题一 P46 1.1 (a) 该问题有无穷多最优解,即满足2 1 0664221≤≤=+x x x 且的所有()21,x x ,此时目标函数值3=z 。 (b) 用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。 1.2 (a) 约束方程组的系数矩阵 ???? ? ??--=1000030204180036312A 4

最优解()T x 0,0,7,0,10,0=。 (b) 约束方程组的系数矩阵 ? ?? ? ??=21224321A 最优解T x ??? ??=0,511,0,5 2。 1.3 (a) (1) 图解法

最优解即为?? ?=+=+82594321 21x x x x 的解??? ??=23,1x ,最大值235=z (2)单纯形法 首先在各约束条件上添加松弛变量,将问题转化为标准形式 ???=++=+++++=8 25943 ..00510 max 421321 4321x x x x x x t s x x x x z 则43,P P 组成一个基。令021==x x 得基可行解()8,9,0,0=x ,由此列出初始单纯形表 21σσ>。5 839,58min =?? ? ??=θ

02>σ,23 28,1421min =??? ? ?=θ 0,21<σσ,表明已找到问题最优解0 , 0 , 2 3 1,4321====x x x x 。最大值 2 35*=z (b) (1) 图解法 最优解即为?? ?=+=+5 24262121x x x x 的解??? ??=23,27 x ,最大值217=z (2) 单纯形法 首先在各约束条件上添加松弛变量,将问题转化为标准形式 1234523124125 max 2000515.. 6224 5z x x x x x x x s t x x x x x x =+++++=?? ++=??++=? 21=+x x 2621+x x

运筹学基础课后习题答案

运筹学基础课后习题答案 [2002年版新教材] 第一章导论 P5 1.、区别决策中的定性分析和定量分析,试举例。 定性——经验或单凭个人的判断就可解决时,定性方法 定量——对需要解决的问题没有经验时;或者是如此重要而复杂,以致需要全面分析(如果涉及到大量的金钱或复杂的变量组)时,或者发生的问题可能是重复的和简单的,用计量过程可以节约企业的领导时间时,对这类情况就要使用这种方法。 举例:免了吧。。。 2、. 构成运筹学的科学方法论的六个步骤是哪些? .观察待决策问题所处的环境; .分析和定义待决策的问题; .拟定模型; .选择输入资料; .提出解并验证它的合理性(注意敏感度试验); .实施最优解; 3、.运筹学定义: 利用计划方法和有关许多学科的要求,把复杂功能关系表示成数学模型,其目的是通过定量分析为决策和揭露新问题提供数量根据 第二章作业预测P25 1、. 为了对商品的价格作出较正确的预测,为什么必须做到定量与定性预测的结合?即使在定量预测法诸如加权移动平均数法、指数平滑预测法中,关于权数以及平滑系数的确定,是否也带有定性的成分? 答:(1)定量预测常常为决策提供了坚实的基础,使决策者能够做到心中有数。但单靠定量预测有时会导致偏差,因为市场千变万化,影响价格的因素很多,有些因素难以预料。调查研究也会有相对局限性,原始数据不一定充分,所用的模型也往往过于简化,所以还需要定性预测,在缺少数据或社会经济环境发生剧烈变化时,就只能用定性预测了。(2)加权移动平均数法中权数的确定有定性的成分;指数平滑预测中的平滑系数的确定有定性的成分。 2.、某地区积累了5 个年度的大米销售量的实际值(见下表),试用指数平滑法,取平滑系数α= 0.9,预测第6年度的大米销售量(第一个年度的预测值,根据专家估计为4181.9千公斤) 年度 1 2 3 4 5 大米销售量实际值 (千公斤)5202 5079 3937 4453 3979 。 答: F6=a*x5+a(1-a)*x4+a(1-a)~2*x3+a(1-a)~3*x2+a(1-a)~4*F1 F6=0.9*3979+0.9*0.1*4453+0.9*0.01*3937+0.9*0.001*5079+0.9*0.0001*4181.9

《管理运筹学》第四版课后习题解析(下)

《管理运筹学》第四版课后习题解析(下) 第9章 目 标 规 划 1、解: 设工厂生产A 产品1x 件,生产B 产品2x 件。按照生产要求,建立如下目标规划模型。 112212121211122212min ()() s.t 43452530 555086100 ,,,0,1,2 -- +-+-+-++++-+=+-+==i i P d P d x x x x x x d d x x d d x x d d i ≤≤≥ 由管理运筹学软件求解得 12121211.25,0,0,10, 6.25,0x x d d d d --++ ====== 由图解法或进一步计算可知,本题在求解结果未要求整数解的情况下,满意解有无穷多个,为线段(135/14,15/7)(1)(45/4,0),[0,1]ααα+-∈上的任一点。 2、解: 设该公司生产A 型混凝土x 1吨,生产B 型混凝土x 2吨,按照要求建立如下的目标规划模型。 ) 5,,2,1(0,,0,0145 50.060.015550.040.030000100150100 120275200.)()(min 2121215521442331222111215443 32 211 1 =≥≥≥≤+≤+=-++=-+=-+=-++=-++++++++-+-+-+-+-+-- - - + +- i d d x x x x x x d d x x d d x d d x d d x x d d x x t s d p d d p d p d d p i i 由 管 理 运 筹 学 软 件 求 解 得 . 0,0,20,0,0,0, 0,35,40,0,120,120554433221121============+-+-+-+-+-d d d d d d d d d d x x

运筹学习题答案

第一章习题 1.思考题 (1)微分学求极值的方法为什么不适用于线性规划的求解? (2)线性规划的标准形有哪些限制?如何把一般的线性规划化为标准形式? (3)图解法主要步骤是什么?从中可以看出线性规划最优解有那些特点? (4)什么是线性规划的可行解,基本解,基可行解?引入基本解和基可行解有什么作用? (5)对于任意基可行解,为什么必须把目标函数用非基变量表示出来?什么是检验数?它有什么作用?如何计算检验数? (6)确定换出变量的法则是什么?违背这一法则,会发生什么问题? (7)如何进行换基迭代运算? (8)大M法与两阶段法的要点是什么?两者有什么共同点?有什么区别? (9)松弛变量与人工变量有什么区别?试从定义和处理方式两方面分析。 (10)如何判定线性规划有唯一最优解,无穷多最优解和无最优解?为什么? 2.建立下列问题的线性规划模型: (1)某厂生产A,B,C三种产品,每件产品消耗的原料和设备台时如表1-18所示: 润最大的模型。 (2)某公司打算利用具有下列成分(见表1-19)的合金配制一种新型合金100公斤,新合金含铅,锌,锡的比例为3:2:5。 如何安排配方,使成本最低? (3)某医院每天各时间段至少需要配备护理人员数量见表1-20。

表1-20 假定每人上班后连续工作8小时,试建立使总人数最少的计划安排模型。能否利用初等数学的视察法,求出它的最优解? (4)某工地需要30套三角架,其结构尺寸如图1-6所示。仓库现有长6.5米的钢材。如何下料,使消耗的钢材最少? 图1-6 3. 用图解法求下列线性规划的最优解: ?????? ?≥≤+-≥+≥++=0 ,425.134 1 2 64 min )1(21212 12121x x x x x x x x x x z ?????? ?≥≤+≥+-≤++=0 ,82 5 1032 44 max )2(21212 12121x x x x x x x x x x z ????? ????≥≤≤-≤+-≤++=0 ,6 054 4 22232 96 max )3(2122 1212121x x x x x x x x x x x z ??? ??≥≤+-≥+ +=0,1 12 34 3 max )4(2 12 12121x x x x x x x x z

《管理运筹学》课后习题答案

第2章 线性规划的图解法 1.解: x ` A 1 (1) 可行域为OABC (2) 等值线为图中虚线部分 (3) 由图可知,最优解为B 点, 最优解:1x = 712,7152=x 。最优目标函数值:769 2.解: x 2 1 0 1 (1) 由图解法可得有唯一解 6.02.021==x x ,函数值为3.6。 (2) 无可行解 (3) 无界解 (4) 无可行解 (5) 无穷多解

(6) 有唯一解 38320 21== x x ,函数值为392。 3.解: (1). 标准形式: 3212100023m ax s s s x x f ++++= 0,,,,9 2213 2330 2932121321221121≥=++=++=++s s s x x s x x s x x s x x (2). 标准形式: 21210064m in s s x x f +++= ,,,4 6710 26 3212121221121≥=-=++=--s s x x x x s x x s x x (3). 标准形式: 21''2'2'10022m in s s x x x f +++-= 0,,,,30 22350 55270 55321''2'2'12''2'2'1''2'2'11''2'21≥=--+=+-=+-+-s s x x x s x x x x x x s x x x 4.解: 标准形式: 212100510m ax s s x x z +++= ,,,8259 432121221121≥=++=++s s x x s x x s x x 松弛变量(0,0) 最优解为 1x =1,x 2=3/2.

(完整版)运筹学》习题答案运筹学答案

《运筹学》习题答案 一、单选题 1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()B A.任意网络 B.无回路有向网络 C.混合网络 D.容量网络 2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()B A.非线性问题的线性化技巧 B.静态问题的动态处理 C.引入虚拟产地或者销地 D.引入人工变量 3.静态问题的动态处理最常用的方法是?B A.非线性问题的线性化技巧 B.人为的引入时段 C.引入虚拟产地或者销地 D.网络建模 4.串联系统可靠性问题动态规划模型的特点是()D A.状态变量的选取 B.决策变量的选取 C.有虚拟产地或者销地 D.目标函数取乘积形式 5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。C A.降低的 B.不增不减的 C.增加的 D.难以估计的 6.最小枝权树算法是从已接接点出发,把( )的接点连接上C A.最远 B.较远 C.最近 D.较近 7.在箭线式网络固中,( )的说法是错误的。D A.结点不占用时间也不消耗资源 B.结点表示前接活动的完成和后续活动的开始 C.箭线代表活动 D.结点的最早出现时间和最迟出现时间是同一个时间 8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。C A.1200 B.1400 C.1300 D.1700 9.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。D A.最短路线—定通过A点 B.最短路线一定通过B点 C.最短路线一定通过C点 D.不能判断最短路线通过哪一点 10.在一棵树中,如果在某两点间加上条边,则图一定( )A A.存在一个圈 B.存在两个圈 C.存在三个圈 D.不含圈 11.网络图关键线路的长度( )工程完工期。C A.大于 B.小于 C.等于 D.不一定等于

管理运筹学第二版课后习题参考答案

管理运筹学第二版课后 习题参考答案 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

《管理运筹学》(第二版)课后习题参考答案 第1章 线性规划(复习思考题) 1.什么是线性规划线性规划的三要素是什么 答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。 建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。 2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解; (3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。 当无界解和没有可行解时,可能是建模时有错。 3.什么是线性规划的标准型松弛变量和剩余变量的管理含义是什么 答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0 i b ,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。 4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。 答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。 基可行解:满足非负性约束的基解,称为基可行解。 可行基:对应于基可行解的基,称为可行基。 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 它们的相互关系如右图所示: 5.用表格单纯形法求解如下线性规划。 . ??? ??≥≤++≤++0,,862383 21321321x x x x x x x x x 解:标准化 32124max x x x Z ++= . ?? ? ??≥=+++=+++0,,,,862385432153 214 321x x x x x x x x x x x x x 列出单纯形表

运筹学课后习题答案

第一章 线性规划 1、 由图可得:最优解为 2、用图解法求解线性规划: Min z=2x 1+x 2 ????? ??≥≤≤≥+≤+-01058 2442 12121x x x x x x 解: 由图可得:最优解x=1.6,y=6.4

Max z=5x 1+6x 2 ? ?? ??≥≤+-≥-0 ,23222212 121x x x x x x 解: 由图可得:最优解Max z=5x 1+6x 2, Max z= +∞

Maxz = 2x 1 +x 2 ????? ? ?≥≤+≤+≤0,5242261552121211x x x x x x x 由图可得:最大值?????==+35121x x x , 所以?????==2 3 21x x max Z = 8.

12 12125.max 2328416412 0,1,2maxZ .j Z x x x x x x x j =+?+≤? ≤?? ≤??≥=?如图所示,在(4,2)这一点达到最大值为2 6将线性规划模型化成标准形式: Min z=x 1-2x 2+3x 3 ????? ??≥≥-=++-≥+-≤++无约束 321 321321321,0,05232 7x x x x x x x x x x x x 解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中 x 3’≥0,x 3’’≥0 Max z ’=-x 1+2x 2-3x 3’+3x 3’’ ????? ? ?≥≥≥≥≥≥-=++-=--+-=+-++0 ,0,0'',0',0,05 232 '''7'''543321 3215332143321x x x x x x x x x x x x x x x x x x x

运筹学第五版课后答案,运筹作业

47页1.1b 用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解47页1.1d 无界解

1.2(b) 约束方程的系数矩阵 A= 1 2 3 4 ( ) 2 1 1 2 P1 P2 P3 P4 最优解A=(0 1/2 2 0)T和(0 0 1 1)T 49页13题 设Xij为第i月租j个月的面积 minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x13 +6000x23+7300x14 s.t. x11+x12+x13+x14≥15 x12+x13+x14+x21+x22+x23≥10 x13+x14+x22+x23+x31+x32≥20 x14+x23+x32+x41≥12 Xij≥0 用excel求解为:

用LINDO求解: LP OPTIMUM FOUND AT STEP 3 OBJECTIVE FUNCTION VALUE 1) 118400.0 VARIABLE VALUE REDUCED COST Z 0.000000 1.000000 X11 3.000000 0.000000

X21 0.000000 2800.000000 X31 8.000000 0.000000 X41 0.000000 1100.000000 X12 0.000000 1700.000000 X22 0.000000 1700.000000 X32 0.000000 0.000000 X13 0.000000 400.000000 X23 0.000000 1500.000000 X14 12.000000 0.000000 ROW SLACK OR SURPLUS DUAL PRICES 2) 0.000000 -2800.000000 3) 2.000000 0.000000 4) 0.000000 -2800.000000 5) 0.000000 -1700.000000 NO. ITERATIONS= 3 答若使所费租借费用最小,需第一个月租一个月租期300平方米,租四个月租期1200平方米,第三个月租一个月租期800平方米,

管理运筹学课后习题答案

《管理运筹学》作业题参考答案 一、简答题 1. 试述线性规划数学模型的结构及各要素的特征。 2. 求解线性规划问题时可能出现哪几种结果,哪些结果反映建模时有错误。 3. 举例说明生产和生活中应用线性规划的方面,并对如何应用进行必要描述。 4. 什么是资源的影子价格,同相应的市场价格之间有何区别,以及研究影子价格的意义。 5. 试述目标规划的数学模型同一般线性规划数学模型的相同和异同之点。 (答案参考教材) 二、判断题 1. (√) 2. (√) 3. (×) 4. (√) 5. (√) 三、计算题 1. 用图解法求解下列线性规划问题,并指出各问题是具有唯一最优解、无穷多最优解、无界解或无可行解。 (a) min z =6x 1+4x 2 (b) min z =4x 1+8x 2 ??? ??≥≥+≥+0,5.1431 2.st 2 12121x x x x x x ??? ??≥≥+-≥+0,101022.st 2 12121x x x x x x (c) min z =x 1+x 2 (d) min z =3x 1-2x 2 ?????? ?≥≥-≥+≥+0 ,4212642468.st 2122 121x x x x x x x ??? ??≥≥+≤+0,4221 .st 2 12121x x x x x x (e) min z =3x 1+9x 2 ????? ????≥≤-≤≤+-≤+0 ,0 5264 2263.st 212 122121x x x x x x x x x 2. (a)唯一最优解,z* =3,x 1=1/2,x 2= 0;(b)无可行解;(c)有可行解,但max z 无界;(d )无可行解;(c )无穷多最优解,z*=66;(f )唯一最优解,z*=.3/8,3/20,3 2 3021==x x

管理运筹学第三章习题答案

(1)解: , 5 3351042..715min 212 1 1 21 21≥≥+≥≥++=y y y y y y y t s y y ω (2)解: 无限制 3213 21 3132 3213121,0,0 2 520474235323. .86max y y y y y y y y y y y y y y y t s y y ≤≥=++≤-=+≥+--≤++=ω 解:例3原问题 6 ,,1,0603020506070 ..min 166554433221654321Λ=≥≥+≥+≥+≥+≥+≥++++++=j x x x x x x x x x x x x x t s x x x x x x z j 对偶问题: 6 ,,1,0111111 ..603020506070max 655443322161654321Λ=≥≤+≤+≤+≤+≤+≤++++++=j y y y x y y y y y y y y y t s y y y y y y j ω

解: (1)由最优单纯形表可以知道原问题求max ,其初始基变量为54,x x ,最优基的逆阵为 ????? ? ??-=-316102 11 B 。 由P32式()()()可知b B b 1 -=',5,,1,,1Λ='-=='-j P C c P B P j B j j j j σ,其中b 和j P 都是初始数据。设???? ??=21b b b ,5,,1,21Λ=???? ??=j a a P j j j ,()321,,c c c C =,则 ?????? ??=???? ???????? ??-?='-2525316102 1 211 b b b B b ,即?????=+-=25316 12521211b b b ,解得???==10521b b ????? ? ??-=???? ???????? ??-?='-021******** 102 12322211312111 a a a a a a P B P j j ,即 ???????????????=+-=-=+-==+-=0 31 6 112121316121 211 316 1021 231313221212211111a a a a a a a a a ,解得???????????==-====12 1130231322 122111a a a a a a

《管理运筹学》第二版课后习题参考答案

《管理运筹学》(第二版)课后习题参考答案 第1章线性规划(复习思考题) 1.什么是线性规划?线性规划的三要素是什么? 答:线性规划(Lin ear Programmi ng, LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。 建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。 2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解; (3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。 当无界解和没有可行解时,可能是建模时有错。 3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么? 答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项b i 0, 决策变量满足非负性。 如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“2型约束的左边取值大于右边规划值,出现剩余量。 4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。 答:可行解:满足约束条件AX b,X 0的解,称为可行解。 基可行解:满足非负性约束的基解,称为基可行解 可行基:对应于基可行解的基,称为可行基。 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 它们的相互关系如右图所示:

管理运筹学课后答案

2.2 将下列线性规划模型化为标准形式并列出初始单纯形表。 (1) 123 123123123123min 2432219 43414..524260,0,z x x x x x x x x x s t x x x x x x =++-++≤??-++≥?? --=-??≤≥? 无约束 解:(1)令11333','",'x x x x x z z =-=-=-,则得到标准型为(其中M 为一个任意大的正 数) 12334567123341233561233712334567max '2'24'4''003'22'2''19 4'34'4''14..5'24'4''26',,','',,,,0 z x x x x x x Mx Mx x x x x x x x x x x x s t x x x x x x x x x x x x x =-++-++--++-+=??++--+=?? ++-+=??≥? 初始单纯形表如表2-1所示: 表2-1 c j -2 2 4 -4 0 0 -M -M θ C B X B b 1'x x 2 3'x 3''x x 4 x 5 x 6 x 7 0 x 4 19 3 2 2 -2 1 0 0 0 19/3 -M x 6 14 [ 4 ] 3 4 -4 0 -1 1 0 14/4 -M x 7 26 5 2 4 -4 0 0 0 1 26/5 -z -2+9M 2+5M 4+8M -4-8M -M 2.3 用单纯形法求解下列线性规划问题。 (1) 123 123123 123123max 2360 210..220,,0 z x x x x x x x x x s t x x x x x x =-+++≤??-+≤?? +-≤??≥? (2) 1234 123412341234 min 52322347..2223,,,0z x x x x x x x x s t x x x x x x x x =-+++++≤?? +++≤??≥? 解:(1)最优解为**(15,5,0),25T x z ==。 (2)最优解为**(0,1.5,0,0),3T x z ==-。 2.4 分别用大M 法和两阶段法求解下列线性规划问题。 (1) 123 123123123 max 2357..2510,,0z x x x x x x s t x x x x x x =+-++=??-+≥??≥? (2) 12 12123 1241234min 433 436..24,,,0 z x x x x x x x s t x x x x x x x =++=??+-=?? ++=??≥? 解:(1)最优解为**(6.429,0.571,0),14.571T x z ==。 (2)最优解为**(0.4,1.8,1,0), 3.4T x z ==。

管理运筹学课后习题答案

0后退" 地址匹I hi ip://wvw.doc in. c om/p-34224062, html 笫2章线性规划的图解法 a 可行城为OABC b ?聲值线为图中W 线所示。 C.IIIRH 可知.加优解为B 点,衆优M : x, = y x 2 = y , 69 〒 文件匕)編辑电)查看电)版藏逻 工具① 帮 址优JI 杯沥数们:

b 无可行解 C 无界斛 d 无可行解 e 尢穷多解 20 戈厂三 92 f 冇唯一解 ?两数值为学 8 3 3、Vh a 标准形式: max / = 3? + 2r 2 + 0打 + 0s 2 + 0% max / = 一4* 一 6X 3 - 0刁-0孔 v =()2 冇呱一解宀―“函数值为3.6 x 2 ■ 0.6

3勺 _ 兀2 一 B ■ 6 X] + 2X2+s2 = 10 7.v1 - 6A2二 4 f汕』2 2 0 C标准形式:max f =-?i; + 2.v s一2x; - 0片 - Qs2 -a— + 5X2-5A* +斗二70 2A; - 5.Vj + 5xj 二50 3x\ + 2x z一2r; - s2 =- 30 f 2 , *2,?,*2 2 ° 4、斡 标浪形式:max c = 10A(十5.v2十0、十0.T2 3\ + 4.V2 +耳二9 5x1 + 2X2 +52 = 8 兀“工2?亠? 0 5 .餅: 标ME形式:min f - 11xj + + 5 + O.v2 + O.v3 10A,+2X2 - 51— 20 3.V, + 3.V2-s2 =18 4x1 + 9X2一内=36 斗=0,y2 =0,^ = 13 6 >贻 b 1 s q 兰 3 c 2Sq S6 x2 = 4 e 斗G(4,8)x2 = 16 -2v1 2 f变化。廉斜率从-彳变为-1

相关文档
相关文档 最新文档