文档库 最新最全的文档下载
当前位置:文档库 › 瓦斯抽放量计算公式

瓦斯抽放量计算公式

附录E

附录E1.1

孔板流量计测定瓦斯流量

1.测定要求

⑴测定前检查测定仪表,确认完好、灵敏,方可投入测定。

⑵测定仪表与检测管连通,接头不得漏气,仪表显示值稳定后方可读数、记录。

⑶一个测点一次测2~3组数据,取其平均值纳入计算。

⑷光学瓦斯仪测定瓦斯浓度,必须在测点气压状态下读数。

⑸测定温度时,温度计必须插入管内。

⑹测定管堵塞,必须处理后才能测定。

2.计算公式

公式一:

Q

混=1.718×10-2K

1

)(

(t

c

Ph

273

448

1

(m3/min)

Q

纯= Q

×C (m3/min)

Q

-矿井标准状态下混合瓦斯流量(m3/min)

K

1

-孔板实际流量特性系数,查表确定;见附表;

K 1=189.76a

mD2

a

-标准孔板流量系数,查表确定;见附表;m-孔板中心与抽放管截面比,m=d2/D2

d-孔板中心直径,m;

D-抽放管直径,m;

P-孔板进气端绝对静压力,Pa

h-孔板前后端测点之间压差,Pa

C-管内瓦斯浓度,%

t-管内气体温度,℃

Q

-矿井标准状态下纯瓦斯流量(m3/min)公式二:

Q

混=3.51×10-2K

2

(C

C

Ph

-

+1

293

1

716

(m3/min)

Q

纯= Q

×C (m3/min)

Q

-矿井标准状态下混合瓦斯流量(m3/min)

K

2

-孔板特性系数;

K 2=nBS

2g×60

n-孔板校正系数,一般取1;

B-孔板收缩系数,d/D=0.5时,取0.625

S

-孔板中心孔面积,m2;

g –重力加速度,9.8m/s2;

P-孔板测定管处绝对静压力,mmHg

h-孔板压差,mmH

2

O

C-管内瓦斯浓度,%

Q

-矿井标准状态下纯瓦斯流量(m3/min)3、主要单位换算:

1毫米汞柱(mmHg)=133.322 Pa

1毫米水柱(mmH

2

O)=9.80665 Pa

1千克每平方厘米(㎏f/㎝2)=9.80665×104 Pa

1标准大气压(atm )=1.03125×105 Pa

附录E1.2:

皮托管测定瓦斯流量

1.测定要求

⑴测定前检查皮托管全压(+)静压(-)气路,确认畅通,方可投入测定。

⑵皮托管插入管内的位置必须按测定方法规定准确固定。皮托管与压差计连

通后,接头不漏气,压差计液面稳定后,方可读数。

⑶其余同孔板流量计测定要求3、4、6条。

2、测定方法和计算公式

平均流速法:

⑴测点设置在距管中心0.757r (r 指半径)处;

⑵计算公式

Q 混=0.191D 2C .HP 44801 (m3/min )

Q 纯= Q 混×C (m3/min )

Q 混-矿井标准状态下混合瓦斯流量(m 3/min )

D-瓦斯管内径;m ;

H-速压,Pa

P-管内绝对静压力,Pa

P= P 气-P 负

P 气-测点气压,Pa

P 负-抽放管负压,Pa

C-管内瓦斯浓度,%

Q

-矿井标准状态下纯瓦斯流量(m3/min)

中心求点法:

⑴测点位于抽放管中心处,一次测一个点计算流量。

⑵计算公式

Q

混=0.191YD2

C

P

h

o

448

1

(m3/min)

Q

纯= Q

×C (m3/min)

Q

-矿井标准状态下混合瓦斯流量(m3/min)D-瓦斯管内径;m;

h

o

=管中心速压,Pa

P-管内绝对静压力,Pa

P= P

气-P

P

-测点气压,Pa

P

-抽放管负压,Pa

C-管内瓦斯浓度,%

Q

-矿井标准状态下纯瓦斯流量(m3/min)Y-雷诺数函数,查表确定;

Reo-管中心最大雷诺数

Reo==2.166rQ

o

/Dn

r—混合气体容重,㎏/m3,查表

Q

o

—管中心最大流量,(m3/min)

n—瓦斯和空气混合气体运动粘度,㎏.s/㎡

附录E2.1:

附录E2.3:

不同瓦斯浓度与空气混合气体的容重r值

3

附录E2.4:

在0℃和760㎜Hg时,不同瓦斯浓度和空气混合气体运动粘度表(n)

-6

8

煤矿瓦斯抽采基本指标

AQ1026-2006煤矿瓦斯抽采基本指标 前言 1 范围 2 规范性引用文件 3 必须进行瓦斯抽采的矿井 4 瓦斯抽采应达到的指标 5 指标的测定及计算方法 6 其他 前言 本标准全部内容为强制性条文。 本标准由国家煤矿安全监察局提出。 本标准由全国安全生产标准化技术委员会煤矿安全分技术委员会归口。 本标准起草单位:煤炭科学研究总院重庆分院、中国矿业大学、煤炭科学研究总院抚顺分院、阳泉矿业(集团)有限责任公司、淮南矿业(集团)有限责任公司、芙蓉(集团)实业有限责任公司。 本标准主要起草人:胡千庭、文光才、俞合香、王魁军、李宝玉、周德昶、高正强、龙伍见。 1 范围 本标准规定了煤矿瓦斯抽采应达到的指标及其测算方法。 本标准适用于井工煤矿。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 MT/T638 煤矿井下煤层瓦斯压力的直接测定法 MT/T77 煤层气测定方法(解吸法) AQ1025 煤井瓦斯等级鉴定规范 3 必须进行瓦斯抽采的矿井 有下列情况之一的矿井,必须建立地面永久抽采瓦斯系统或井下临时抽采瓦斯系统: a) 一个采煤工作面的瓦斯涌出量大于5m3/min或一个掘进工作面瓦斯涌出量大于m3/min,用通风方法解决瓦斯问题不合理时; b) 矿井绝对涌出量达到以下条件的: ——大于或等于40m3/min; ——年产量1.0~1.5Mt的矿井,大于30m3/min; ——年产量0.6~1.0Mt的矿井,大于25m3/min; ——年产量0.4~0.6Mt的矿井,大于20m3/min; ——年产量等于或小于0.4Mt的矿井,大于15m3/min; c) 开采有煤与瓦斯突出危险煤层。 4 瓦斯抽采应达到的指标 4.1 突出煤层工作面采掘作业前必须将控制范围内煤层的瓦斯含量降 到煤层始突深度的瓦斯含量以下或将瓦斯压力降到煤层始突深度的煤层瓦斯压

瓦斯抽采达标自评价体系

瓦斯抽采达标自评价体系 瓦斯抽采达标自评价体系 第一节管理办法 1、矿井必须配备专业技术人员,负责瓦斯抽放日常管理,总结分析瓦斯抽放效果,研究改进抽放技术,组织新技术推广等。 2、必须建立专门的瓦斯抽放队伍,负责打钻、管路安装回收等工程的施工和瓦斯抽采参数测定等工作。 3、必须建立健全岗位责任制、抽放钻孔及浓度管理规定、钻孔封孔验收监督管理规定、抽采工序具体考核管理制度。 4、矿井必须有下列图纸和技术资料: A)图纸: 1)瓦斯抽放系统图; 2)泵站平面与管网(包括阀门、安全装备、检测仪表、放水器等)布置图; 3)抽放钻场及钻孔布置图; 4)泵站供电系统图。 B)记录: 1)抽放工程和钻孔施工记录; 2)抽放参数测定记录; 3)泵房值班记录。 C)报表: 1)抽放工程年、季、月报表;

2)抽放量年、季、月、旬报表。 D)台账: 1)抽放设备管理台账; 2)抽放工程管理台账; 3)瓦斯抽放系统和抽采参数、抽放量管理台账。 E)报告: 1)矿井和采区抽采工程设计文件及竣工报告; 2)瓦斯抽采总结与分析报告。 5、加强对瓦斯抽采参数(抽采量、瓦斯浓度、负压、温度、流量等)的监测,发现问题时,及时处理。 6、严格瓦斯抽采工程施工质量,所有瓦斯抽放工程都须按质量标准进行验收,不符合设计标准的应重新施工直到合格为止。 第二节实施细则 1、突出煤层所有采掘工作面(包括石门揭煤)在采掘作业前必须测定煤体原始吨煤瓦斯含量、煤层的瓦斯压力等参数。 2、各类抽采钻孔的设计必须严格按照《防治煤与瓦斯突出规定》及相关技术规范的要求,做到合理、可靠。 3、抽采钻孔必须严格按照《防治煤与瓦斯突出规定》的要求进行设计,并严格按照设计参数来施工,做到均匀布置,并认真记录实际施工参数,并反演钻孔实际控制范围,未达到设计要求的必须重新补打。实施过程中如遇煤层赋存条件变化较大或巷道设计发生变化时,应当依

保护层开采工作面瓦斯涌出量预测_戴广龙

第32卷第4期煤 炭 学 报V o.l 32 N o .4 2007年 4月 J OURNAL OF CH I N A COAL SOC I ETY A pr . 2007  文章编号:0253-9993(2007)04-0382-04 保护层开采工作面瓦斯涌出量预测 戴广龙1 ,汪有清1 ,张纯如2 ,李庆明2 ,邵广印 2 (1.安徽理工大学资源开发与管理工程系,安徽淮南 232001;2.淮南矿业集团谢桥煤矿,安徽淮南 232001) 摘 要:分析了分源法预测保护层工作面瓦斯涌出量理论和保护层开采时上覆煤岩层采动裂隙的分布,然后应用分源法预测了谢桥矿1242(1)保护层开采工作面瓦斯涌出量,预测结果为 15.93~17.22m 3 /m in ,误差为3.3%~4.5%.关键词:保护层开采;瓦斯涌出量;预测;瓦斯治理中图分类号:TD712.5 文献标识码:A 收稿日期:2006-06-26 责任编辑:毕永华 基金项目:安徽省高校科技创新团队计划资助项目(矿业安全技术2006KJ005Td );安徽省自然科学基金资助项目(070414171) 作者简介:戴广龙(1962-),男,安徽霍邱人,教授.E -m ail :g l dai @aust .edu .cn Forecast of the gas effused fro m the face i n protecti ve sea m DA I Guang -long 1 ,WANG You -qing 1 ,Z HANG Chun -r u 2 ,LI Q ing -m ing 2 ,SHAO Guang -y in 2 (1.D epart men t of Res our ces E xpl or a ti on and M anage m e n t E ngineeri ng ,Anhu i Un i versit y of S cie n c e and Technol og y ,Hua i nan 232001,Ch i na ;2. X ie qiao M i ne ,Huainan M i n i ng (Gr oup )Co .Lt d.,Hua i nan 232001,Ch i na ) Abst ract :The t h eo r y o f forecasting gas seepage fro m differen t sources at pro t e c tive face was ana l y zed and t h e rule of cranny distribution on the top of cove rw as g iven .Then the forecasted gas flo w fro m the pr o tecti v e face 1242(1) of X ieqiao M ine is bet w een 15.93and 17.22m 3 /m in ,and t h e err o r is 3.3%~4.5%.K ey w ords :ex tract p r o tec tive sea m ;gas e m ission flo w ;f o recast ;gas contr o l 随着煤矿开采深度的增加,开采规模不断扩大,煤矿安全生产问题变得越来越突出,成为制约矿井高产高效的主要因素,尤其是在开采低透气性高瓦斯有突出危险的煤层过程中,煤与瓦斯突出是严重威胁煤矿安全生产的自然灾害之一.目前,公认为开采不具高瓦斯和突出危险性的保护层是有效减少或消除被保护层煤与瓦斯突出危险性的有效措施.开采保护层的目的是对被保护层卸压,释放被保护层的弹性潜能,增大煤层的透气性,有利于煤层气的运移和解吸,降低被保护层的瓦斯含量及内能.在《煤矿安全规程》中也明确规定:“在开采具有煤与瓦斯突出煤层群时,必须首先开采保护层”.由于保护层的开采,造成邻近层煤层卸压,致使裂隙范围内的卸压瓦斯涌入开采工作面,为了确保回采工作面的安全生产,所以对保护层的开采工作面瓦斯来源分析以及瓦斯涌出量的预测变得尤为重要. 1 分源法预测保护层开采工作面瓦斯涌出量理论 分源法预测矿井瓦斯涌出量亦称瓦斯含量法预测矿井瓦斯涌出量.该预测法的实质是按照矿井生产过程中瓦斯涌出源的多少、各个瓦斯源涌出瓦斯量的大小,来预计该矿井各个时期(如投产期、达标期、萎缩期等)的瓦斯涌出量.各个瓦斯源涌出瓦斯量的大小是以煤层瓦斯含量、瓦斯涌出规律及煤层开采技术条件为基础进行计算确定的.根据煤炭科学研究总院抚顺分院的研究,矿井瓦斯涌出的源、汇关系如图1所示.

排放瓦斯时间计算

一、基本情况 1、瓦斯积聚地点: 2、瓦斯积聚浓度: 3、造成瓦斯积聚的原因: 4、排放瓦斯通风系统示意图(图中注明通风设施、进回风流方向、瓦斯积聚地点、警戒位置、通迅电话等) 二、计算 1、排放瓦斯量: QCH4=L·S·C+q·t 式中:L——瓦斯积聚巷道长度(m ) S——瓦斯积聚巷道平均断面(m2) C——巷道内积聚瓦斯平均浓度(% ) q——巷道正常瓦斯涌出量(m3/分) t ——排放瓦斯时间,可根据实际情况设定(分) 计算结果为(m3) 2、排放所需的最小总供风量: Qmin = ·QCH4 = 49.5QCH4 式中:Qmin ——排放瓦斯所需的最小总供风量(m3 )Cmax1 ——正常情况下,巷道内最高瓦斯允许浓度,取Cmax1=1%. Cmax2 ——排放时巷道内最高瓦斯允许浓度取Cmax2=2% QCH4——排放瓦斯量(m3 ) 计算结果为(m3)

3、排放瓦斯需用的时间: t=Qmin /Q局=49.5QCH4/ Q局= 49.5(L·S·C+q·t)/ Q局 式中:t——排放瓦斯需用的时间(分) Qmin——排放瓦斯所需的最小总供风量(m3) Q局——排放过程中局扇平均供风量,一般取局扇正常供风量的60%~70%。(m3/分) 计算结果为(分),考虑到其它因素,确定为(分) 三、排放瓦斯安全技术措施 1、排放瓦斯时,回风系统内必须切断电源,撤出人员,除救护队员和瓦检员外,其它人员严禁进入回风系统,排放瓦斯回风流路线为: 2、凡是通往瓦斯排放回风流的地点,必须设置警戒,警戒人员要认真负责,不得擅自离岗睡觉,防止闲杂人员进入回风流。警戒位置:其中警戒点由安检队负责把口,警戒点由队负责把口。 3、排放瓦斯流经巷道内的电器设备,必须指定专人在采区变电区和配电点两处同时切断电源,此项工作由机电区负责组织进行。其中电源由队负责。 4、排放瓦斯前,必须检查局扇及其开关附近10 m 范围内瓦斯浓度,只有当瓦斯浓度不超过0.5% 时,方可启动局扇。 5、局扇启动后,要检查局扇运转情况,严禁局扇发生循环风。 6、排放时,必须采取限制向独头巷道内送入风量的方法,一次只能续接一节风筒,严禁“一风吹”。

矿井瓦斯涌出量预测计算公式

一、预测原则 1、根据矿井瓦斯涌出量预测方法(AQ 1018-2006标准)。 2、本矿井处于基建阶段,瓦斯涌出主要来源为回采工作面、煤巷掘进面及煤壁涌出。 3、岩巷瓦斯涌出量一般按照工作面配风量和工作面瓦斯浓度进行计算。 4、全矿井的瓦斯涌出量由煤、岩巷掘进工作面、其他巷道或硐室和瓦斯抽采量组成。 二、预测依据 1、回采工作面瓦斯涌出量 回采工作面瓦斯涌出量预测用相对瓦斯涌出量表达,以24h 为一个预测圆班,采用式(1-1)计算。 21q q q +=采 式 (1-1) 式中: q 采一回采工作面相对瓦斯涌出量,m 3/t ; q 1一开采层相对瓦斯涌出量,m 3/t ; q 2一邻近层相对瓦斯涌出量,m 3/t 。 开采层和邻近层相对瓦斯涌出量计算方法如下: a.不分层开采时,开采层瓦斯涌出量由式(1-2)计算: ()c W W M m k k k q -????=03211 式(1-2) 式中: q 1一开采层相对瓦斯涌出量,m 3/t ; K 1一围岩瓦斯涌出系数,取; K 2—工作面丢煤瓦斯涌出系数,取; K 3—采区内准备巷道预排瓦斯对开采层瓦斯涌出影响系数,取;

m 一开采层厚度,6m ; M 一工作面采高,; W 0—煤层原始瓦斯含量,m 3 /t ; Wc —运出矿井后煤的残存瓦斯含量,m 3/t 。 b. 未开采邻近层,故不计算邻近层瓦斯涌出量。 2、掘进工作面煤壁和落煤瓦斯涌出量 a.掘进巷道煤壁瓦斯涌出量 掘进巷道煤壁瓦斯涌出量采用式(1-1)计算。 30q 1)D v q =??? (1-1) 式中: q 3—掘进巷道煤壁瓦斯涌出量,m 3/min ; D —巷道断面内暴露煤壁面的周边长度,m ;本矿主采3#煤层,煤层平均厚度为;对于厚煤层,D=2h+b ,h 及b 分别为巷道的高度及宽度。 υ—巷道平均掘进速度,m /min ; L —巷道长度,m ; q 0—煤壁瓦斯涌出强度,m 3/(m 2min),如无实测值可参考式(1-2)计算。 q 0= [(Vr )2+]W 0 (1-2) 式中: q 0 — 巷道煤壁瓦斯涌出量初速度,m 3/(m 2min): V r — 煤中挥发分含量,%,古城煤矿3#煤层挥发份经煤炭工业厅综合测试中心鉴定为%。 W 0 — 煤层原始瓦斯含量,m 3/t 。 b. 掘进落煤的瓦斯涌出量 掘进巷道落煤的瓦斯涌出量采用式(1-3)计算。 q 4=S·v ·γ·(W 0-W c ) (1-3) 式中:q 4 —— 掘进巷道落煤的瓦斯涌出量,m 3/min; S —— 掘进巷道断面积,m 2;

瓦斯抽采达标评判报告

过老巷掘绕道第一循环 抽采达标评判报告 工作面名称: 编制人: 技术负责人: 编制日期:2014年7月5日 目录

编制依据 (3) 矿集体审批意见 (4) 一、工作面情况 (5) 二、工作面瓦斯情况 (5) 三、工作面采取的瓦斯抽采措施 (6) 四、工作面施工钻孔及瓦斯抽放情况 (7) 五、工作面抽采率 (7) 六、工作面预抽瓦斯效果评判 (8) 七、抽采达标评判 (9) 八、抽采达标评判报告结论 (10)

编制依据 1、《1162回风巷掘进工作面作业规程》 2、《1162回风巷掘进工作面防突抽采设计》 3、《防治煤与瓦斯突出规定》 4、《煤矿瓦斯抽采基本指标》(AQ1026-2006) 5、《煤矿瓦斯抽放规范》(AQ1027-2006)

集体审批意见 本报告于2014年7月5日早07:30时在调度会议室集体会审通过。参加审查人员有:矿长、总工程师、生产矿长、安全矿长、机电矿长、技术科成员、掘进区长、防突科长。会审认为,1162回风巷过老巷掘绕道第一循环瓦斯预抽效果、钻孔有效控制范围、抽采率等都满足要求,所以判定该工作面瓦斯预抽效果达标。并强调以下几条意见: 1、必须严格按规定采用钻屑瓦斯解吸指标法进行区域验证和局部预测,防突考察工进行验证及预测时,掘进施工单位需为其提供压风等服务。 2、日常收集的瓦斯地质数据,及时归档管理,以便进行瓦斯地质分析。 3、遇断层、二合顶等地质构造时需加大局部预测的密度。 4、任何一次区域验证为有突出危险或超前钻孔等发现了打钻有喷孔、卡钻现象,工作面瓦斯忽大忽小,瓦斯持续上升,响煤炮,煤粉或煤壁发冷等突出预兆,则以后的掘进过程中均要执行局部综合防突措施。

瓦斯涌出量计算办法 Microsoft Word 文档

虬髯客 矿井瓦斯涌出量预测方法 虬髯客https://www.wendangku.net/doc/cb12528589.html,/qiuranke000 2009-03-06 13:20:35 矿井瓦斯涌出量预测方法 AQ 1018-2006 国家安全生产监督管理总局2006-02-27发布2006-05-01实施 前言 本标准的附录A、附录B、附录C、附录D均为资料性附录。 本标准由国家安全生产监督管理总局提出。 本标准由国家安全生产监督管理总局归口。 本标准起草单位:煤炭科学研究总院抚顺分院。 本标准主要起草人:姜文忠、秦玉金、闫斌移、薛军峰 1 范围 本标准规定了采用分源预测法与矿山统计法进行矿井瓦斯涌出量预测的方法。 本标准适用于新建矿井、生产矿井新水平延深、新采区以及采掘工作面(放顶煤工作面除外)的瓦斯涌出量预测。 2 规范性引用文件 下列文件中的条款通过本标准的引用成为本标准的条款。凡是注册日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达。 MT/T 77煤层气测定方法(解吸法) 《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》 3 术语及定义 3.1矿井瓦斯涌出量预测prediction of mine gas emission rate 计算出矿井在一定生产时期、生产方式和配产条件下的瓦斯涌出量,并绘制反映瓦斯涌出规律的涌出量等值线图。 3.2矿井瓦斯涌出量absolute gas emission rate

单位时间内从煤层以及采落的煤(岩)体涌入矿井中的气体总量,矿井进行瓦斯抽放时包括抽放瓦斯量。 3.3绝对瓦斯涌出量absolute gas emission rate 单位时间内从煤层和岩层以及采落的煤(岩)体所涌出的瓦斯量,单位采用m2/min。3.4相对瓦斯涌出量relative gas emission rate 平均每产1t煤所涌出的瓦斯量,单位为m2/t 3.5 矿山统计法statistical predicted method of mine gas 根据对本矿井或邻近矿井实际瓦斯涌出资料的统计分析得同的矿井瓦斯涌出量随开采深度变化的规律,预测新井或新水平瓦斯的方法。 3.6分源预测法predicted method by different gas source 根据时间和地点的不同,分成数个向矿井涌出的与瓦斯源,在分别对这些瓦斯涌出源进行预测的基础上得出矿井瓦斯涌出量的方法。 4 一般要求 4.1 新建矿井或生产矿井新水平,都必须进行瓦斯涌出量预测,以确定新矿井、新水平、新采区投产后瓦斯涌出量大小,作为矿井和采区通风设计、瓦斯抽放及瓦斯管理的依据。 4.2 矿井瓦斯涌出量预测采用分源预测法或矿山统计法。 4.3 矿井瓦斯涌出量预测应包括以下资料: a) 矿井采掘设计说明书: 1) 开拓、开采系统图、采掘接替计划; 2) 采煤方法、通风方式; 3) 掘进巷道参数、煤巷平均掘进速度; 4) 矿井、采区、回采工作面及掘进工作面产量。 b) 矿井地质报告: 1) 地层剖面图、柱状图等; 2) 各煤层和煤夹层的厚度、煤层间距离及顶、底板岩性。 c) 煤层瓦斯含量测定结果、风化带深度及瓦斯含量等值线图;

矿井瓦斯涌出量预测方法A

矿井瓦斯涌出量预测方 法A 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

矿井瓦斯涌出量预测方法 AQ 1018-2006 国家安全生产监督管理总局2006-02-27发布 2006-05-01实施 前言 本标准的附录A、附录B、附录C、附录D均为资料性附录。 本标准由国家安全生产监督管理总局提出。 本标准由国家安全生产监督管理总局归口。 本标准起草单位:煤炭科学研究总院抚顺分院。 本标准主要起草人:姜文忠、秦玉金、闫斌移、薛军峰 1 范围 本标准规定了采用分源预测法与矿山统计法进行矿井瓦斯涌出量预测的方法。 本标准适用于新建矿井、生产矿井新水平延深、新采区以及采掘工作面(放顶煤工作面除外)的瓦斯涌出量预测。 2 规范性引用文件 下列文件中的条款通过本标准的引用成为本标准的条款。凡是注册日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达。 MT/T 77煤层气测定方法(解吸法) 《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》 3 术语及定义 矿井瓦斯涌出量预测 prediction of mine gas emission rate 计算出矿井在一定生产时期、生产方式和配产条件下的瓦斯涌出量,并绘制反映瓦斯涌出规律的涌出量等值线图。 矿井瓦斯涌出量 absolute gas emission rate 单位时间内从煤层以及采落的煤(岩)体涌入矿井中的气体总量,矿井进行瓦斯抽放时包括抽放瓦斯量。 绝对瓦斯涌出量 absolute gas emission rate 单位时间内从煤层和岩层以及采落的煤(岩)体所涌出的瓦斯量,单位采用m2/min。 相对瓦斯涌出量 relative gas emission rate 平均每产1t煤所涌出的瓦斯量,单位为m2/t 矿山统计法 statistical predicted method of mine gas 根据对本矿井或邻近矿井实际瓦斯涌出资料的统计分析得同的矿井瓦斯涌出量随开采深度变化的规律,预测新井或新水平瓦斯的方法。 分源预测法 predicted method by different gas source

煤矿瓦斯抽采基本指标

煤矿瓦斯抽采基本指标 AQ1026-2006 前言 本标准全部内容为强制性条文。 本标准由国家煤矿安全监察局提出。 本标准由全国安全生产标准化技术委员会煤矿安全分技术委员会归口。 本标准起草单位:煤炭科学研究总院重庆分院、中国矿业大学、煤炭科学研究总院抚顺分院、阳泉矿业(集团)有限责任公司、淮南矿业(集团)有限责任公司、芙蓉(集团)实业有限责任公司。 本标准主要起草人:胡千庭、文光才、俞启香、王魁军、李宝玉、周德昶、高正强、龙伍见。 1 范围 本标准规定了煤矿瓦斯抽采应达到的指标及其测算方法。 本标准适用于井工煤矿。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 MT/T638 煤矿井下煤层瓦斯压力的直接测定法 MT/T77 煤层气测定方法(解吸法) AQ1025 煤井瓦斯等级鉴定规范

3 必须进行瓦斯抽采的矿井 有下列情况之一的矿井,必须建立地面永久抽采瓦斯系统或井下临时抽采瓦斯系统: a) 一个采煤工作面的瓦斯涌出量大于5m3/min或一个掘进工作面瓦斯涌出量大于3m3/min,用通风方法解决瓦斯问题不合理时; b) 矿井绝对涌出量达到以下条件的: ——大于或等于40m3/min; ——年产量1.0—1.5Mt的矿井,大于30m3/min; ——年产量0.6—1.0Mt的矿井,大于25m3/min; ——年产量0.4—0.6Mt的矿井,大于20m3/min; ——年产量等于或小于0.4Mt,大于15m3/min。 c) 开采有煤与瓦斯突出危险煤层。 4 瓦斯抽采应达到的指标 4.1突出煤层工作面采掘作业前必须将控制范围内煤层的瓦斯含量降到煤层始突深度的瓦斯含量以下或将瓦斯压力降到煤层始突深度的煤层瓦斯压力以下。若没能考察出煤层始突深度的煤层瓦斯含量或压力,则必须将煤层瓦斯含量降到8m3/t以下,或将煤层瓦斯压力降到0.74MPa(表压)以下。控制范围如下: a)石门(井筒)揭煤工作面控制范围应根据煤层的实际突出危险程度确定,但必须控制到巷道轮廓线外8m以上(煤层倾角>8°时,底部或下帮5m)。钻孔必须穿透煤层的顶(底)板0.5m以上。若不能穿透煤层全厚,必须控制到工作面前方15m以上。 b)煤巷掘进工作面控制范围为:巷道轮廓线外8m以上(煤层倾角>8°时,底部或下帮5m)及工作面前方10m以上。 c)采煤工作面控制范围为:工作面前方20m以上。

瓦斯涌出量预测方法及问题

矿 山 安 全Mine Safety 今年7月底,国家煤矿安全监察局针对一些高瓦斯和低瓦斯矿井相继发生了煤与瓦斯突出事故的情况,要求强化煤矿瓦斯防治基础工作,立即组织开展矿井瓦斯等级鉴定。而开展矿井瓦斯等级鉴定,必须掌握瓦斯涌出量预测方法。 瓦斯涌出量预测方法是以煤层瓦斯含量及其分布规律,或以煤层瓦斯涌出量变化规律为基础,结合地质、开采等因素选取合理参数,预计瓦斯涌出量为多少的工作过程。所得的数据可以确定矿井或水平开采时采煤工作面和掘进工作面的瓦斯涌出量,从而划定矿井或水平开采时瓦斯涌出等级,进行矿井设计和选择瓦斯防治措施。 瓦斯涌出量预测方法 目前,在全国煤田勘探中瓦斯涌出量预测方法主要有以下几种。 一、梯度预测法 梯度预测法是最早被采用的一种预测方法,也是我国20世纪90年代矿井瓦斯涌出量预测普遍使用的预测方法。它是利用矿井已采瓦斯涌出量的实测资料,计算出瓦斯涌出量梯度,以预测深部采区的相对瓦斯涌出量。 二、类比法 根据生产矿井已采地区瓦斯涌出量的实测资料,计算出采煤工作面的相对瓦斯涌出量与煤层瓦斯含量的比值,还可计算出掘进巷道绝对瓦斯涌出量与煤层瓦斯含量的比值。在地 质条件类似的临近新建矿井,利用这 两个之间的比值,结合设计方案,进 行新矿井瓦斯涌出量预测。 三、分形法 R/S分析是一种时间序列分析 方法,是由赫斯特于1965年提出的, 该方法在分形理论中应用较广。赫 斯特分析R(T)/S(T)=R/S统计规 律时发现存在如下关系式:R/S∝ (T/2)H,式中H—赫斯特指数。 H=1/2,当赫斯特研究了江河的流 量、泥浆的沉积等自然现象之后, 发现当H>1/2时,意味着持久性, 即所研究物理量时间序列不是相互 独立的,而具有相关性。进一步研究 表明,当H>1/2时,用平均的观点 看,过去的一个增长趋势意味着将 来的一个增长趋势,反之亦然,即过 程有持久性;当H<1/2时,过去的 增量与未来呈负相关,过程具有反 持久性。因此,R/S分析在时间序 列中具有很强的预测预报作用。 四、灰色系统理论与模糊数学 预测法 灰色系统是邓聚龙教授提出的 一种新的系统理论,灰色系统理论 是通过一系列数据生成方法(直接累 加法、移动平均法、自适性累加法 等)将本没有规律的、杂乱无章的或 规律性不强的一组原始数据序列变 得具有显著规律性,高度的概括性, 而且使预测精度高,具有明显的确 定性。由后残差检验结果,灰色系统 预测拟合精度为好,预测结果正确 可靠。由矿井相对瓦斯涌出量测量 可知,灰色预测值与实际测量值基 本吻合,说明对矿井未来瓦斯涌出 量预测都不会有太大的误差,除非 开采方式改变或地质条件变化,才 有可能造成测量结果的失真情况。 五、神经网络模型预测法 BP算法在1985年由Rumelhart 等提出,该方法系统地解决了多层神 经元网络中隐单元层连接权的学习问 题,并在数学上给出了完整的推导。采 用BP算法的多层神经网络模型一般 称为BP网络。多层神经网络模型的一 般拓扑结构如图1所示。结合问题的 实际情况,本模型采用Sigmoid型函 数:f(x)=11+e-x。通过证明将样本输 入神经网络模型进行仿真,其相对误 差分别为4.43%、6.5%、2.11%,可以 看出神经网络预测具有较高的精度。 六、分源法 分源法是按照矿井生产过程中 瓦斯涌出源的多少、各个矿井瓦斯 源涌出瓦斯的大小,来预测矿井各 个时期的瓦斯涌出量,为矿井通风 设计提供更合理的矿井瓦斯涌出资 料,并为高、低瓦斯煤层如何合理配 采,减少矿井瓦斯涌出不均衡提供 科学依据。 七、三维灰趋势面分析法 趋势面分析法是用数学方法研 究地质变量的空间分布与瓦斯量变 化规律间相互关系的一种多元统计 分析方法。在一定意义上说,所谓 瓦斯涌出量预测方法及问题 景兴鹏 李彬刚 郑登锋 文

矿井瓦斯涌出量预测计算公式定稿版

矿井瓦斯涌出量预测计算公式精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

一、预测原则 1、根据矿井瓦斯涌出量预测方法(AQ 1018-2006标准)。 2、本矿井处于基建阶段,瓦斯涌出主要来源为回采工作面、煤巷掘进面及煤壁涌出。 3、岩巷瓦斯涌出量一般按照工作面配风量和工作面瓦斯浓度进行计算。 4、全矿井的瓦斯涌出量由煤、岩巷掘进工作面、其他巷道或硐室和瓦斯抽采量组成。 二、预测依据 1、回采工作面瓦斯涌出量 回采工作面瓦斯涌出量预测用相对瓦斯涌出量表达,以24h 为一个预测圆班,采用式(1-1)计算。 21q q q +=采 式(1-1) 式中: q 采一回采工作面相对瓦斯涌出量,m 3/t ; q 1一开采层相对瓦斯涌出量,m 3/t ; q 2一邻近层相对瓦斯涌出量,m 3/t 。 开采层和邻近层相对瓦斯涌出量计算方法如下: a.不分层开采时,开采层瓦斯涌出量由式(1-2)计算: ()c W W M m k k k q -????=03211 式(1-2) 式中:

q 1一开采层相对瓦斯涌出量,m 3 /t ; K 1一围岩瓦斯涌出系数,取1.2; K 2—工作面丢煤瓦斯涌出系数,取1.18; K 3—采区内准备巷道预排瓦斯对开采层瓦斯涌出影响系数,取0.83; m 一开采层厚度,6m ; M 一工作面采高,3.5m ; W 0—煤层原始瓦斯含量,m 3/t ; Wc —运出矿井后煤的残存瓦斯含量,m 3/t 。 b. 未开采邻近层,故不计算邻近层瓦斯涌出量。 2、掘进工作面煤壁和落煤瓦斯涌出量 a.掘进巷道煤壁瓦斯涌出量 掘进巷道煤壁瓦斯涌出量采用式(1-1)计算。 30q 1)D v q =??? (1-1) 式中: q 3—掘进巷道煤壁瓦斯涌出量,m 3/min ; D —巷道断面内暴露煤壁面的周边长度,m ;本矿主采3#煤层,煤层平均厚度为6.27m ;对于厚煤层,D=2h+b ,h 及b 分别为巷道的高度及宽度。 υ—巷道平均掘进速度,m /min ; L —巷道长度,m ; q 0—煤壁瓦斯涌出强度,m 3/(m 2min),如无实测值可参考式(1-2)计算。

瓦斯涌出量的计算

1、回采工作面瓦斯涌出量 回采工作面瓦斯涌出量由开采层(包括围岩)和邻近层两部份组成,计算公式如下: q 采=q 1+q 2 式中:q 采——回采工作面相对瓦斯涌出量,m 3/t; q 1——开采层相对瓦斯涌出量,m 3/t ; q 2——邻近层相对瓦斯涌出量,m 3/t ; 1、开采层瓦斯涌出量 )(q 03211c W W M m K K K -?? ??= 式中:K 1——围岩瓦斯涌出系数; K 2--回采工作面丢煤涌出系数,其值为回采率的倒数; K 3-—顺槽掘进预排系数,后退式回采,K 3=(B —2b )/ B ; B ——回采工作面长度,m ; b -—顺槽瓦斯预排宽度,m ; m ——开采层厚度,m ; M ——工作面采高,m ; W 0——煤层原始瓦斯含量,m 3/t ; W c -—煤层残存瓦斯含量,m 3/t. 2、邻近层瓦斯涌出量 )(q 012ci i i n i i W W M m -??=∑ =η 式中:q 2—— 邻近层相对瓦斯涌出量,m 3/t ; i η——邻近层瓦斯排放率,%; W 0i -—各邻近层原始瓦斯含量,m 3/t ; W ci —-各邻近层残存瓦斯含量,m 3/t ; m i —-各邻近层煤厚,m ; 其余符号意义同前。 2、掘进面瓦斯涌出量计算

掘进工作面瓦斯涌出来源包括两部份,一是暴露煤壁涌出瓦斯,二是破落煤块涌出瓦斯,其涌出量计算公式如下: q 掘=q 3+q 4 q 3=D×V×q 0×(2 1V L -) q 4=S×V×γ×(W 0-W c ) 式中:q 掘——掘进面绝对瓦斯涌出量,m 3/min ; q 3——掘进巷道煤壁绝对瓦斯涌出量,m 3/min ; q 4——掘进巷道落煤绝对瓦斯涌出量,m 3/min ; D ——巷道断面内暴露煤壁面周边长度,m ; V ——巷道平均掘进速度,m/min; L —-掘进煤巷长度,m; q 0——掘进面煤壁瓦斯涌出初速度,m 3/(m 2·min); q 0=0.026 [ 0。0004×(V r )2+0.16 ] ×W 0 式中:V r —-掘进煤层原煤挥发份,% S--掘进煤巷断面积,m 2 ; γ-—原煤容重,t/m 3; 其余符号意义同前. 3、采区瓦斯涌出量计算 1 i 1A 1440K ? ?? ??+=∑∑==n n i i i i q A q q 掘采‘ 区 式中:q 区——生产采区相对瓦斯涌出量,m 3/t ; K′——生产采区内采空区瓦斯涌出系数; q 采i ——第i 个回采工作面相对瓦斯涌出量,m 3/t ; A i ——第i 个回采工作面的日产量,t; q 掘i ——第i 个掘进工作面绝对瓦斯涌出量,m 3/min ; A o ——生产采区平均日产量,t; 4、矿井瓦斯涌出量

瓦斯排放计算公式

作经验,能严格控制排放量,安全问题是能解决的,此方法的优点在于风机吸入的风量全部用于排放并稀释瓦斯,所以在停风区内积聚的瓦斯浓度高且全风压风量又不太大时,采用逐段排放比较好。 2 有关参数计算 独头掘进巷道停风后,其内部积存的瓦斯量、瓦斯浓度、排放时最大供风量、最大排放量和最短的排放时间都很有必要在排放前制定的安全措施报告中计算出来,这样一是有利于排放瓦斯人员在实际操作时做到心中有数,二是有利于妥善安排停电撤人区域内各部门的工作。严格讲,井下条件复杂,有关计算属于估算,与实际情况未必完全相符,执行时应根据实际情况灵活调整。独头巷道内积存的瓦斯量VCH4=KQCH4t 式中VCH4——独头巷道内积存的瓦斯量,m3; QCH4——正常时独头巷道的绝对瓦斯涌出量,m3/min; t——停风时间,min; K——停风后独头巷道内绝对瓦斯涌出量与正常掘进时绝对瓦斯涌出量之比值,K值因矿井及独头巷道的具体情况,即瓦斯涌出源的构成不同而不同,但停风后由于巷道不掘进,CH4涌出量减小,故K<1,一般为~。独头巷道内积存的瓦斯浓度C=VCH4×100

/LS=KQCH4t×100/LS 式中C——独头巷道内CH4平均浓度,%; L——独头巷道长度,m; S——独头巷道平均断面积,m2。 当停风时间很长,即t值很大时,有可能使计算出的C≥100%,这与实际情况不符,此时取C=100%,从另一方面讲,独头巷道内CH4分布是不均匀的。最大排放量M=Q0(-C0)/100 式中M——从独头巷道中每分钟最多允许排出的瓦斯量,m3/min; Q0——全风压通风巷道中风量,m3/min; C0——全风压通风巷道入风流中携带的CH4浓度,%。最大供风量 Qmax=M×100/C=Q0(-C0)/C 式中Qmax——允许往独头巷道内供风量的最大值,m3/min;C——独头巷道内平均CH4浓度,%。排放时间T

矿井瓦斯涌出量预测计算公式

矿井瓦斯涌出量预测计 算公式 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一、预测原则 1、根据矿井瓦斯涌出量预测方法(AQ 1018-2006标准)。 2、本矿井处于基建阶段,瓦斯涌出主要来源为回采工作面、煤巷掘进面及煤壁涌出。 3、岩巷瓦斯涌出量一般按照工作面配风量和工作面瓦斯浓度进行计算。 4、全矿井的瓦斯涌出量由煤、岩巷掘进工作面、其他巷道或硐室和瓦斯抽采量组成。 二、预测依据 1、回采工作面瓦斯涌出量 回采工作面瓦斯涌出量预测用相对瓦斯涌出量表达,以24h 为一个预测圆班,采用式(1-1)计算。 21q q q +=采 式(1-1) 式中: q 采一回采工作面相对瓦斯涌出量,m 3/t ; q 1一开采层相对瓦斯涌出量,m 3/t ; q 2一邻近层相对瓦斯涌出量,m 3/t 。 开采层和邻近层相对瓦斯涌出量计算方法如下: a.不分层开采时,开采层瓦斯涌出量由式(1-2)计算: ()c W W M m k k k q -????=03211 式(1-2) 式中: q 1一开采层相对瓦斯涌出量,m 3/t ; K 1一围岩瓦斯涌出系数,取; K 2—工作面丢煤瓦斯涌出系数,取; K 3—采区内准备巷道预排瓦斯对开采层瓦斯涌出影响系数,取; m 一开采层厚度,6m ; M 一工作面采高,; W 0—煤层原始瓦斯含量,m 3/t ; Wc —运出矿井后煤的残存瓦斯含量,m 3/t 。

b. 未开采邻近层,故不计算邻近层瓦斯涌出量。 2、掘进工作面煤壁和落煤瓦斯涌出量 a.掘进巷道煤壁瓦斯涌出量 掘进巷道煤壁瓦斯涌出量采用式(1-1)计算。 30q 1)D v q =??? (1-1) 式中: q 3—掘进巷道煤壁瓦斯涌出量,m 3/min ; D —巷道断面内暴露煤壁面的周边长度,m ;本矿主采3#煤层,煤层平均厚度为;对于厚煤层,D =2h+b ,h 及b 分别为巷道的高度及宽度。 υ—巷道平均掘进速度,m /min ; L —巷道长度,m ; q 0—煤壁瓦斯涌出强度,m 3/(m 2min ),如无实测值可参考式(1-2)计算。 q 0= [(Vr )2+]W 0 (1-2) 式中: q 0 — 巷道煤壁瓦斯涌出量初速度,m 3/(m 2min ): V r — 煤中挥发分含量,%,古城煤矿3#煤层挥发份经煤炭工业厅综合测试中心鉴定为%。 W 0 — 煤层原始瓦斯含量,m 3/t 。 b. 掘进落煤的瓦斯涌出量 掘进巷道落煤的瓦斯涌出量采用式(1-3)计算。 q 4=S·v ·γ·(W 0-W c ) (1-3) 式中:q 4 —— 掘进巷道落煤的瓦斯涌出量,m 3/min ; S —— 掘进巷道断面积,m 2; υ —— 巷道平均掘进速度,m /min ; γ —— 煤的密度,t /m 3; W 0 —— 煤层原始瓦斯含量,m 3/t ; W c —— 运出矿井后煤的残存瓦斯含量,m 3/t 。

瓦斯抽采工程标准

第一部分 晋城煤业集团矿井瓦斯抽采标准(试行) 为进一步规范集团公司瓦斯抽采管理,推进瓦斯抽采钻孔封孔、联孔标准化工作的精细化水平,特制定本标准。 1.矿井瓦斯抽采系统 1.1根据瓦斯涌出预测情况,对矿井瓦斯抽采系统进行委托设计,并上报审批。 1.2矿井抽采系统原则建立地面固定式抽采泵系统,系统具有本煤层预抽和采空区抽采功能,且能管路系统能通过阀门调节互通。 1.3瓦斯抽采系统中运行抽采泵能力与备用泵的单台能力一致。单一预抽系统或采空区抽采系统,备用泵台数不得少于1台,具有本煤层预抽和采空区抽采互通功能的抽采系统,备用泵台数不得少于运行泵台数的60%。 1.4瓦斯抽采泵站必须安设抽采参数监测系统,主要监测数据接入矿井安全监控系统。 1.5瓦斯抽采泵站进气管路必须同时安装人工和自动检测流量、压力、浓度、温度的装置。自燃煤层采空区抽采管路入口10-15m 范围内安装CO传感器。 1.5.1每1h对自动检测数据进行一次检测和记录,每7d人工检测一次,对自动检测数据进行校正。 1.5.2矿井抽采量报表以泵站人工检测数据校准值为准。 1.6井下瓦斯抽采主要大巷主管、盘区干管、顺槽支(分)管及专用抽采巷道必须按标准要求安装流量、浓度、压力、温度自动检测计量或人工检测计量装置。计量装置安装在巷道口50m范围以内。 1.7每个瓦斯抽采钻场和抽采评价单元及汇流管必须装设流量、浓度、压力人工检测计量装置。 1.8瓦斯抽采钻孔应装设浓度、压力人工检测装置。 1.9安设检测、计量装置的地点应设置观测、管理牌板。 1.10井下瓦斯抽采管路检测计量装置要求计量可靠,检测及时。 1.11瓦斯抽采管路系统和抽采钻孔参数每7d至少检测一次,检测结果记入现场管理牌板,并汇总汇报。 1.12瓦斯抽采管路系统和瓦斯抽采钻孔应安排人员定期进行巡回检查、放水、除渣,发现问题及时处理。 1.13应根据瓦斯抽采管路系统和抽采钻孔参数检测分析结果,及时对瓦斯抽采系统和抽采钻孔进行调整或调节,保证高效抽采。预抽管路系统中瓦斯浓度低于35%时,必须向集团公司说明原因。 2.矿井瓦斯抽采管路 2.1敷设瓦斯抽采管路应根据井下巷道的布置、抽采地点的分布、矿井的发展规划以及瓦斯利用的要求等因素统筹确定,避免或

煤矿计算公式

一、常见断面面积计算: 1、半圆拱形面积=巷宽×(巷高+0.39×巷宽) 2、三心拱形面积=巷宽×(巷高+0.26×巷宽) 3、梯形面积=(上底+下底)×巷高÷2 4、矩形面积=巷宽×巷高 二、风速测定计算: V表=n/t (m/s) (一般为侧身法测风速) 式中:V表:计算出的表速; n:见表读数; t:测风时间(s) V真=a+ b×V表 式中:V真:真风速(扣除风表误差后的风速); a、b:为校正见表常数。 V平=K V真=(S-0.4)×V真÷S 式中:K为校正系数(侧身法测风时K=(S-0.4)/S,迎面测风时取1.14);S为测风地点的井巷断面积 三、风量的测定: Q=SV 式中Q:井巷中的风量(m3/s);S:测风地点的井巷断面积(m2); V:井巷中的平均风速(m/s)例1:某半圆拱巷道宽2m,巷道壁高1m,风速1m/s,问此巷道风量是多少。 例2:某煤巷掘进断面积3m2,风量36 m3/min,风速超限吗? 四、矿井瓦斯涌出量的计算: 1、矿井绝对瓦斯涌出量计算(Q瓦) Q瓦=QC(m3/min) 式中Q:为工作面的风量;C:为工作面的瓦斯浓度(回风流瓦斯浓度-进风流中瓦斯浓度)例:某矿井瓦斯涌出量3 m3/min,按总回风巷瓦斯浓度不超限计算矿井供风量不得小于多少。 2、相对瓦斯涌出量(q瓦) q瓦=(m3/t) 式中Q瓦:矿井绝对瓦斯涌出量;1440:为每天1440分钟; N:工作的天数(当月); T:当月的产量 五、全矿井风量计算: 1、按井下同时工作最多人为数计算 Q矿=4NK(m3/min) 式中4:为《规程》第103条规定每人在井下每分钟供给风量不得少于4立方米;N:井下最多人数;K:系数(1.2~1.5) 2、按独立通风的采煤、掘进、硐室及其他地点实际需要风量的总和计算 Q矿=(∑Q采+∑Q掘+∑Q硐…+∑Q其他)×K 式中K:校正系数(取1.2~1.8) 六、采煤工作面需风量 1、按瓦斯涌出量计算

瓦斯抽采能力核查计算

第九节瓦斯抽放系统能力核查 (一)矿井瓦斯抽采能力核查 1、瓦斯抽采系统概况 ⑴瓦斯抽采系统设计概况 矿井生产能力为60万吨/年时,曾委托山西国辰建设工程勘察设计有限公司编制《XXXX责任公司矿井瓦斯抽放工程设计》,2009年2月6日,山西省煤炭工业局以晋煤安发[2009]90号文予以批复,该矿严格按照批准的设计进行施工建设,同年竣工并投入运行。目前矿井瓦斯抽采系统已按150万吨/年矿井能力进行了完善。 ⑵矿井瓦斯赋存特点、各煤层瓦斯含量,矿井及采掘工作面瓦斯涌出量 依据该矿《瓦斯涌出量预测报告》,2、3号煤层瓦斯含量具有随埋深增加而加大,井田范围内的2、3号煤层均处于瓦斯带;2号煤层瓦斯含量增长梯度为1.23m3/t/100m;3号煤层瓦斯含量增长梯度为0.96m3/t/100m。 依据该矿《瓦斯涌出量预测报告》得出,矿井达产后,矿井最大绝对瓦斯涌出量为41.32 -51.25m3/min,其中,回采工作面瓦斯涌出为22.02-26.47m3/min,约占全矿井瓦斯涌出的50.28-53.29%;五个掘进工作面瓦斯涌出为 2.43-3.85m3/min,约占全矿井瓦斯涌出的5.88-8.88%,采空区瓦斯涌出为16.87~20.93m3/min,约占全矿井瓦斯涌出的40.83~40.84%。 2号煤层回采工作面瓦斯涌量为11.63-14.00m3/min,其中开采层瓦斯涌出为 6.68-8.05m3/min,约占整个回采工作面瓦斯涌出的57.46%-57.53%,邻近层瓦斯涌出为4.94-5.94m3/min,约占整个回采工作面瓦斯涌出的42.47%-42.53%。 3号煤层回采工作面瓦斯涌量为10.39-12.47m3/min,其中开采

相关文档