文档库 最新最全的文档下载
当前位置:文档库 › 数值分析求根-11

数值分析求根-11

数值分析求根-11
数值分析求根-11

第2章 非线性方程的求根方法

2.1 二分法

设()0f x =在区间[,]a b 中只有一个根*

x ,且满

足()()0f a f b <,则二分法求根过程为: 记0[,]I a b =,取0I 的中点00.5()x a b =+,

若0

()0f x =,则*0x x =;

若0()()0f x f a <,则*0[,]x a x ∈,取10[,]I a x =;

若0()()0f x f a >,则*

0[,]x x b ∈,取10[,]I x b =. 记111[,]I a b =,取1I 的中点1110.5()x a b =+,

若1

()0f x =,则*1x x =;

若11()()0f x f a <,则*11[,]x a x ∈,取211[,]I a x =;

若11

()()0f x f a >,则*

11[,]x x b ∈,取211[,]I x b =. 记222[,]I a b =???

这样获得近似根序列01,,,,,k x x x ??????满足

(2.2) 于是当k →∞时,由11()02k b a +-→得到*

k x x →.

二分法算法简单,收敛,但收敛速度较慢.

2.2 简单迭代法

将方程()0f x =等价变形为

()x x ?=,获得 迭代计算公式

1()k k x x ?+=

取定一个初值0x ,由迭代公式算出数列

()() ,,1201x x x x ??==,若*

l i m k

k x x →∞

=,则足够靠后的k x 可作为根的近似值.

由上述得出{}k x 称为迭代数列,函数()x ?为迭代函数,如上求根方法称为简单迭代法.对根*

x ,有

**

()x x ?=,?变不动它,点*x 形象的称为()x ?的不

动点,称方程()x x ?=为不动点方程.

例 1 求方程01)(3=--=x x x f 在5.10=x 附近的根.

定理1 设迭代函数()[,]x C a b ?∈满足条件 1.当[,]x a b ∈时,有()[,]x a b ?∈;

2.存在正常数1L <,使对任意 12,[,]x x a b ∈都有

1212()()x x L x x ??∣-∣≤∣-∣

则()x ?在[,]a b 中有唯一的不动点*

x ,迭代公式1()k k x x ?+=对任取0[,]x a b ∈,产生的数列{}k x 都收敛

于*x .

证明 易证迭代函数 ()[,]x C a b ?∈.作辅助函数

()()x x x ψ?=-

显然()[,]x C a b ψ∈.由条件1知

()()0a b ψψ≤

由中值定理,至少存在一个[,]a b ξ∈,使()0ψξ=,即()ξ?ξ=,这说明()x ?在[,]a b 上有不动点ξ. 如果()x ?在[,]a b 上还有一个不动点η,有()η?η=,利用条件2,有

()()L ξη?ξ?ηξηξη∣-∣=∣-∣≤∣-∣<∣-∣

矛盾,这就证明了满足定理条件的()x ?在[,]a b 中有唯一的不动点,记为*

x . 由*x 是不动点、迭代格式及条件2,有

***112**

20()()k k k k k x x x x L x x L x x L x x ??---∣-∣=∣-∣≤∣-∣

≤∣-∣≤≤∣-∣

注意到01L <<,在上式中令k →∞,可得0k

L →,

有 *

lim 0k k x x →∞

∣-∣=,因而有

*lim k k x x →∞

=

定理得证.

定理2 设定理1的条件成立,则有如下误差估计式

证明 只证1.由迭代公式和定理2.1的条件,有

()1k k k k x x x x ?+∣-∣=-

**

()()()k k x x x x ???=∣

-+-∣ ****()()

()()k k k k x x x x x x x x ????=-+-≥

---

*

**

L L)k k k x x x x x x ≥

∣-∣-∣-∣=(1-∣-∣

因为01L <<,所以有

*

11

1k k k x x x x L

+-≤--

另一方面

111()()k k k k k k x x x x L x x ??+--∣

-∣=∣-∣≤∣-∣

代入上式得结论1.

定理2.1的条件2对任意12,[,]x x a b ∈,存在正常

数1L <满足

1212()()x x L x x ??∣-∣≤∣-∣

不易使用。实用中此条件常用

'()1x L ?∣∣≤<,[,]x a b ∈

代替.

习题1 给出适当的迭代方法求方程40x

e x -=在区间[0,1]及[2,3]内的根.

习题2 证明用迭代格式11

,0,1,2,2k k k

x x k x +=+=???

产生的序列对于01x ≥

均收敛于.

习题3 利用适当的迭代格式证明

lim k →∞ 习题 4 证明对任何初始值0x R ∈,由迭代公式

1cos ,0,1,2,k k x x k +==???所产生的序列{}

k

k x

∞=都收敛

于方程cos x x =的根.

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤-31 104 ?. 2. 01(),(), ,()n l x l x l x 是以01,, ,n x x x 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

数值分析_数值计算小论文

Runge-Kutta 法的历史发展与应用 摘要Runge-Kutta 法是极其重要的常微分方程数值解法,本文仅就其起源及发展脉络加以简要研究。对Runge 、Heun 以及Kutta 等人的贡献做出适当评述,指出Runge-Kutta 方法起源于Euler 折线法。同时对Runge-Kutta 法的应用做简要研究。 关键词 Euler 折线法 标准四阶Runge-Kutta 法 应用 一、发展历史[1] 1.1 Euler 折线法 在微分方程研究之初,瑞士数学家L.Euler(1707.4—1783.9)做出了开创性的工作。他和其他一些数学家在解决力学、物理学问题的过程中创立了微分方程这门学科。在常微分方程方面,Euler 在1743年发表的论文中,用代换kx y e =给出了任意阶常系数线性微分方程的古典解法,最早引入了“通解”和“特解”的概念。 1768年,Euler 在其有关月球运行理论的著作中,创立了广泛用于求初值问题 00 (,), (1.1)() (1.2)y f x y x x X y x a '=<≤??=? 的数值解的方法,次年又把它推广到二阶方程。欧拉的想法如下:我们选择0h >,然后在00x x x h ≤≤+情况下用解函数的切线 0000()()(,)l x y x x f x y =+- 代替解函数。这样对于点 10x x h =+ 就得到 1000(,)y y hf x y =+。 在11(,)x y 重复如上的程序再次计算新的方向就会得到所谓的递推公式: 11, (,),m m m m m m x x h y y hf x y ++=+=+

数值计算方法试题及答案

数值计算方法试题一 一、填空题(每空1分,共17分) 1、如果用二分法求方程在区间内的根精确到三位小数,需对分()次。 2、迭代格式局部收敛的充分条件是取值在()。 3、已知是三次样条函数,则 =( ),=(),=()。 4、是以整数点为节点的Lagrange插值基函数,则 ( ),( ),当时( )。 5、设和节点则 和。 6、5个节点的牛顿-柯特斯求积公式的代数精度为,5个节点的求积公式最高代数精度为。 7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。 8、给定方程组,为实数,当满足,且时,SOR迭代法收敛。 9、解初值问题的改进欧拉法是 阶方法。 10、设,当()时,必有分解式,其中为下三角阵,当其对角线元素满足()条件时,这种分解是唯一的。 二、二、选择题(每题2分) 1、解方程组的简单迭代格式收敛的充要条件是()。(1), (2) , (3) , (4) 2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 (1),(2),(3),(4), (1)二次;(2)三次;(3)四次;(4)五次 4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。 (1), (2), (3), (4)

三、1、 2、(15 (1)(1) 试用余项估计其误差。 (2)用的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。 四、1、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。选一种迭代格式建立Steffensen迭代法,并进行计算与前一种结果比较,说明是否有加速效果。 2、(8分)已知方程组,其中 , (1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。 (2)(2)求出Jacobi迭代矩阵的谱半径,写出SOR 迭代法。 五、1、(15分)取步长,求解初值问题用改进的欧拉法求的值;用经典的四阶龙格—库塔法求的值。 2、(8分)求一次数不高于4次的多项式使它满足 ,,,, 六、(下列2题任选一题,4分) 1、1、数值积分公式形如 (1)(1)试确定参数使公式代数精度尽量高;(2)设,推导余项公式,并估计误差。 2、2、用二步法 求解常微分方程的初值问题时,如何选择参数使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的。 数值计算方法试题二 一、判断题:(共16分,每小题2分) 1、若是阶非奇异阵,则必存在单位下三角阵和上三角阵,使唯一成立。()

数值分析典型例题

第一章典型例题 例3 ln2=0.…,精确到10-3的近似值是多少 解 精确到10-3=,即绝对误差限是=, 故至少要保留小数点后三位才可以。ln2 第二章典型例题 例1 用顺序消去法解线性方程组 ??? ??1 -=4+2+4=+2+31 -=4++2321 321321x x x x x x x x x 解 顺序消元 ?? ?? ??????---???→???????????---????→???????????--=-?+-?+-?+1717005.555.00141 25.025.105.555.001412142141231412]b A [)3()2/1()2/3(231312r r r r r r M 于是有同解方程组 ?? ? ??-==--=++17175.555.0142332321x x x x x x 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 ??? ??5 =+2+23=++1=2-2+321 321321x x x x x x x x x 解 建立迭代格式 ???????+--=+--=++-=+++5223122) (2)(1)1(3 ) (3)(1)1(2 ) (3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…)

第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 ???????-=+?-?-=-=+--==+?+?-=3 532123 351515232)2(3) 2(2)2(1x x x X (2)=(5,-3,-3)T 第3次迭代,k =2 ???????=+-?-?-==+---==+-?+-?-=1 5)3(2521 3)3(511)3(2)3(2)2(3) 3(2)3(1x x x X (3)=(1,1,1)T 第4次迭代,k =3 ???????=+?-?-==+--==+?+?-=1 512121 311111212)2(3) 2(2)2(1x x x X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1=D ??????????=022001000L ~ ????? ?????-=000100220U ~ 雅可比迭代矩阵为

数值分析小论文 董安

数值分析作业 课题名称代数插值法-拉格朗日插值法班级Y110201 研究生姓名董安 学号S2******* 学科、专业机械制造及其自动化 所在院、系机械工程及自动化学院2011 年12 月26日

代数插值法---拉格朗日插值法 数值分析中的插值法是一种古老的数学方法,它来自生产实践。利用计算机解决工程问题与常规手工计算的差异就在于它特别的计算方法.电机设计中常常需要通过查曲线、表格或通过作图来确定某一参量,如查磁化曲线、查异步电动机饱和系数曲线等.手工设计时,设计者是通过寻找坐标的方法来实现.用计算机来完成上述工作时,采用数值插值法来完成。因此学好数值分析的插值法很重要。 插值法是函数逼近的重要方法之一,有着广泛的应用 。在生产和实验中,函数f(x)或者其表达式不便于计算复杂或者无表达式而只有函数在给定点的函数值(或其导数值) ,此时我们希望建立一个简单的而便于计算的函数 (x),使其近似的代替f(x),有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值.本文着重介绍拉格朗日(Lagrange)插值法。 1.一元函数插值概念 定义 设有m+1个互异的实数1x ,2x ,···,m x 和n+1 个实值函数()0 x j , ()1 x j , ···()n x j ,其中n £m 。若向量组 k f =(()0k x j ,()1k x j ,···,() k m x j )T (k=0,1,,n ) 线性无关,则称函数组{()k x j (k=0,1, ,n )}在点集{i x (i=0,1, ,m)}上线性无关;否 则称为线性相关。 例如,函数组{2+x ,1-x ,x+2 x }在点集{1,2,3,4}上线性无关。 又如,函数组{sin x ,n2x ,sin 3x }在点集{0, 3p ,2 3 p ,p }上线性相关。 给点n+1个互异的实数0x ,1x ,···,n x ,实值函数() f x 在包含0x ,1x ,···,n x 的某个区间[] ,a b 内有定义。设函数组 {()k x j (k=0,1, ,n )} 是次数不高于n 的多项式组,且在点集{0x ,1x ,···,n x }上线性无关。

数值分析(计算方法)总结

第一章绪论 误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差 是的绝对误差,是的误差,为的绝对误差限(或误差限) 为的相对误差,当较小时,令 相对误差绝对值得上限称为相对误差限记为:即: 绝对误差有量纲,而相对误差无量纲 若近似值的绝对误差限为某一位上的半个单位,且该位直到的第一位非零数字共 有n位,则称近似值有n位有效数字,或说精确到该位。 例:设x==3.1415926…那么,则有效数字为1位,即个位上的3,或说精确到个位。 科学计数法:记有n位有效数字,精确到。 由有效数字求相对误差限:设近似值有n位有效数字,则其相对误差限为 由相对误差限求有效数字:设近似值的相对误差限为为则它有n位有效数字 令 1.x+y近似值为和的误差(限)等于误差(限) 的和 2.x-y近似值为 3.xy近似值为 4. 1.避免两相近数相减 2.避免用绝对值很小的数作除数 3.避免大数吃小数

4.尽量减少计算工作量 第二章非线性方程求根 1.逐步搜索法 设f (a) <0, f (b)> 0,有根区间为 (a, b),从x0=a出发,按某个预定步长(例如h=(b-a)/N)一步一步向右跨,每跨一步进行一次根的搜索,即判别f(x k)=f(a+kh)的符号,若f(x k)>0(而f(x k-1)<0),则有根区间缩小为[x k-1,x k] (若f(x k)=0,x k即为所求根), 然后从 x k-1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k-x k-1|< 为止,此时取 x*≈(x k+x k-1)/2作为近似根。 2.二分法 设f(x)的有根区间为[a,b]= [a0,b0], f(a)<0, f(b)>0.将[a0,b0]对分,中点x0= ((a0+b0)/2),计算f(x0)。 3.比例法 一般地,设 [a k,b k]为有根区间,过(a k, f(a k))、 (b k, f(b k))作直线,与x轴交于一 点x k,则: 1.试位法每次迭代比二分法多算一次乘法,而且不保证收敛。 2.比例法不是通过使求根区间缩小到0来求根,而是在一定条件下直接构造出一个点列(递推公式),使该点列收敛到方程的根。——这正是迭代法的基本思想。 事先估计: 事后估计 局部收敛性判定定理: 局部收敛性定理对迭代函数的要求较弱,但对初始点要求较高,即初始点必须选在精确解的附近 Steffensen迭代格式: Newton法: Newton下山法:是下山因子 弦割法:

数值分析小论文

“数值分析”课程 第一次小论文 郑维珍2015210459 制研15班(精密仪器系)内容:数值分析在你所在研究领域的应用。 要求:1)字数2500以上;2)要有摘要和参考文献;3)截至10.17,网络学堂提交,过期不能提交! 数值分析在微流控芯片研究领域的应用 摘要: 作者在硕士期间即将参与的课题是微流控芯片的研制。当前,微流控芯片发展十分迅猛,而其中涉及到诸多材料学、电子学、光学、流体力学等领域的问题,加上微纳尺度上的尺寸效应,理论研究和数值计算都显得困难重重。发展该领域的数值计算,成为重中之重。本文从微流体力学、微传热学、微电磁学、微结构力学等分支入手,简要分析一下数值分析方法在该领域的应用。 微流控芯片(Microfluidic Chip)通常又称芯片实验室(Lab-On-a-Chip ),它是20世纪90年代初由瑞士的Manz和Widmer提出的[1-2],它通过微细加工技术,将微管道、微泵、微阀、微电极、微检测元件等功能元件集成在芯片材料(基片)上,完成整个生化实验室的分析功能,具有减少样品的消耗量、节省反应和分析的时间、高通量和便携性等优点。 通常一个微流控芯片系统都会执行一个到多个微流体功能,如泵、混合、热循环、扩散和分离等,精确地操纵这些流体过程是微流控芯片的关键。因此它的研究不仅需要生命科学、MEMS、材料学、电子学、光学、流体力学等多学科领域的基础理论的支持,还需要很多数学计算。

1)微流体力学计算[3]: 对微管里的流体动力的研究主要包含了以下几个方面:(1)微管内流体的粘滞力的研究;(2)微管内气流液流的传热活动;(3)在绝热或传热的微管内两相流的流动和能量转换。这三方面的研究涵盖了在绝热、传热和多相转换条件下,可压缩和不可压缩流体在规则或不规则的微管内的流动特性研究。 由此,再结合不同的初值条件和边界条件,我们可以得到各种常微分方程或偏微分方程,而求解这些方程,就是需要很多数值分析的知识。例如,文献[4]里就针对特定的初值和边界条件,由软件求解了Navier-Stodes方程: 文献[4]专门有一章节讨论了该方程的离散化和数值求解。 微流体力学主要向两个方面发展:一方面是研究流动非定常稳定特性、分叉解及微尺寸效应下的湍流流动的机理,更为复杂的非定常、多尺度的流动特征,高精度、高分辨率的计算方法和并行算法;另一方面是将宏观流体力学的基本模型,结合微纳效应,直接用于模拟各种实际流动,解决微纳芯片生产制造中提出来的各种问题。 2)微传热方程计算: 常微分、偏微分方程的数值求解应用较为广泛的另一问题就是微流体传热问题。由传热学的相关知识,我们可以达到如下的传热学基本方程: 该方程在二维情况下经过简化和离散,可以得到如教材第三章所讲的“五点差分格式”的方程组,从而采取数值方法求解[5]。 除此之外,微结构芯片在加工和制造过程中也会有很多热学方面的问题,例如文献[6]所反映的注塑成型工艺中,就有大量的类似问题的解决。 3)微电磁学计算: 由于外加电场的作用,电渗流道中会产生焦耳热效应。许多研究者对电渗流道中的焦耳热效应进行了数值模拟研究。新加坡南洋理工大学的G. Y. Tang等在电渗流模型的基础上,考虑了与温度有关的物理系数,在固一液祸合区域内利用

数值分析典型习题资料

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤ -31 104 ?. 2. 01(),(),,()n l x l x l x L 是以01,,,n x x x L 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=L x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

数值分析论文 (8)

牛顿迭代法及其应用 [摘要]本文研究应用泰勒展开式构造出牛顿迭代法,论证了它的局部收敛性和收敛阶。分别讨论了单根情形和重根情形,给出了实例应用。最后给出了离散牛顿法的具体做法。 [关键词] 关键词:泰勒展开式,牛顿迭代法及其收敛性,重根,离散牛顿法。 1.牛顿法及其收敛性 求方程f(x)=0的根,如果已知它的一个近似,可利用Taylor展开式求出f(x)在附近的线性近似,即 ,ξ在x与之间 忽略余项,则得方程的近似 右端为x的线性方程,若,则解,记作,它可作为的解的新近似,即 (2.4.1) 称为解方程的牛顿法.在几何上求方程的解,即求曲线y=f(x)与x轴交点.若已知的一个近似,通过点(,f())作曲线y=f(x)的切线,它与 x轴交点为,作为的新近似,如图1所示

图1 关于牛顿法收敛性有以下的局部收敛定理. 定理1设是f(x)=0的一个根,f(x)在附近二阶导数连续,且,则牛顿法(2.4.1)具有二阶收敛,且 (2.4.2) 证明由式(2.4.1)知迭代函数,, ,而,由定理可知,牛顿迭代(2.4.1)具有二阶收敛,由式可得到式(2.4.2).证毕. 定理表明牛顿法收敛很快,但在附近时才能保证迭代序列收敛.有关牛顿法半局部收敛性与全局收敛定理.此处不再讨论. 例1用牛顿法求方程的根. ,牛顿迭代为 取即为根的近似,它表明牛顿法收敛很快.

例2设>0,求平方根的过程可化为解方程.若用牛顿法求解,由式(2.4.1)得 (2.4.3) 这是在计算机上作开方运算的一个实际有效的方法,它每步迭代只做一次除法和一次加法再做一次移位即可,计算量少,又收敛很快,对牛顿法我们已证明了它 的局部收敛性,对式(2.4.3)可证明对任何迭代法都是收敛的,因为当 时有 即,而对任意,也可验证,即从k=1开始,且 所以{}从k=1起是一个单调递减有下界的序列,{}有极限.在式(2.4.3) 中令k→∞可得,这就说明了只要,迭代(2.4.3)总收敛到,且是二阶收敛. 在例2.4的迭代法(3)中,用式(2.4.3)求只迭代3次就得到 =1.732 051,具有7位有效数字. 求非线性方程f(x)=0的根x*,几何上就是求曲线y=f(x)与x轴交点x*,若已知曲线上一点过此点作它的切线。方程为 此切线与x轴交点记作,它就是(2,4,1)给出的牛顿迭代法,由图2-3 看到牛顿法求根就是用切线近似曲线,切线与x轴交点xk+1作为方程f(x)=0 根x*的新近似。 根据定理2.3可以证明牛顿法是二阶收敛的,这就是定理4.1给出的结果,牛顿法由于收敛快,它是方程求根最常用和最重要的方法,在计算机上用牛顿法解方程的计算步骤: 算法如下:(牛顿法) 步0: 给初始近似,计算精度最大迭代步数N,0→k.

数值分析典型例题

第一章典型例题 例3…,精确到10-3的近似值是多少? 解 精确到10-3=,即绝对误差限是?=, 故至少要保留小数点后三位才 可以。ln2? 第二章典型例题 例1 用顺序消去法解线性方程组 解 顺序消元 于是有同解方程组 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 解 建立迭代格式 ??? ????+--=+--=++-=+++5223122)(2)(1)1(3) (3)(1)1(2 )(3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…) 第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 X (2)=(5,-3,-3)T 第3次迭代,k =2 X (3)=(1,1,1)T 第4次迭代,k =3

X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭 代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1 =D ?? ?? ? ?????=022001000L ~ ?? ?? ? ?????-=000100220U ~ 雅可比迭代矩阵为 B 0=?? ?? ? ?????--=??????????-??????????-=+--022101220022101220100010001)U ~L ~(D 1 得到矩阵B 0的特征根03,2,1=λ,根据迭代基本定理4,雅可比迭代法收敛。 高斯-赛德尔迭代矩阵为 G =-U ~ )L ~D (1-+ =-?? ?? ??????----=??????????-??????????---=??????????-??????????-2003202200001002201200110010001002201220110011 解得特征根为?1=0,?2,3=2。由迭代基本定理4知,高斯-赛德尔迭代发散。 例5 填空选择题: 1. 用高斯列主元消去法解线性方程组 作第1次消元后的第2,3个方程分别为 。

数值分析典型例题

数值分析典型例题 例1 对下列各数写出具有5位有效数字的近似值。236.478, 0.00234711, 9.000024, 9.0000343 10?. 解:按照定义,以上各数具有5位有效数字的近似值分别为:236.478, 0.0023471, 9.0000, 9.0000310?。 注意: *x =9.000024的5位有效数字是9.0000而不是9,因为9 是1位有效数字。 例2 指出下列各数具有几位有效数字。2.0004, -0.00200, -9000, 9310?, 23 10-?。 解:按照定义,以上各数的有效数字位数分别为5, 3, 4,1,1 例3 已测得某物体行程* s 的近似值s=800m ,所需时间* s 的近似值为t=35s ,若已知m s s s t t 5.0||,05.0||**≤-≤-,试求平均速度v 的绝对误差和相对误差限。 解:因为t s v /=,所以)()(1)()()(2t e t s s e t t e t v s e s v v e -=??+??≈ 从 而 05.00469.035 800 5.0351|)(||||)(|1|)(|22≤≈+?≤+≤t e t s s e t v e 同样v v e v e r )()(≈)()()()(t e s e t e v t t v s e v s s v r r r -=??+??= 所以00205.035 05 .08005.0|)(||)(||)(|≈+≤+≤t e s e v e r r r 因此绝对误差限和相对误差限分别为0.05和0.00205。 例4试建立积分20,,1,05 =+=n dx x x I n n 的递推关系,并研究它的误差 传递。 解:151 --= n n I n I ……………………………………………..…...(1) 5ln 6ln 0-=I ,计算出0I 后可通过(1)依次递推计算出1I ,…,20I 。 但是计算0I 时有误差0e ,由此计算出的1I ,…,20I 也有误差,由(1)可 知近似值之间的递推关系为 151 --= n n I n I ……………………………………………….…..(2) (1)-(2)可得 01)5(5e e e n n n -=-=-,由0I 计算n I 时误差被放大了n 5倍。所以(1)不稳 定。 (1) 可以改写为 n I I n n 51 511+ -=- ……………………………………… (3) 如果能先求出20I ,则依次可以求出19I ,…,0I ,计算20I 时有误差,这样根据(3)计算19I ,…,0I 就有误差,误差传播为 n n n e e ?? ? ??-=-511 ,误差依次减少。 例5 用二分法求解方程012)(23=+--=x x x x f 在区间[0,1]内的1个实根,要求有3为有效数字。 解:因为0)1()0(0,disp('(a,b)不是有根区间');return,end max=1+round((log(b -a)-log(tol2))/log(2));%round函数是将数据取整,使数据等于其最接近的整数。 for k=1:max c=(a+b)/2; yc=feval('f',c); if((b-a)/2> format compact >> fplot('[x^3-2*x-1,0]',[-1.5,2]); >> jiangerfen('f',-1.5,-0.8); k = 8 c = -0.9996

中北大学数值分析小论文

中北大学 《数值分析》 常微分方程初值问题的数值解法 专业: 班级: 学号: 姓名: 日期: 2012.12.26

常微分方程初值问题的数值解法 摘 要 微分方程的数值解法在科学技术及生产实践等多方面应用广泛. 文章分析了构造常微分方程初值问题数值解法的三种常用基本方法,差商代替导数法,数值积分法及待定系数法,推导出了Euler 系列公式及三阶龙格-库塔公式,指出了各公式的优劣性及适用条件,并对Euler 公式的收敛性、稳定性进行了分析。 Abstract The numerical solution of differential equations is widely used in science, technology, production practices and many other fields. This paper analyzed three kinds of basic methods for constructing numerical solutions for initial value problem of ordinary differential equations :difference quotient instead of derivative method, numerical integral method and undetermined coefficients method. At the same time, the paper deduces the Euler series formula and the classical third order Runge-Kutta formula. In addition, the paper pointed out the advantages and disadvantages of each formula and application condition, it also analyzed the convergence and stability of the Euler formula. 1.引言 科学技术及实际生产实践中的许多问题都可归结为微分方程的求解问题,使用较多的是常微分方程初值问题的求解。对于一阶常微分方程的初值问题 000dy /dx f (x,y),y(x )y ,x x b ==<<,其中f 为已知函数,0y 是初始值。如 果函数f 关于变量y 满足Lipschitz 条件,则初值问题有唯一解。只有当f 是一些特殊类型的函数时,才能求出问题的解析解,但一般情况下都满足不了生产实践与科学技术发展的需要,因此通常求其数值解法。 2.主要算法 数值解法是一种离散化的方法,可以求出函数的精确解在自变量一系列离散点处的近似值。基本思想是离散化,首先要将连续区间离散化,对连续区域[]0x ,b 进行剖分01n 1n x x x x b -<<Λ<<=,n n 1n h x x +=-为步长;其次将其函离散

数值分析计算方法试题集及答案

数值分析复习试题 第一章 绪论 一. 填空题 1.* x 为精确值 x 的近似值;() **x f y =为一元函数 ()x f y =1的近似值; ()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-: *** r x x e x -= ()()()*'1**y f x x εε≈? ()() () ()'***1**r r x f x y x f x εε≈ ? ()()()() ()* *,**,*2**f x y f x y y x y x y εεε??≈?+??? ()()()()() ** * *,***,**222r f x y e x f x y e y y x y y y ε??≈ ?+??? 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误 差 。 3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6 位和 7 位;又取 1.73≈-21 1.73 10 2 ≤?。 4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。 5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。 6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得 到,则相对误差限为 0.0000204 . 7、 递推公式,??? ? ?0n n-1y =y =10y -1,n =1,2, 如果取0 1.41y ≈作计算,则计算到10y 时,误 差为 81 10 2 ?;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值 14159265.3* =π,则近似值141.3*1=π和1415.3*2=π分别有 3

数值分析论文

插值方法总结 摘 要:本文是对学过的插值方法进行了总结使我们更清楚的知道那一种方法适合那一种型。 关键词:插值;函数;多项式;余项 (一)Lagrange 插值 1.Lagrange 插值基函数 n+1个n 次多项式 ∏≠=--= n k j j j k j k x x x x x l 0)( n k ,,1,0 = 称为Lagrange 插值基函数 2.Lagrange 插值多项式 设给定n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠,满足插值条件 )()(k k n x f x L =,n k ,,1,0 = 的n 次多项式 ∏∏ ∏=≠==--==n k n k j j j k j k k n k k n x x x x x f x l x f x L 0 00 ))(()()()( 为Lagrange 插值多项式,称 ∏=+-+=-=n j j x n n x x n f x L x f x E 0)1()()!1()()()()(ξ 为插值余项,其中),()(b a x x ∈=ξξ (二)Newton 插值 1.差商的定义 )(x f 关于i x 的零阶差商 )(][i i x f x f = )(x f 关于i x ,j x 的一阶差商 i j i j j i x x x f x f x x f --= ][][],[ 依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商

i k i k i i k i i k i i i x x x x f x x f x x x f --= +-+++++] ,,[],,[],,,[111 2.Newton 插值多项式 设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠, 称满足条件 )()(k k n x f x N =,n k ,,1,0 = 的n 次多项式 )()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N 为Newton 插值多项式,称 ],[,)(],,,[)()()(0 10b a x x x x x x f x N x f x E n j j n n ∈-=-=∏= 为插值余项。 (三)Hermite 插值 设],[)(1b a C x f ∈,已知互异点0x ,1x ,…,],[b a x n ∈及所对应的函数值为 0f ,1f ,…,n f ,导数值为'0f ,' 1f ,…,' n f ,则满足条件 n i f x H f x H i i n i i n ,,1,0,)(,)(' '1212 ===++ 的12+n 次Hermite 插值多项式为 )()()(0 '12x f x f x H j n j j j n j i n βα∏∏=++= 其中 )())((,)]()(21[)(2 2'x l x x x l x l x x x j j j j j j j j ---=βα 称为Hermite 插值基函数,)(x l j 是Lagrange 插值基函数,若],[22b a C f n +∈,插值误差为 220) 22(12)()()! 22() ()()(n x n n x x x x n f x H x f --+= -++ ξ,),()(b a x x ∈=ξξ (四)分段插值 设在区间],[b a 上给定n+1个插值节点 b x x x a n =<<<= 10 和相应的函数值0y ,1y ,…,n y ,求作一个插值函数)(x ?,具有性质

《数值计算方法》试题及答案

数值计算方法考试试题 一、选择题(每小题4分,共20分) 1. 误差根据来源可以分为四类,分别是( A ) A. 模型误差、观测误差、方法误差、舍入误差; B. 模型误差、测量误差、方法误差、截断误差; C. 模型误差、实验误差、方法误差、截断误差; D. 模型误差、建模误差、截断误差、舍入误差。 2. 若132)(3 56++-=x x x x f ,则其六阶差商 =]3,,3,3,3[6210 f ( C ) A. 0; B. 1; C. 2; D. 3 。 3. 数值求积公式中的Simpson 公式的代数精度为 ( D ) A. 0; B. 1; C. 2; D. 3 。 4. 若线性方程组Ax = b 的系数矩阵A 为严格对角占优矩阵,则解方程组的Jacobi 迭代法和Gauss-Seidel 迭代法 ( B ) A. 都发散; B. 都收敛 C. Jacobi 迭代法收敛,Gauss-Seidel 迭代法发散; D. Jacobi 迭代法发散,Gauss-Seidel 迭代法收敛。 5. 对于试验方程y y λ=',Euler 方法的绝对稳定区间为( C ) A. 02≤≤-h ; B. 0785.2≤≤-h ; C. 02≤≤-h λ; D. 0785.2≤≤-h λ ; 二、填空题(每空3分,共18分) 1. 已知 ? ??? ??--='-=4321,)2,1(A x ,则 =2 x 5,= 1Ax 16 ,=2A 22115+ 2. 已知 3)9(,2)4(==f f ,则 f (x )的线性插值多项式为)6(2.0)(1+=x x L ,且用线性插值可得f (7)= 2.6 。 3. 要使 20的近似值的相对误差界小于0.1%,应至少取 4 位有效数字。 三、利用下面数据表, 1. 用复化梯形公式计算积分 dx x f I )(6 .28 .1? =的近似值; 解:1.用复化梯形公式计算 取 2.048 .16.2,4=-= =h n 1分 分 分分7058337 .55))6.2()2.08.1(2)8.1((22.04)) ()(2)((231 1 1 4=+++=++=∑∑=-=f k f f b f x f a f h T k n k k 10.46675 8.03014 6.04241 4.42569 3.12014 f (x ) 2.6 2.4 2.2 2.0 1.8 x

数值分析教案

数值分析教案 土建学院 工程力学系 2014年2月 一、课程基本信息 1、课程英文名称:Numerical Analysis

2、课程类别:专业基础课程 3、课程学时:总学时32 4、学分:2 5、先修课程:《高等数学》、《线性代数》、《C 语言》 6、适用专业:工程力学 二、课程的目的与任务: 数值分析是工程力学专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 三、课程的基本要求: 1.掌握数值分析的常用的基本的数值计算方法 2.掌握数值分析的基本理论、分析方法和原理 3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力 4.了解科学计算的发展方向和应用前景 四、教学内容、要求及学时分配: (一) 理论教学: 引论(2学时) 第一讲(1-2节) 1.教学内容: 数值分析(计算方法)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点: 算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标: 了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。

数值分析小论文

基于MATLAB曲线拟合对离散数据的处理和研究 摘要:曲线拟合是数值分析中的一种普遍且重要的方法,求解拟合曲线的方法也有很多,这里主要介绍利用MATLAB曲线拟合工具箱对离散数据点做你和处理,并与利用最小二乘法求相应的拟合曲线的方法做对比,突出MATLAB曲线拟合工具箱的优点,并阐述了其适用的范围,最后通过利用MATLAB曲线拟合工具箱对实例中离散数据点的拟合来具体说明它的使用方法和优点。 关键字:数值分析;MATLAB;曲线拟合;最小二乘法 一问题探究 在很多的实际情况中,两个变量之间的关系往往很难用具体的表达式把它表示出来,通常只能通过实际测量得到一些互不相同的离散数据点,需需要利用这些已知的数据点估计出两个变量的关系或工件的具体轮廓,并要得到任意未知数据点的具体数据,这个过程就需要用到拟合或差值方法来实现,这里主要讨论拟合的方法。 曲线拟合可以通过MATLAB编程来完成,通常为了达到更好的讷河效果需要做多次重复修改,对于非线性曲线拟合还需要编写复杂的M-文件,运用MATLAB曲线拟合工具箱来实现离散数据点的曲线拟合是一种直观并且简洁的方法。 二曲线拟合的最小二乘法理论 假设给定了一些数据点(Xi,Yi),人们总希望找到这样的近似的函数,它既能反映所给数据的一般趋势,又不会出现较大的偏差,并且要使构造的函数与被逼近函数在一个给定区间上的偏差满足某种要求。这种思想就是所谓的“曲线拟合”的思想。 曲线拟合和差值不同,若要求通过所有给定的数据点是差值问题,若不要求曲线通过所有给定的数据点,而只要求反映对象整体的变化趋势,拟合问题,曲线拟合问题最常用的解决方法是线性最小二乘法[1],步骤如下: 第一步:先选定一组函数r1(x),r2(x),…,rm(x),m

相关文档 最新文档