文档库 最新最全的文档下载
当前位置:文档库 › Teaching Finite Element Analysis for Design Engineers

Teaching Finite Element Analysis for Design Engineers

Teaching Finite Element Analysis for Design Engineers
Teaching Finite Element Analysis for Design Engineers

Teaching Finite Element Analysis for Design Engineers

Paul M. Kurowski

The University of Western Ontario

Department of Mechanical and Materials Engineering

pkurowski@eng.uwo.ca

Abstract

The Finite Element Analysis (FEA) is becoming increasingly popular among design engineers using it as one of many product design tools. Safe and cost efficient use of FEA as a product design tool requires training, different from that presently found in undergraduate curriculum of mechanical engineering students. The specific requirements of design engineers for training in the field of FEA have been addressed by the author in a number of professional development courses in FEA, catering specifically to the needs of design engineers. This paper discuses tools and methods used in the development and delivery of these courses and their applicability to the undergraduate courses taught in Canadian Engineering schools.

1.Changing responsibilities of design

engineers.

Due to competitive pressures as well as the availability of CAE tools, since early 1990’s the responsibilities of design engineer have been steadily expanding from just designing to geometry creation with CAD and design analysis, most often performed with FEA (figure 1).

Figure 1. Expanding responsibilities of design

engineers

To make sure that FEA performs in the hands of design engineers as a productivity tool, design engineers must be provided with training that addresses the needs of this relatively new type of users.

2.FEA as a design tool

Finite Element Analysis (FEA)for a perspective of a design engineer, is one of many tools of design analysis. Therefore, it is appropriate to position it first among other design analysis tools.

Design analysis can be conducted by on real objects or on models that represent certain aspects of the real object. If models are used instead of real objects, the analysis can be conducted earlier in the design process, long before the final product or even prototypes are built. Those models used for design analysis can take the form of physical models (f or example: scaled down models, mockups, photoelastic models) or mathematical models where certain behavior of a part or a structure is described by a mathematical apparatus.

The design analysis conducted with the use of mathematical models can be further broken down based on what methods are used to obtain solution.

Simple mathematical models can be solved analytically. More complex models require the use of numerical methods and this is where the FEA comes in. FEA is one of many numerical methods used to solve complex mathematical models. It is particularly well suited to solving structural and thermal problems commonly challenging mechanical design engineers.

3.What is “FEA for Design Engineers”

While the expertise expected of FEA users always requires familiarity with Mechanics of Materials, Engineering Design and other topics common to any mechanical engineering curriculum., the FEA training should differentiate between the needs of analysts and the needs of design engineers because each group of uses the FEA differently.

What exactly distinguishes “Finite Element Analysis for Design Engineers” from a “regular” Finite Element Analysis as it traditionally has been performed by analysts? We will h ighlight the most essential characteristics of FEA for Design Engineers as opposed to FEA performed by analysts.

FEA is just another design tool

For Design Engineers the Finite Element Analysis is one of many design tools and is used along CAD, spreadsheets, catalogs, data bases, hand calculations, text books etc.

FEA is based on CAD models

Design is nowadays almost always created using CAD tools and, therefore, CAD model is the starting point for FEA.

FEA is concurrent with the design process.

Since FEA is a design tool, it should be used concurrently with the design process. It should keep up, or better, drive the design process. Analysis iterations must be preformed fast and, since results are used to make design decisions, the results must be reliable, even though not enough input data may be available for analysis conducted early in the design process.

Limitations of “FEA for Design Engineers”

As we can see, the FEA used in the design environment should meet quite high requirements. It must be exe cuted fast and accurately; even though it is in the hands of design engineers and not FEA specialists. An obvious question is: would it be better to have a dedicated specialist perform FEA and let design engineers do what they do best: designing new products? The answer depends on the size of organization, type of products, company organization and culture and many other tangible and non tangible factors. A general consensus is that design engineers should handle relatively simple types of analysis in support of design process. More complex types of analyses, too complex and too time consuming to be executed concurrently design process, are usually better handled either by a dedicated analyst or contracted out to specialized consultants.

Objective of “FEA for Design Engineers”

The ultimate objective of using the FEA as a design tool is to change the design process from iterative cycles of “design, prototype, test” into a streamlined process where prototypes are used only for final design verification. With the use of FEA, design iterations are moved from physical space of prototyping and testing into virtual space of computer based simulations (figure 2). The FEA is not, of course, the only tool of computerized simulation used in the design process. There are others like, for example, Computational Fluid Dynamics, Motion Analysis etc. jointly called the tools of Computer Aided Engineering (CAE).

Figure 2. Traditional and CAE driven product

development process

.

4.How to teach “FEA for Design

Engineers” ?

Teaching an FEA course to engineers who will use it as a design tool requires specific approach not typically found in FEA courses commonly taught to engineering students. It requires a careful balance of FEA fundamentals and examples to illustrate those

fundamentals while connecting to problems typical to design engineering.

The principal objective of an “FEA for Design Engineers” course is to provide students with skills necessary to perform time efficient and cost-effective FEA concurrently with product design process a s well as to manage and supervise in-house FEA activities.

This objective is best achieved by combining lectures with hands-on exercises. Hands-on exercises range from analysis of simple but illustrative models highlighting FEA fundamentals to more complex assignments which can be customized to meet specific needs of students’ industry.

Based on this approach the author has developed a number of Professional Development course s covering the use of FEA in the “design engineer” mode. While they differ in length and the software used, the major objectives remain the same:

-To review the fundamentals of the Finite Element Analysis (FEA)

-To provide a basis for assessment of the quality of FEA results

-To demonstrate cost effective modeling techniques

-To conduct different types of analyses typically performed by design engineers

-To provide tools for effective implementation and management of the FEA

-To discuss common traps and misconceptions in the applied FEA

Here we introduce a sample course addressed to design engineers and offered by the Advanced Design and Manufacturing Institute (ADMI) of Canada [1]. 5.ADMI Canada course “Finite Element

Analysis for Design Engineers”

The ADMI Canada course is intended for engineers who wish to use the Finite Element Analysis (FEA) as one of their design tools, and for engineering managers in charge of FEA related projects. It provides the participants with tool necessary to turn FEA into a productivity tool by:

-Understanding powers and shortcomings of FEA -Avoiding common pitfalls and misconceptions of FEA

-Selecting software best suited for the analyzed products -Selecting preferable modeling approaches

-Producing reliable results on time

-Integrating FEA with CAD and other CAE tools

-Streamlining CAD and FEA by implementing FEA oriented Solid Modeling practices

-Ensuring quality and cost-effectiveness of in-house and contracted out FEA projects

The ADMI Canada course has a modular structure typically spanning over two four days blocks: MODULE 1

Day 1

-Position of FEA among other tools of

numerical analysis

-Design and types of finite elements

-Controlling discretization errors

-h convergence process

-p convergence process

Day 2

-Finite element mesh

-Mesh compatibility

-Common meshing problems

-Modeling process

-Common modeling techniques

-Test #1 5%

Day 3

-Common modeling techniques

-Types of finite element analysis

-Steady state thermal analysis

-Transient thermal analysis

-Thermal stress analysis

Day 4

-Modal analysis

-Linear buckling analysis

-Nonlinear buckling analysis

-Test #2 5%

IN BETWEEN MODULES

-Two take home assignments 25% each

MODULE 2

Day 1

-Nonlinear material analysis

-Nonlinear geometry analysis

-Test #3 5%

Day 2

-Modal analysis ... cont'd

-Vibration analysis

-Interfacing FEA with Motion Analysis

software

-Interfacing FEA with CFD tools

Day 3

-Preparing CAD geometry for FEA

-CAD geometry quality

-Test #4 5%

Day 4

-CAD data exchange between different CAD and FEA systems

-Implementation of FEA into design process

-FEA project management

-Common FEA traps and misconceptions

-Final exam 30%

Almost all topics are illustrated by hands-on examples using a commercial FEA software (here COSMOSWorks), however, the course is not software specific and the acquired skills are applicable to any FEA software.

6.How t o select FEA software for “FEA

foe Design Engineers”?

Considering that design engineers typically do not create model specifically for analysis but use CAD models both for design and analysis, the FEA software used in the course must be integrated with CAD.

CAD and FEA software must, therefore, satisfy the following requirements.

CAD system should

-create 100 % of complex geometry:

-both CAD specific and FEA specific

-offer the ability of quick switches between

-those two geometries while keeping them linked

-offer close integration with FEA

FEA system should

-mesh relevant CAD produced geometry

automatically

-user's intervention should not be required

-map finite elements precisely to geometry

-offer optimization and sensitivity studies capabilities

-offer close integration with CAD 7.Sample problems

All problems solved by students hand-on illustrate and reinforce the discussed topics. Simple models are used in class to speed up the model definition and the solution process and to focus problems illustrated by each one. More complex problems are solved in take-home assignments.

We will review typical in-class problems. The tensile hollow strip model is used to demonstrate the discretization error and the convergence process (figure 3).

Figure 3. Hollow tensile strip The analysis of L shape bracket (figure 4) model illustrates divergent solution due to stress singularity related to the error in the formulation of the mathematical model.

Figure 4. L shape bracket with sharp re-

entrant corner

The stamped steel pulley (figure 5) exercise is used to discuss the use of shell elements, the symmetry boundary conditions and the limited capabilities of the FEA to model stresses in accordance with the mechanics of materials.

Figure 5. Stamped steel pulley

The tuning fork (figure 6) is used for modal analysis to demonstrate he effect of supports on the modes of vibration and the nature of modes of vibration in a symmetric model .

Figure 6. Tuning fork

The heat sink (figure 7) example introduces steady state and transient thermal analysis considering the effects of convection.

Figure 7. Heat sink

Take home assignments offer the students opportunities to work on more complex models of parts or assemblies which may be chosen based on individual interests. For example, students are asked to select a part or a subassembly of a car (figure 8) for a complete structural analysis which includes formulation of loads, restraints and all required modeling assumptions.

Figure 8. SAE formula car model

8.FEA Implementation and Management

An important part of “FEA for Design Engineers” is implementation of FEA in the design engineering environment and management of FEA projects.

It familiarizes students with steps typical to any FEA project, report writing and project documentation as well as with traps and misconceptions often found in everyday industrial applications of FEA.

“FEA Implementation and Management” section of

the course discusses project check lists (figure 9) and errors commonly found in FEA projects. It proposes

Figure 9. A sample FEA project check list

This section is of particular interest to engineering managers who may never work with FEA “hands-on” but assume responsibility for design decisions made using FEA results.

9.“FEA for Design Engineers” as an

undergraduate course

The approach to teaching FEA as a design tool has been discussed here using the ADMI Canada course as an example. Similar approach has been used successfully in the development of other Professional Development courses as well as in text books and other technical publications in field of FEA [2], [3], [4].

This combined experience makes the author convinced that the same approach may be used in a successful delivery of an undergraduate course in a mechanical engineering program.

While “FEA for Design Engineers” course should not replace standard FEA courses typically offered to undergraduate Mechanical Engineering students, it would complement them very well by providing students with readily marketable skills in numerical design analysis.

“FEA for Design Engineers” could be offered as a “stand-alone” half course, best placed in the third or fourth year or could be combined with standard FEA half course into a full year course.

10.References

[1] https://www.wendangku.net/doc/cc12805511.html,/courses/

[2] P. M. Kurowski, “Finite Element Analysis for Design Engineers”, the Society of Automotive Engineers, 2004.

[3] P. M. Kurowski, “Engineering Analysis with COSMOSWorks”, Schroff Development Corporation, 2006

[4] P. M. Kurowski "Going Mainstream Analysis", SolidWorks Corporation, 2004

仪器分析实验报告原子吸收铜

华南师范大学实验报告 课程名称:仪器分析实验实验项目:原子吸收光谱法测定水 中的铜含量 原子吸收光谱法测定水中的铜含量 一、实验目的 1. 掌握火焰原子吸收光谱仪的操作技术; 2. 优化火焰原子吸收光谱法测定水中铜的分析火焰条件; 3. 熟悉原子吸收光谱法的应用。 二、方法原理 原子吸收光谱法是一种广泛应用的测定元素的方法。它是一种基于待测元素基态原子在蒸气状态对其原子共振辐射吸收进行定 量分析的方法。为了能够测定吸收值,试样需要转变成一种在适合的介质中存在的自由原子。化学火焰是产生基态气态原子的方便方法。 待测试样溶解后以气溶胶的形式引入火焰中。产生的基态原子吸收适当光源发出的辐射后被测定。原子吸收光谱中一般采用的空心阴极灯这种锐线光源。这种方法快速、选择性好、灵敏度高且有着较好的精密度。 然而,在原子光谱中,不同类型的干扰将严重影响方法的准确性。干扰一般分为四种:物理干扰、化学干扰、电离干扰和光谱干扰。物

理和化学干扰改变火焰中原子的数量,而光谱干扰则影响原子吸收信号的准确测定。干扰可以通过选择适当的实验条件和对试样的预处理来减少或消除。所以,应从火焰温度和组成两方面作慎重选择。 由于试样中基本成分往往不能准确知道,或是十分复杂,不能使用标准曲线法,但可采用另一种定量方法——标准加入法,其测定过程和原理如下。 取笑体积的试液两份,分别置于相同溶剂的两只容量瓶中。其中一只加入一定量待测元素的标准溶液,分别用水稀释至刻度,摇匀,分别测定其吸光度,则: Ax=kfx Ao=k(fo十fx) 式中,fx,为待测液的浓度;f。为加入标准溶液后溶液浓度的增量;测量的吸光度,将以上两式整理得:Ao分别为两次在实际测定中,采取作图法(图6—6)的结果更为准确。一般吸取四份等体积试液置于四只等容积的容量瓶中,从第二只容量瓶开始,分别按比例递增加人待测元素的标准溶液,然后用溶剂瓶稀释至刻度,摇匀,分别测定溶液fx,cx十fo,fx十2co,cx十3fo的吸光度为Ax,A1,Az,A:,然后以吸光度A对待侧元素标准溶液的加入量作图,得图6—6所示的直线,其纵轴上截距Ax为只含试样fx 的吸光度,延长直线与横坐标轴相交于cX,即为所需要测定的试样中该元素的浓度。

化学词汇表

SA T II 化学词汇表 Part 1 foundation chemistry 基础化学 Chapter 1 acid 酸 apparatus 仪器,装置 aqueous solution水溶液 arrangement of electrons 电子排列 assumption 假设 atom 原子 atomic mass原子量 atomic number 原子序数 atomic radius原子半径 atomic structure 原子结构 be composed of 由……组成 bombard ment 撞击 boundary 界限 cathode rays 阴极射线 cathode-ray os cilloscope (C.R.O) 阴极电子示波器ceramic 陶器 charge-clouds 电子云 charge-to-mass ratio(e/m) 质荷比 chemical behaviour 化学行为 chemical property化学性质 clockwise顺时针方向的 compound 化合物 configuration 构型 copper 铜 correspond to 相似 corrosive 腐蚀 d-block elements d 区元素 deflect 使偏向,使转向 derive from 源于 deuterium (D)氘 diffuse mixture 扩散混合物 distance effect 距离效应? distil 蒸馏 distinguish 区别 distribution 分布 doubly charged(2+) ion正二价离子 dye 染料 effect of electric current in solutions 电流在溶液里的影响electrical charge电荷 electrical field 电场

化学词汇组词规律

英语化学词汇的组词规律 1.化学元素(Chemical elements) A—音译transliteration 锂lithium 镁magnesium 硒selenium 氦helium 锰manganese 钡barium 氟fluorine 钛titanium 铀uranium 氖neon 镍nickel 钙calcium B—意译transcribe or free translation 氧铝溴 氢hydrogen 硅silicon 钾potassium 碳carbon 磷phosphorus 汞mercury 氮nitrogen 硫sulphur(sulfur) 钠sodium C—意音兼译translation by meaning and pronunciation 碘iodine 氯chlorine 砷arsenic 2.化学基团chemical groups 各种元素element的原子atom组合成分子molecule,按性质可以把分子分为不同的原子团radicle,分子中这些具有相对独特性质的原子团,称为官能团functional group,或范围更广一点,称作化学基团chemical group. propylene 丁/四butyl butane butanol butylene butyne butanone 戊/五pentyl pentane pentanol pentylene戊二烯 pentene 戊烯 pentyne pentanone 己/六hexyl hexane hexanol hexylene hexyne hexanone 庚/七heptyl heptane heptanol heptylene heptyne heptanone 辛/八octyl octane octanol octylene octyne octanone 壬/九nonyl nonane nonanol nonylene nonyne nonanone 癸/十decatyl decane decanol decylene decyne decanone 说明:-ol表示醇羟基,-an与烷有关,表示是饱和状态,-en与烯有关,有不饱和的意义,相应的饱和状态的羟基即醇-anol,不饱和状态的羟基即酚-enol。在结构较为复杂的醇类化合物中,常常只用-ol;酮-one是相当于用氧o替换了烯-ene中的一个碳,二者均为不饱和结构。 ether(醚),ester(酯),只要在化学基后加上这两个词,就获得了两组英文词。例如:甲醚methyl ether,甲酯methyl ester。 3.化合物类别及化学官能团Classes of compounds and functional groups 化合物类别 烃hydrocarbon 酚hydroxybenzene/phenol 胺amine 烷alkane 醚ether 亚胺imine 烯alkene 酮ketone 腈nitrile 炔alkyne 醛aldehyde 亚砜sulfoxide 苯benzene 酸acid 砜sulfone 醇alcohol 酐anhydride 碱alkali/base 官能团 烷基alkyl 羟基hydroxyl 羰基carbonyl

化学化工常用词汇Word版

Atoms,Elements and Ions atom 原子 element 元素 ion 离子 anion 阴离子 cation 阳离子 electron 电子 neutral 中性的 proton 质子 atomic nucleus 原子核 nucleon 核子 nuclide symbol 核素符号 nuclide 核素 isotope 同位素 alpha particle 粒子 alpha ray 射线 beta particle 粒子 anode 阳级,正极 cathode 阴极 atomic mass unit 原子质量单位 element symbol 元素符号 atomic number 原子序数 atomic weight 原子量 mass number 质量数 atomic theory 原子理论 brownian motion 布朗运动 cathode ray 阴极射线 chemical change 化学变化,化学反应 compound 化合物 deuterium 氘 electric charge 电荷 heavy water 重水 isotopic abundance 同位素的丰度 natural abundance 自然丰度 isotopic mass 同位素质量 law of conservation of mass 物质守恒定律,物质不灭定律 law of definite proportions 确定化定律 law of multiple proportions 整比定律 mass spectrometer 质谱仪 mass spectrometry 质谱学,质谱测量,质谱分析 mass spectrum 质谱(复数形式:mass spectra) nuclear binding energy 核能量 radioactivity 放射能 X–ray spectrum X射线光谱(复数形式:X-ray spectra)

铜及其它常考的过渡金属元素

铜、银及其它常考的过渡金属元素 【重要知识点回顾】 一、铜 1.铜:(1)铜的颜色色(2)火法或湿法制铜: (3)铜与下列物质反应:铜在空气中生成铜绿、浓硫酸(加热)、双氧水(加稀硫酸酸性);硝酸(浓)、硝酸(稀)、硝酸银溶液、铁盐溶液、稀硫酸中加入少量铜不溶解,若加(通)入下列物质,能使铜溶解的是①硫酸铁②硝酸钾③双氧水④氧气(加热)。 (4)粗铜精炼:阳极为,有关电极反应式,比铜活泼的金属如铁以进入,比铜不活泼的金属沉积在中;阴极为,电极反应式;电解质溶液为,电解过程中电解质溶液浓度。 (5)溶液中Cu2+含量测定(碘量法)有关反应的离子方程式: 、 2.氧化铜:色。做用氢气还原氧化铜的实验时应先后,实验结果时应先 后。可用于还原氧化铜的物质有: 将铜丝在空气中加热后迅速插入乙醇中,现象为,有关化学方程式为、,总方程式为,铜的作用是。3、氧化亚铜:色。氧化亚铜溶于稀硫酸: 氧化亚铜溶于稀硝酸: 检验用氢气还原氧化铜所得产物中是否含氧化亚铜的实验方法是 4、氢氧化铜:色。配制新制氢氧化铜悬浊液的操作: 乙醛与新制氢氧化铜加热的化学方程式为 5、硫化铜:色。制备方法硫酸铜溶液中通入硫化氢: 硫化铜不溶于盐酸、稀硫酸但溶于稀硝酸: 硫化亚铜:色。制备方法铜在硫蒸气中加法: 硫化亚铜溶于稀硝酸: 鉴别CuS和Cu2S两种黑色粉末的方法是 6、CuH:红色固体,难溶于水;CuH与氯气点燃 CuH中加稀盐酸 CuH中加稀硝酸酸(只产生一氧化氮一种气体) 二、银 1、银溶于稀硝酸:(应用:试管的洗涤) 2、银氨溶液的配制方法是:, 有关反应为 乙醛发生银镜反应的离子方程式为 3、往硝酸银溶液中依次滴加足量氯化钠溶液、溴化钠溶液、碘化钠溶液、硫化钠溶液,现象为、、、,加入硫化钠溶液的离子方程式 三、其他过渡元素 1. Zn (1)实验室常用锌与稀硫酸反应制取氢气,为了加快反应速率,可采取的措施有: (2)银锌电池的负极是锌,正极是氧化银,电解质是氢氧化钾,负极反应式为,正极反应式为 2.Mn(1)实验室制氧气、氯气都可用到锰的化合物,写出有关化学方程式: 氧气氯气

化学常用英文单词

Bunsen burner 本生灯 product 化学反应产物 flask 烧瓶 apparatus 设备 PH indicator PH值指示剂,氢离子(浓度的)负指数指示剂 matrass 卵形瓶 litmus 石蕊 litmus paper 石蕊试纸 graduate, graduated flask 量筒,量杯 reagent 试剂 test tube 试管 burette 滴定管 retort 曲颈甑 still 蒸馏釜 cupel 烤钵 crucible pot, melting pot 坩埚 pipette 吸液管 filter 滤管 stirring rod 搅拌棒 element 元素 body 物体 compound 化合物 atom 原子 gram atom 克原子 atomic weight 原子量 atomic number 原子数 atomic mass 原子质量 molecule 分子 electrolyte 电解质 ion 离子 anion 阴离子 cation 阳离子 electron 电子 isotope 同位素 isomer 同分异物现象 polymer 聚合物 symbol 复合 radical 基 structural formula 分子式 valence, valency 价 monovalent 单价 bivalent 二价 halogen 成盐元素bond 原子的聚合mixture 混合combination 合成作用compound 合成物alloy 合金 metal 金属metalloid 非金属Actinium(Ac) 锕Aluminium(Al) 铝Americium(Am) 镅Antimony(Sb) 锑Argon(Ar) 氩Arsenic(As) 砷Astatine(At) 砹Barium(Ba) 钡Berkelium(Bk) 锫Beryllium(Be) 铍Bismuth(Bi) 铋Boron(B) 硼Bromine(Br) 溴Cadmium(Cd) 镉Caesium(Cs) 铯Calcium(Ca) 钙Californium(Cf) 锎Carbon(C) 碳Cerium(Ce) 铈Chlorine(Cl) 氯Chromium(Cr) 铬Cobalt(Co) 钴Copper(Cu) 铜Curium(Cm) 锔Dysprosium(Dy) 镝Einsteinium(Es) 锿Erbium(Er) 铒Europium(Eu) 铕Fermium(Fm) 镄Fluorine(F) 氟Francium(Fr) 钫Gadolinium(Gd) 钆Gallium(Ga) 镓Germanium(Ge) 锗Gold(Au) 金Hafnium(Hf) 铪Helium(He) 氦

九年级下科学物质的转化和元素的循环复习

物质的转化和元素的循环 (一)金属的氧化和金属氧化物的还原 1、铜与氧化铜之间的相互转化实验 (1)实验步骤和实验现象: ①用坩埚钳夹着铜片在酒精灯的外焰上加热。现象:发现紫红色铜片变成了黑色。铜的表面生成了氧化铜。 ②把在酒精灯外焰上加热后的铜片,马上插入酒精(乙醇)中。现象:铜片表面又由黑色变成了紫红色。 (2)实验结论: 在这个过程中,铜在加热的条件下能和空气中的氧气结合形成黑色的氧化铜,铜片表面生成的黑色氧化铜马上和酒精(乙醇)反应又转化成了铜。 (3)注意事项: 铜一定要在酒精灯的外外焰上加热,不要使铜碰到酒精灯的灯芯。因为在铜的表面生成的氧化铜与酒精灯的内焰或灯芯接触,实质上是和还没有燃烧的酒精(乙醇)蒸气接触,会使已经生成的氧化铜又被酒精还原成铜。 (4)实验小结: ①氧气在加热的条件下能和铜结合生成氧化铜。金属获得氧的过程被称为金属的氧化(oxidation)。 ②酒精能与灼热的氧化铜反应从氧化铜中夺取氧,使氧化铜转化为铜。金属氧化物失去氧的过程被称为金属氧化物的还原(deoxidation)。 2、使铁的表面形成氧化层保护膜实验

铁片放在浓硝酸、浓硫酸中,没有气体放出,这是因为铁在浓硝酸、浓硫酸中生成了铁的氧化物,正是这层致密的氧化膜保护了铁,使铁不能与酸反应生成氢气。但将铁片放在稀硫酸中,则有气体放出,即生成了氢气。 绝大部分金属都能在一定条件下与氧气化合生成金属的氧化物,但一些不活泼的金属如:金、铂等,很难和氧化合生成氧化物。金属还能和某些能提供氧的物质如:硝酸、浓硫酸等反应,生成金属氧化物。 3、氢气还原氧化铜实验 (1)实验步骤: 在干燥的硬质试管里铺一薄层黑色氧化铜粉末,固定在铁架台上,通入氢气,待空气排尽后,加热氧化铜。反应完成后停止加热,再继续通入一会儿氢气,直到试管冷却。 (2)实验装置: (3)实验现象: 黑色的氧化铜变成紫红色,试管口有水珠生成。 (4)注意事项: ①试管口应略向下倾斜,防止反应过程中生成的水流到试管底部使试管破裂; ②氢气的导入管要伸到试管的底部; ③反应开始前要先通入氢气,以排尽试管中的空气;当反应完成时,要先停止加热,继续通入氢气,直到试管冷却,再停止通入氢气,以防止生成的灼热的铜又被空气中的氧气氧化成氧化铜。

化学专业词汇

普通化学术语中英文对照表原子atom 原子核nucleus 质子proton 中子neutron 电子electron(abbr.e) 离子ion[an] 阳离子cation 阴离子anion 分子molecular[mlekjl] 单质element 化合物compound 纯净物puresubstance/chemicalsubstance 混合物mixture 相对原子质量relativeatomicmass(abbr.Ar) 相对分子质量relativemolecularmass(abbr.Mr) 化学式量relativeformulamass 物质的量amountofsubstance 阿伏加德罗常数Avogadroconstant(abbr.NA) 摩尔mole 摩尔质量molarmass 实验式/最简式/经验式empiricalformula 气体摩尔体积molarvolume 阿伏加德罗定律Avogadro’sLaw 溶液solution 溶解dissolve 浓度concentration 质量/体积分数mass/volumeconcentration 浓缩concentrate 稀释dilute 蒸馏distillation 萃取extraction 化学反应方程式chemicalequation 反应物reactant 生成物product 固体solid 液体liquid 气体gaseous

溶液aqueous 配平balance 化学计量学stoichiometry 酸acid 碱 base/alkali(referstosolublebases)盐salt 酸式盐acidsalt 离子方程式ionicequation 结晶水waterofcrystallisation 水合的hydrated 无水的anhydrous 滴定titration 指示剂indicator 氧化数oxidationnumber 氧化还原反应redoxreaction 氧化反应oxidationreaction 还原反应reductionreaction 歧化反应disproportionationreaction 归中反应 comproportionation(symproportiona tion) reaction 氧化剂oxidisingagent 还原剂reducingagent 电子层(壳)(electron)shell 电离能ionisationenergy(abbr..) 第一,第二,第三等电离能 first,second,third,etc.ionisation energy(abbr.1st,2nd,3rd,etc..) 电子亲和能 electronaffinityenergy(abbr..) 屏蔽效应electronicshielding(screening) 原子轨道atomicorbital 电子云electroncloud 电子亚层sub-shell 能层layer 能级energylevel 电子排布electronconfiguration 电子云重叠shelloverlap 洪特规则Hund’srule 泡利原理Pauliexclusionprinciple

无机化学实验习题答案新整理

无机化学实验题答案 实验习题p 区非金属元素( 卤素、氧、硫)1. 氯能从含碘离子的溶液中取代碘,碘又能从氯酸钾溶液中取代氯,这两个反应有无矛盾?为什么?答:这两个反应无 矛盾。因为氯的氧化性强于碘,而碘的氧化性又强于氯酸钾。 2. 根据实验结果比较:① S2O82-与MnO4-氧化性的强弱;② S2O32-与I- 还原性的强弱。答:因为S2O82-可以将Mn2+氧化为MnO4-,所以S2O82-的氧化性强于MnO4-,S2O32-能将I2 还原为 I- ,S2O32-和还原性强于I- 。3. 硫代硫酸钠溶液与硝酸银溶液反应时,为何有时为硫化银沉淀,有时又为[Ag(S2O3)2]3- 配离子?答:这与溶液的浓度和酸碱性有关,当酸性强时,会生成硫化银沉淀,而在中性条件下就会生成[Ag(S2O3)2]3- 配离子。 4. 如何区别:①次氯酸钠和氯酸钠;②三种酸性气体:氯化氢、二氧化硫、硫化氢;③硫酸钠、亚硫酸钠、硫代硫酸钠、硫化钠。答:① 分别取少量两种固体,放入试管中,然后分别往试管中加入适量水,使固体全部溶解,再分别向两支试管中滴入两滴品红溶液,使品红溶液褪色的试管中放入的固体为次氯酸钠,剩下的一种为氯酸钠。②将三种气体分别通入品红溶液中,使品红褪色的是二氧化硫,然后将剩余的两种气体分别通入盛有 KMnO4溶液的试管中,产生淡蓝色沉淀的是H2S,剩下的一种气体是氯化氢。③分别取四种溶液放入四支试管中,然后向四支试管中分别加入适量等量的H2SO4溶液,有刺激性气味 气体产生的是亚硫酸钠,产生臭鸡蛋气味气体是的硫化钠,既有刺激性气味气体产生,又有黄色沉淀产生的是硫代硫酸钠,无明显现象的是硫酸钠。 5. 设计一张硫的各种氧化态转化关系图。 6. 在氯酸钾和次氯酸钠的制备实验中,如果没有二氧化锰,可改用哪些药品代替地二氧化锰?答:可用高锰酸钾代替二氧化锰。7. 用碘化钾淀粉试纸检验氯气时,试纸先呈蓝色,当在氯气中放置时间较长时,蓝色褪去,为什么?答:因为2KI+Cl2=2KCl+I2,I2 遇淀粉变蓝,因此试纸呈蓝色,但氯气有氧化性,可生成HClO,可以将蓝色漂白,所以在氯气中放置时间较长时,蓝色褪去。8. 长久放置的硫化氢、硫化钠、亚硫酸钠水溶液会发生什么变化?如何

无机化学实验习题答案新

转无机化学实验习题答案 实验习题p区非金属元素(卤素、氧、硫)1.氯能从含碘离子的溶液中取代碘,碘又能从氯酸钾溶液中取代氯,这两个反应有无矛盾?为什么?答:这两个反应无 矛盾。因为氯的氧化性强于碘,而碘的氧化性又强于氯酸钾。2.根据实验结果比较:①S2O82-与MnO4-氧化性的强弱;②S2O32-与I-还原性的强弱。答:因为 S2O82-可以将Mn2+氧化为MnO4-,所以S2O82-的氧化性强于MnO4-,S2O32-能将I2还原为I-,S2O32-和还原性强于I-。3.硫代硫酸钠溶液与硝酸银溶液反应时,为 何有时为硫化银沉淀,有时又为[Ag(S2O3)2]3-配离子?答:这与溶液的浓度和酸 碱性有关,当酸性强时,会生成硫化银沉淀,而在中性条件下就会生成 [Ag(S2O3)2]3-配离子。4.如何区别:①次氯酸钠和氯酸钠;②三种酸性气体:氯 化氢、二氧化硫、硫化氢;③硫酸钠、亚硫酸钠、硫代硫酸钠、硫化钠。答:① 分别取少量两种固体,放入试管中,然后分别往试管中加入适量水,使固体全部 溶解,再分别向两支试管中滴入两滴品红溶液,使品红溶液褪色的试管中放入的 固体为次氯酸钠,剩下的一种为氯酸钠。②将三种气体分别通入品红溶液中,使 品红褪色的是二氧化硫,然后将剩余的两种气体分别通入盛有KMnO4溶液的试管中,产生淡蓝色沉淀的是H2S,剩下的一种气体是氯化氢。③分别取四种溶液放入四支试管中,然后向四支试管中分别加入适量等量的H2SO4溶液,有刺激性气味 气体产生的是亚硫酸钠,产生臭鸡蛋气味气体是的硫化钠,既有刺激性气味气体 产生,又有黄色沉淀产生的是硫代硫酸钠,无明显现象的是硫酸钠。5.设计一张 硫的各种氧化态转化关系图。6.在氯酸钾和次氯酸钠的制备实验中,如果没有二 氧化锰,可改用哪些药品代替地二氧化锰?答:可用高锰酸钾代替二氧化锰。7.用 碘化钾淀粉试纸检验氯气时,试纸先呈蓝色,当在氯气中放置时间较长时,蓝色 褪去,为什么?答:因为2KI+Cl2=2KCl+I2,I2遇淀粉变蓝,因此试纸呈蓝色,但 氯气有氧化性,可生成HClO,可以将蓝色漂白,所以在氯气中放置时间较长时, 蓝色褪去。8.长久放置的硫化氢、硫化钠、亚硫酸钠水溶液会发生什么变化?如何

化学化工常用词汇

如有帮助欢迎下载支持 Atoms,Elements and Ions atom 原子 element 元素 ion 离子 anion 阴离子 cation 阳离子 electron 电子 neutral 中性的 proton 质子 atomic nucleus 原子核 nucleon 核子 nuclide symbol 核素符号 nuclide 核素 isotope 同位素 alpha particle 粒子 alpha ray 射线 beta particle 粒子 anode 阳级,正极 cathode 阴极 atomic mass unit 原子质量单位 element symbol 元素符号 atomic number 原子序数 atomic weight 原子量 mass number 质量数 atomic theory 原子理论 brownian motion 布朗运动 cathode ray 阴极射线 chemical change 化学变化,化学反应 compound 化合物 deuterium 氘 electric charge 电荷 heavy water 重水 isotopic abundance 同位素的丰度 natural abundance 自然丰度 isotopic mass 同位素质量 law of conservation of mass 物质守恒定律,物质不灭定律 law of definite proportions 确定化定律 law of multiple proportions 整比定律 mass spectrometer 质谱仪 mass spectrometry 质谱学,质谱测量,质谱分析 mass spectrum 质谱(复数形式:mass spectra) nuclear binding energy 核能量 radioactivity 放射能 X–ray spectrum X射线光谱(复数形式:X-ray spectra)

河南天一大联考2020届高三上学期阶段性测试(一) 化学

绝密★启用前 天一大联考 2019—2020学年高中毕业班阶段性测试(一) 化学 考生注意: 1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 可能用到的相对原子质量:H 1 C 12 N 14 0 16 A127 一、选择题:本大题共14小题,每小题3分,共42分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.下列古诗词中所涉及化学物质的相关叙述错误的是 2.由废旧干电池拆解的碳包灰(主要成分为Mn02、ZnCl2、NH4a、淀粉糊及少最C等)可得到纯净的Mn02,不涉及的操作是 A.分子式为C9H8 B.分子中所有原子处于同一平面 C.易溶于苯,沸点比苯低 D.不能使酸性KMn04溶液褪色

4.大气污染源中的碳氢化合物和氮氧化物等一次污染物可在紫外光作用下发生光化学反应生成二汝污染物,光化学烟雾是一次污染物和二次污染物的混合物。将添加丙烯和N0的空气充入烟雾箱中用紫外光照射,各物质浓度的消长关系如下图所示: 下列说法错误的是 A.臭氧浓度升高是光化学烟雾污染的标志 B.光化学烟雾产生的二次污染物只有甲醛和乙醛 C.同一地区,相同条件下,夏季比冬季更昜发生光化学烟雾 D.对燃油汽车废气的净化有利于通制光化学烟雾的发生 5.已知N A为阿伏加德罗常数的值,下列说法正确的是 A.3 gHD含中子数为2N A B.l LI mol?L-1(NH4)2PO4溶液中含NH4+数目为 2N A C. 44 g环氧乙烧(分子式为C2H4O)含C-0键数0为2N A D. 1 mol K2Cr2O7溶于1 L水生成CrO42-的数目为2N A 6.下列化学方程式中,不能正确表达反应颜色变化的是 A.灼烧后的铜丝立刻插入乙醇中,表面由黑色变为红色:4Cu0=2Cu20 + 02↑ B.集满N02的集气瓶放入冷水中,瓶内气体红棕色变浅:2N02=N2O4 C.向集满H2S的集气瓶中通人S02,瓶壁上产生淡黄色固体:S02 +2H2S=3S ↓+2H20 D.漂白粉中加入浓盐酸,产生黄绿色气体:Ca(ClO)2 +4HC1 (浓)—CaCl2 +2C12↑+2H20 7.下列实验操作能达到实验目的的是 A.用分液漏斗分离苯和瀆苯的混合物 B.用干燦的红色石蕊试纸鉴别未知浓度的Na2CO3和NaOH溶液 C.探究的还原性:向稀KMnO4酸性溶液中逐滴加入H2C204,观察溶液颜色变化 D.制取并纯化C0,:向稀盐酸中加入CaCO3,将产生的气体依次通过浓硫酸、饱和NaHCO3溶液

化学用词element元素

【15部关于天才的电影】《美丽心灵》《雨人》《波拉克》《天才瑞普利》《猫鼠游戏》《香水》《一级恐惧》《心灵捕手》《莫扎特传》《证据》《海上钢琴师》《暗物质》《沉默的羔羊》《非常嫌疑犯》《寻找弗罗斯特》 化学用词element 元素 body 物体 compound 化合物 atom 原子 gram atom 克原子 atomic weight 原子量 atomic number 原子数 atomic mass 原子质量 molecule 分子 electrolyte 电解质 ion 离子 anion 阴离子 cation 阳离子 electron 电子 isotope 同位素 isomer 同分异物现象 polymer 聚合物 symbol 复合 radical 基 structural formula 分子式 valence, valency 价 monovalent 单价 bivalent 二价 halogen 成盐元素 bond 原子的聚合 mixture 混合 combination 合成作用 compound 合成物 alloy 合金 Bunsen burner 本生灯 product 化学反应产物 flask 烧瓶 apparatus 设备 PH indicator PH值指示剂,氢离子(浓度的)负指数指示剂 matrass 卵形瓶

litmus 石蕊 litmus paper 石蕊试纸 graduate, graduated flask 量筒,量杯reagent 试剂 test tube 试管 burette 滴定管 retort 曲颈甑 still 蒸馏釜 cupel 烤钵 crucible pot, melting pot 坩埚pipette 吸液管 filter 滤管 stirring rod 搅拌棒 organic chemistry 有机化学inorganic chemistry 无机化学derivative 衍生物 series 系列 acid 酸 hydrochloric acid 盐酸 sulphuric acid 硫酸 nitric acid 硝酸 aqua fortis 王水 fatty acid 脂肪酸 organic acid 有机酸 hydrosulphuric acid 氢硫酸hydrogen sulfide 氢化硫 alkali 碱,强碱 ammonia 氨 base 碱 hydrate 水合物 hydroxide 氢氧化物,羟化物 hydracid 氢酸 hydrocarbon 碳氢化合物,羟 anhydride 酐 alkaloid 生物碱 aldehyde 醛 oxide 氧化物 phosphate 磷酸盐 acetate 醋酸盐

美国高中化学词汇

SAT II化学词汇表 一SAT是Scholastic Aptitude Test的缩写 是申请几乎所有美国大学必须参加的考试。通常 希望继续接受高等教育的高中生需要参加SAT考试 并且SAT考试得分是获取奖学金的重 要标准之一。大部分美国大学要求SAT作为录取的条件并根据SAT得分授予奖学金。 Part 1 foundation chemistry 基础化学 Chapter 1 acid 酸 apparatus 仪器 装置 aqueous solution 水溶液 arrangement of electrons 电子排列 assumption 假设 atom 原子 化学变化中的最小粒子 atomic mass 原子量 atomic number 原子序数 atomic radius 原子半径 atomic structure 原子结构 be composed of 由……组成 bombardment 撞击 boundary 界限 cathode rays 阴极射线 cathode-ray oscilloscope (C.R.O) 阴极电子示波器 ceramic 陶器制品 charge-clouds 电子云

charge-to-mass ratio(e/m) 质荷比 质谱分析时样品质量的测量以质量与其离子电荷之比表 示 chemical behaviour 化学行为 chemical property 化学性质 物质在化学变化中表现出来的性质 clockwise 顺时针方向的 compound 化合物 由不同元素组成的纯净物 configuration 构型 copper 铜 correspond to 相似 corrosive 腐蚀 d-block elements d 区元素 deflect 使偏向 使转向 derive from 源于 deuterium 氘 diffuse mixture 扩散混合物 distance effect 距离效应 distil 蒸馏 distinguish 区别 distribution 分布doubly charged(2+) ion 正二价离子 dye 染料 effect of electric current in solutions 电流在溶液里的影响

元素化合物实验

元素化合物 结论型(知识运用型) 1、(云南昆明2003)氢氧化钠溶液中哪一种粒子(H2O、Na+、OH-)能使指示剂变色。 实验步骤: (1)在第一支试管中加入约2mL蒸馏水,滴入几滴无色酚酞试液,观察现象。 (2)在第二支试管中加入约2mLNaCl(pH=7)溶液滴入几滴无色酚酞试液,观察现象。 (3)在第三支试管中加入约2mLNaOH溶液滴入几滴无色酚酞试液,观察现象。 通过上述实验,回答下列问题(下述现象是指无色酚酞试液是否变红): 实验(1)看到的现象是,你得出的结论是 实验(2)看到的现象是,说明Na+离子 实验(3)看到的现象是,你得出的结论是 [答案]:不变红,H2O不能使无色酚酞试液变红。 不变红,Cl-不能使无色酚酞试液变红。 变红,OH-不能使无色酚酞试液变红。 2、(湖北宜昌2003年)“旺旺雪饼”袋内有一个小纸袋,上面写着“干燥剂,主要成分是生石灰”。 (1)生石灰(CaO)可作干燥剂的理由是(用化学方程式表示) )我对它还有一个要再探究的新问题:。

(说明:以上各空其它合理答案均可) (3)变质后的物质中有多少碳酸钙生成?(或完全变质需多长时间?或此时的固体是否全部变成碳酸钙?……)(说明:其它合理答案也可;提的问题必须与本题有关) 评价型 1、(辽宁省2003年)实验室常用石蕊试纸检验物质的酸碱性。酸性物质使蓝色的石蕊试纸变红,碱性物质使红色的石蕊试纸变蓝。某学生欲探究碳酸具有酸性,而二氧化碳不具有酸性,按下图进行实验。 (Ⅰ)(Ⅱ)(Ⅲ) 请回答:(1)该学生通过上述实验能否得出满意的结论?。 (2)若能,说明理由。若不能,请你设计还需要进行的实验,以得到满意的结论。(用语言叙述或图示均可) [答案]:(1)不能。(2)还需要进行下列实验:向一支洁净、干燥的试管中放入一条干燥的蓝色石蕊试纸,然后向试管中通入干燥的二氧化碳气体,干燥的蓝色石蕊试纸不变色。 2.现有含杂质的氧化铁样品(杂质不参加反应),为了测定该样品 氧化铁的质量分数,某同学称取该样品10g,并用下图所示的装置进行实验,得到如下两组数据。

化学元素符号及其物理量

化学元素符号及其物理量 Actinium锕Ac89 Aluminum铝Al13 Americium镅Am95 Antimony锑Sb51 Argon氩Ar18 Arsenic砷As33 Astatine砹At85 Barium钡Ba56 Berkelium锫Bk97 Beryllium铍Be4 Bismuth铋Bi83 Boron硼B5 Bromine溴Br35 Cadmium镉Cd48 Calcium钙Ca20 Californium锎Cf98 Carbon碳C6 Cerium铈Ce58 Cesium铯Cs55 Chlorine氯Cl17 Chromium铬Cr24 Cobalt钴Co27 Copper铜Cu29 Curium锔Cm96 Dysprosium镝Dy66 Einsteinium锿Es99 Element 104元素104-104 Element 105元素105-105 Erbium铒Er68 Europium铕Eu63 Fermium镄Fm100 Fluorine氟F9 Francium钫Fr87 Gadolinium钆Gd64 Gallium镓Ga31 Germanium锗Ge32 Gold金Au79 Hafnium铪Hf72 Helium氦He2 Holmium钬Ho67 Hydrogen氢H1 Indium铟In49 Iodine碘I53 Iridium铱Ir77 Iron铁Fe26 Krypton氪Kr36 Lanthanum镧La57 Lawrencium铹Lr103

Lead铅Pb82 Lithium锂Li3 Lutetium镥Lu71 Magnesium镁Mg12 Manganese锰Mn25 Mendelevium钔Md101 Mercury汞Hg80 Molybdenum钼Mo42 Neodymium钕Nd60 Neon氖Ne10 Neptunium镎Np93 Nickel镍Ni28 Niobium铌Nb41 Nitrogen氮N7 Nobelium锘No102 Osmium锇Os76 Oxygen氧O8 Palladium钯Pd46 Phosphorus磷P15 Platinum铂Pt78 Plutonium钚Pu94 Polonium钋Po84 Potassium钾K19 Praseodymium镨Pr59 Promethium钷Pm61 Protactinium镤Pa91 Radium镭Ra88 Radon氡Rn86 Rhenium铼Re75 Rhodium铑Rh45 Rubidium铷Rb37 Ruthenium钌Ru44 Samarium钐Sm62 Scandium钪Sc21 Selenium硒Se34 Silicon硅Si14 Silver银Ag47 Sodium钠Na11 Strontium锶Sr38 Sulfur硫S16 Tantalum钽Ta73 Technetium锝Tc43 Tellurium碲Te52 Terbium铽Tb65 Thallium铊Tl81 Thorium钍Th90 Thulium铥Tm69 Tin锡Sn50 Titanium钛Ti22 Tungsten钨W74 Uranium铀U92

实验五 火焰原子吸收光谱法测定铜的含量

实验五火焰原子吸收光谱法测定铜的含量 一、实验目的 1. 学习原子吸收光谱法的基本原理; 2. 解火焰原子吸收光谱仪的基本结构及使用方法; 3. 掌握标准曲线法测定铜的定量分析方法。 二、实验原理 每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比: A=Kc 式中K为常数;c为试样浓度;K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础。常用标准曲线法、标准加入法进行定量分析。 本实验采用标准曲线法测定溶液中铜的含量。 三、仪器与试剂 A3F原子吸收光谱仪;铜空心阴极灯;空气压缩机;乙炔钢瓶;吸量管;容量瓶。 铜标准溶液25.0μg/mL;铜未知液。 四、实验步骤 1. 铜标准系列及未知液的配制 用吸量管分别吸取25.0 μg/mL的铜标准溶液0.00 mL、0.50 mL、1.00 mL、1.50 mL、2.00 mL、3.00 mL于6个50 mL的容量瓶中,用水稀释至刻度,摇匀,配制每毫升分别含有0.00 μg、0.25 μg、0.50 μg、0.75 μg、1.00 μg、1.50 μg的铜标准系列。 另配制铜未知液1个样。 2. 按最佳测定实验条件调整原子吸收光谱仪,按照浓度从低到高依次喷入铜标准系列,记录吸光度。 3. 喷入待测液,记录吸光度。

化学常用英文单词汇总

chapter 1 atomic structure element n.元素 all know materials can be broken down into fundamental substances we call element. 我们所知道的所有物质都可以分解成原子。 atom n.原子 atom is the smallest particle of matter having all that element’s characteristics. 原子时具有元素性质的最小粒子。 nucleus /’nju:kli?s,’nu?kli?s/ 原子核 electron n.电子 proton 质子 neutron 中子 compound n. 化合物: When two or more elements combine and form a compound, a chemical change takes place. 当两种或两种以上的元素结合形成化合物时, 发生化学变化。 化学中的物质分为单质和化合物,大部分元素是以化合物的形式存在的。 ion n. 离子: when an atom get or lost elections,it becomes ion. 原子得失电子后形成离子。 cathode n. 阴极(negative electrode) Cathode rays are attracted by a positive charge. 阴极射线被阳电荷所吸引。 anode n. 阳极(positive election) A red wire is often attached to the anode. 红色电线通常与阳极相联。 particle n. 粒子: 微小粒子包Particles include moleculars,atoms , protons, neutrons ,electrons and ions. 括分子,原子,质子,中子,电子,离子等等。 ionisation n. 电离,离子化: We can get some elementary substance by ionisation. 可以通过电离的方法来制取某些单质。 ionisation energy n.电离能: the energy needed to remove 1 mol of electrons from 1 mol of gaseous atoms . 从原子中移走一个电子所需要的能量。 First ionisation energy n.第一电离能 the energy required to remove one electron from each atom in one mole of gaseous atoms is called first ionisation energy,?Hi1(2010年真题) as: Ca(g)→Ca+(g)+e-;?H i1=+590KJ/mol isotope n.同位素: which element have same number of protons ,but different number of neutrons. 有相同质子数的元素就是同位素。 shielding effect n.屏蔽效应: electrons in the filled inner shells repel electrons in the outer shell and reduce the effect of the positive nuclear ,this is called shielding effect.电子都是带负电荷的所以 外层的电子受到内层电子的一个排斥力,这是屏蔽效应。

相关文档