文档库 最新最全的文档下载
当前位置:文档库 › 驻波例题与练习

驻波例题与练习

驻波例题与练习
驻波例题与练习

典型例题江西彭泽二中周济芳

例1:下列说法中正确的是()

A.弦线上的驻波其总长为半个波长的自然数倍

B.用驻波的规律可测波形的波长

C.驻波上处于波节的点位移始终为零,处于波腹的点位移始终处于最大

D.弦乐器的发声是弦上形成驻波

选题角度:驻波原理的理解

解析:驻波上波腹上各质点振动振幅最大,但也在作简谐振动,也有到达平衡位置的时刻,不但弦乐器利用驻波的原理,管乐器也利用了空气柱形成驻波的原理.

正确选项为ABD.

例2:一玻璃管竖直插入一水槽中,在玻璃管上端有一发声音叉,频率为200Hz,上下移动玻璃管,测到相邻两次共鸣时管中空气柱的长度差为34cm,试求声速.

选题角度:应用驻波的原理求声速.

解析:由于玻璃管中的空气要产生共鸣,空气柱长L等于又的奇数倍,因此相邻两次共鸣的空气柱长度差: cm,

所以 m/s.

习题精选

1.下列说法正确的是

A.驻波是两个振幅相同,频率相同的波在同一直线上沿相反方向传播时形成的

B.驻波上各点所做的是相同频率不同振幅的简谐振动.

C.驻波上两个节点间的各点,它们振动的趋向相同

D.相邻两波节点的距离是一个波长

2.跟某一声波共鸣的空气柱最短的长度与声波波长的关系是下列数据中的哪一个

A. B. C. D.

3.弦线上的驻波相邻两波节的距离为65cm,弦的振动频率为

Hz,求波的传播速度v和波长。

4.取一根两端开口的玻璃管,竖直地插在深水槽中,敲击频率为500Hz的音叉,并将其放在靠近上端的管口处.当从水中逐渐提起玻璃管时,所产生的第一次共鸣和第二次共鸣的空气柱长度相差为34cm,求声波的波速.

参考答案

1.ABC

2.B

3.

提示:因相邻的两个波节之间的距离等于半个波长,则

又则

4.解:第一次共鸣与第二次共鸣,空气柱长度相差。

声波的频率等于音叉的频率,则 Hz

∴.

弦线上的驻波

实验四 弦线上的驻波 【实验目的】 1.了解弦线上驻波的形成,观察弦线上的驻波现象。 2.研究弦线振动时的振动频率与振幅变化对形成驻波的影响,研究波长与张力的关系; 3.在弦线张力不变时,研究弦线振动时驻波波长与振动频率的关系。 4.改变弦线张力后,研究弦线振动时驻波波长与振动频率的关系。 【实验仪器】 PD-SWE-II 弦线上驻波实验仪。包括可调频率的数显机械振动源、滑轮、砝码盘、米尺、弦线、砝码等。见图1 图1 仪器结构图 1.可调频率数显机械振动源 2.振簧片 3.弦线 4.可动刀口支架 5.可动滑轮支架 6.标尺 7.固定滑轮 8.砝码与砝码盘 9.变压器 10.实验平台 11.实验桌 【实验原理】 在一根拉紧的弦线上,沿弦线传播的横波应满足方程: 2222 y T y t x ρ??=?? (1) 式中T 为张力,ρ为线密度,x 为弦上质元在波传播方向(与弦线平行)的位置坐标,y 为 其振动位移。将(1)式与典型的波动方程 22 222 y y u t x ??=?? 相比较,即可得到波速为 : u = (2) 若波源的振动频率为ν,横波波长为λ,由于u νλ=,故波长与张力及线密度之间的关 系为: λ=

为了用实验证明公式(3)成立,将该式两边取对数,得: 11 log log log log 22 T λρν=-- (4) 若固定频率ν及线密度ρ,而改变张力T ,并测出各相应波长λ,作log λ~ log T 图, 若得一直线,计算其斜率值,如果为2 1 ,则证明了λ∝21T 的关系成立。同理,固定线密 度ρ及张力T ,改变振动频率ν,测出各相应波长λ,作log λ~ log ν图,如得到斜率为 -1的直线则验证了λ∝ ν-1 。 弦线上的波长可利用驻波原理测量。当两个振幅和频率相同的相干波在同一直线上相向传播时,其叠加而成的稳定的波形称为驻波。驻波振幅分布的特点是波腹和波节相间、等距排列,相邻波节(波腹)间距为半个波长。若(n+1)个波节之间的距离为L ,则有: 2 L n λ = (5) 【实验内容】 1.必做内容 (1)验证横波的波长与弦线中的张力的关系 固定一个波源振动的频率,在砝码盘上添加不同质量的砝码,以改变弦上的张力。每改 变一次张力(即增加一次砝码),均要左右移动可动滑轮○5的位置,使弦线出现振幅较大而稳 定的驻波。用实验平台⑩上的标尺○ 6测量L 值,即可根据式(5)算出波长λ。 (2)验证横波的波长与波源振动频率的关系 在砝码盘上放上一定质量的砝码,以固定弦线上所受的张力,改变波源振动的频率,用驻波法测量各相应的波长。 2.选做内容 验证横波的波长与弦线密度的关系 在砝码盘上放固定质量的砝码,以固定弦线上所受的张力,固定波源振动频率,通过改变弦丝的粗细来改变弦线的线密度,用驻波法测量相应的波长,作log λ~log ρ图,求其斜率。得出弦线上波传播规律与线密度的关系。 【数据处理】 1. 根据测得数据,作log λ~log T 曲线,利用作图法求其斜率。 2. 根据测得数据,作log λ~log ν曲线,利用最小二乘法求其斜率。 【预习思考题】 1.调节振动源上的振动频率和振幅大小后对弦线振动会产生什么影响? 2.为什么改变弦线张力后,需要左、右移动可动滑轮的位置方能使弦线出现稳定的驻波? 【分析讨论题】 1.如何判断弦线上驻波的振动平面? 2.求波长时为何要测几个半波长的总长度? 【注意事项】 1.实验中,要准确求得驻波的波长,必须在弦线上调出振幅较大且稳定的驻波。在固定频率和张力的条件下,可沿弦线方向左、右移动可动滑轮⑤的位置,找出“近似驻波状态”,然后细细移动可动滑轮位置,逐步逼近,最终使弦线出现振幅较大且稳定的驻波。

物理教案驻波.doc

物理教案驻波 教学目标知 识目标1、认驻波现象,了解驻波产生的原理。2、观察驻波的实验现象、能够解释现象的发生。 能力目标1、通过实验,培养学生的实验动手能力和观察能力。 情感目标通过对有趣物理现象的观察,培养学生对科学的探究精神 教学建议关于驻波这一节内容较少,教师在讲解的时候,重点需要强调驻波产生实际是波的反射、波的叠加,教师可以通过两个有趣的物理实验:1、用琴弦和打点计时器进行驻波的演示;2、用音叉通过盛水玻璃管内的声波演示驻波。 培养学生对科学的探究精神,同时锻炼学生的动手实践的能力。 典型例题 关于驻波现象,下列说法正确的是:a、相邻的两波节之间的各个质点的振幅都相等;b、相邻的两波节之间的各个质点的振动方向都相同;c、相邻的两波腹之间各个质点的振动方向不完全相同;d、相邻的两个波腹之间的距离为半个波长本题是考察驻波的基本知识:只有两个波节中点振幅为最大,两边这副逐渐减小,故不选a项;两波节间各个质点的振动方向都相同,故b选项是正确的;相邻的波腹以波节为

界,一边振动方向向上,另一边质点振动方向向下,故选c选项;由波的干涉可知:驻波相邻的两个波腹之间的距离萎半个波长,故选项d正确,总之,本题的正确答案是b、c、d选项。 教学目标知 识目标1、认驻波现象,了解驻波产生的原理。2、观察驻波的实验现象、能够解释现象的发生。 能力目标1、通过实验,培养学生的实验动手能力和观察能力。 情感目标通过对有趣物理现象的观察,培养学生对科学的探究精神 教学建议关于驻波这一节内容较少,教师在讲解的时候,重点需要强调驻波产生实际是波的反射、波的叠加,教师可以通过两个有趣的物理实验:1、用琴弦和打点计时器进行驻波的演示;2、用音叉通过盛水玻璃管内的声波演示驻波。 培养学生对科学的探究精神,同时锻炼学生的动手实践的能力。 典型例题 关于驻波现象,下列说法正确的是:a、相邻的两波节之间的各个质点的振幅都相等;b、相邻的两波节之间的各个质点的振动方向都相同;c、相邻的两波腹之间各个质点的振动方向不完全相同;d、相邻的两个波腹之间的距离

驻波管法测定吸声材料的吸声系数1

驻波管法测定吸声材料的吸声系数 【实验目的】 (1)了解人耳听觉得频率范围,获得对一些频率纯音得感性认识。 (2)加深对垂直入射吸声系数得理解,熟悉驻波管法是测定材料的吸声系数的方法。 【实验原理】 测量装置 1测试车2导轨3声源箱4驻波管(分低、高频两种) 测量原理 驻波管为一金属(塑料)直管,它的一端可以用夹具安装试件,另一端接好扬声器,声频讯号由声频发生器产生,经放大器进行放大,由扬声器发出单频声波,声波在驻波管内传播,由于管径较小,与音频声波的波长相比,可近似将声波面看作为平面入射波,沿管内直线传播;当入射到试件后,进行反射,由于反射波与入射波传递的方向和相位相反,声压产生叠加,干涉而形成驻波,并在管内某个位置上形成声压极大值Pmax(2 N),t和声压极较小值Pmin,其间距 /m 为l/4波长。

11E E r -=-=γα 式中:α —————吸声系数 γ—————反射系数 Eo —————入射声能(W) Er —————反射声能(W) 令n P P =min max / 称为驻波比..................(1) 故有:24/(1)n n α=+ (2) 一般频谱分析仪或声级计,测试的标称值是声压级,而不是声压P 值,根据声压和声压级的关系,吸声系数可如下计算。 n P P L L L lg 20m in/lg 20m ax /lg 20m in m ax 00=Φ-Φ=-=? 20 2 204*10(110 ) P P L L a = + (3) 【测量方法】 (1) 电路接线正确后,信号发生器等电子仪器电源接通。 (2) 将试件按照要求装在试件筒内,并用凡士林将试件与筒壁接触处的缝隙填 塞,使之严密,然后再用夹具将试件筒固定在驻波管上。 (3) 调节声频发生器的频率,依次发出200、250、315、400、500、630、 800、1000、1250、1600、2000Hz 不同的声频。在设置仪器输出信号的频率时,测量到的声压级波峰值不超过136分贝,声压级波谷值不低于50分贝。 (4) 将滑块移到最远处,,移动仪器屏幕上的光标,到所测量的频率的第一个峰 值位置(1/4波长)缓慢移动滑块,同时读取光标位置显示的声压级,并记录滑块所在位置的刻度,按F7自动计算吸声系数。

电路各章习题及答案

各章习题及答案 第一章绪论 1 .举例说明什么是测控? 答:(1) 测控例子: 为了确定一端固定的悬臂梁的固有频率,我们可以采用锤击法对梁进行激振,再利用压电传感器、电荷放大器、波形记录器记录信号波形,由衰减的振荡波形便可以计算出悬臂梁的固有频率。 (2)结论: 由本例可知:测控是指确定被测对象悬臂梁的属性—固有频率的全部操作,是通过一定的技术手段—激振、拾振、记录、数据处理等,获取悬臂梁固有频率的信息的过程。 2. 测控技术的任务是什么? 答:测控技术的任务主要有: 通过模型试验或现场实测,提高产品质量; 通过测控,进行设备强度校验,提高产量和质量; 监测环境振动和噪声,找振源,以便采取减振、防噪措施; 通过测控,发现新的定律、公式等; 通过测控和数据采集,实现对设备的状态监测、质量控制和故障诊断。 3. 以方框图的形式说明测控系统的组成,简述主要部分的作用。 测控系统方框图如下:

(2)各部分的作用如下: ●传感器是将被测信息转换成某种电信号的器件; ●信号的调理是把来自传感器的信号转换成适合传输和处理的形式; ●信号处理环节可对来自信号调理环节的信号,进行各种运算、滤波 和分析; ●信号显示、记录环节将来自信号处理环节的信号显示或存贮。 ●模数(A/D)转换和数模(D/A)转换是进行模拟信号与数字信号相互转换,以 便用计算机处理。 4.测控技术的发展动向是什么? 传感器向新型、微型、智能型方向发展; 测控仪器向高精度、多功能、小型化、在线监测、性能标准化和低价格发展; 参数测量与数据处理向计算机为核心发展; 5. A precise optional signal source can control the output power level to within 1%. A laser is controlled by an input current to yield the power output. A microprocessor controls the input current to

模拟电路典型例题讲解

3.3 频率响应典型习题详解 【3-1】已知某放大器的传递函数为 试画出相应的幅频特性与相频特性渐近波特图,并指出放大器的上限频率f H ,下限频率f L 及中频增益A I 各为多少? 【解】本题用来熟悉:(1)由传递函数画波特图的方法;(2)由波特图确定放大器频响参数的方法。 由传递函数可知,该放大器有两个极点:p 1=-102rad/s ,p 2=-105rad/s 和一个零点z =0。 (1)将A (s )变换成以下标准形式: (2)将s =j ω代入上式得放大器的频率特性: 写出其幅频特性及相频特性表达式如下: 对A (ω)取对数得对数幅频特性: (3)在半对数坐标系中按20lg A (ω)及φ(ω)的关系作波特图,如题图3.1所示。

由题图3.1(a )可得,放大器的中频增益A I =60dB ,上限频率f H =105/2π≈15.9kHz , 下限频率f L =102/2π≈15.9Hz 。 【3-2】已知某放大器的频率特性表达式为 试问该放大器的中频增益、上限频率及增益带宽积各为多少? 【解】本题用来熟悉:由放大器的频率特性表达式确定其频率参数的方法。 将给出的频率特性表达试变换成标准形式: 则 当ω = 0时,A (0) =200,即为放大器的直流增益(或低频增益)。 当ω =ωH 时, ωH =106rad/s 相应的上限频率为 由增益带宽积的定义可求得:GBW=│A (0)·f H │≈31.84MHz 思考:此题是否可用波特图求解? 【3-3】已知某晶体管电流放大倍数β的频率特性波特图如题图3.2(a )所示,试写出β的频率特性表达式,分别指出该管的ωβ、ωT 各为多少?并画出其相频特性的渐近波特图。

波的反射、折射、干涉、衍射和驻波练习题

二、波的反射、折射、干涉、衍射和驻波练习题 一、选择题 1、下列说法中正确的是[ ] A.衍射是一切波特有的现象 B.障碍物或孔越小越易产生衍射 C.在空旷的山谷里叫喊,可以听到回音,这是声波的衍射现象 D.在空旷的山谷里叫喊,可以听到回音,这是声音的反射现象 2、下列关于两列波相遇时叠加的说法中正确的是[ ] A.相遇后,振幅小的一列波将减弱,振幅大的一列波将加强 B.相遇前后,两列波的振动情况与相遇前完全相同 C.在相遇区域,任一点的总位移等于两列波分别引起的位移的矢量和 D.几个人在同一房间说话,相互间听得清楚,这说明声波在相遇时互不干扰 3、关于波的干涉,下列说法中正确的是[ ] A.只有横渡才能产生干涉,纵波不能产生干涉 B.只要是波都能产生稳定的干涉 C.不管是横波还是纵波,只要叠加的两列的频率相等,振动情况相同就能产生稳定干涉 4、下述关于声波的传播速度中正确的说法是[ ] A.声波的频率越高,传播速度越大 B.声波振幅越大,传播速度越大 C.声波传播速度只由介质决定

D.在空气中声速约是340m/s 5、一列声波由空气传到水中[ ] A.频率不变,波长变小 B.频率不变,波长变大 C.频率变小,波长变长 D.频率变大,波长变大 6、一列波在传播过程中通过一个障碍物,发生了一定程度的衍射,以下哪种情况能使衍射现象更明显?[ ] A.增大障碍物尺寸,同时增大波的频率 B.增大障碍物尺寸,同时减小波的频率 C.缩小障碍物尺寸,同时增大波的频率 D.缩小障碍物尺寸,同时减小波的频率 7、下面关于驻波的说法中正确的有[ ] A.形成驻波的各质点振幅是一样的 B.两个波节(或波腹)之间的距离等于半个波长 C.驻波在每一段中各点振动步调是相同的 D.利用形成的驻波可测定波长 二、填空题 8、一个人在高处用望远镜注视地面上的木工以每s1次的频率钉钉子,他听到声音时恰好看到击锤动作,当木工停止击锤后,他又听到了三次响声,则木工离他的距离是____m.(声速是340m/s) 9、空气中的声速是340m/s,水中声速是1450m/s,在空气中波长为1m的声波,在水中传播时的波长为____,该声波在铁轨中传播时波长为14.1m,那么在铁轨中声速

第五章组合逻辑电路典型例题分析

第五章 组合逻辑电路典型例题分析 第一部分:例题剖析 例1.求以下电路的输出表达式: 解: 例2.由3线-8线译码器T4138构成的电路如图所示,请写出输出函数式. 解: Y = AC BC ABC = AC +BC + ABC = C(AB) +CAB = C (AB) T4138的功能表 & & Y 0 Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 “1” T4138 A B C A 2A 1A 0Ya Yb S 1 S 2 S 30 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1 S 1S 2S 31 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 0 A 2A 1A 0Y 0Y 1Y 2Y 3Y 4Y 5Y 6Y 70 1 1 1 1 1 1 11 0 1 1 1 1 1 11 1 0 1 1 1 1 11 1 1 0 1 1 1 11 1 1 1 0 1 1 11 1 1 1 1 0 1 11 1 1 1 1 1 0 11 1 1 1 1 1 1 0

例3.分析如图电路,写出输出函数Z的表达式。CC4512为八选一数据选择器。 解: 例4.某组合逻辑电路的真值表如下,试用最少数目的反相器和与非门实现电路。(表中未出现的输入变量状态组合可作为约束项) CC4512的功能表 A ? DIS INH 2A 1A 0Y 1 ?0 1 0 0 0 00 00 00 0 0 0 0 00 0 ?????0 0 00 0 10 1 00 1 11 0 0 1 0 11 1 01 1 1 高阻态  0D 0D 1D 2D 3D 4D 5D 6D 7 Z CC4512 A 0A 1A 2 D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 DIS INH D 1 D A B C D Y 0 0 0 0 1 0 0 0 1 00 0 1 0 10 0 1 1 00 1 0 0 0 CD AB 00 01 11 1000 1 0 0 101 0 1 0 1 11 × × × ×10 0 1 × × A B 第一步画卡诺图第三步画逻辑电路图

大学物理振动波动例题习题

振动波动 一、例题 (一)振动 1.证明单摆是简谐振动,给出振动周期及圆频率。 2. 一质点沿x 轴作简谐运动,振幅为12cm ,周期为2s 。当t = 0时, 位移为6cm ,且向x 轴正方向运动。 求: (1) 振动表达式; (2) t = 0.5s 时,质点的位置、速度和加速度; (3)如果在某时刻质点位于x =-0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。 3. 已知两同方向,同频率的简谐振动的方程分别为: x 1= 0.05cos (10 t + 0.75π) 20.06c o s (100.25)(S I ) x t π=+ 求:(1)合振动的初相及振幅. (2)若有另一同方向、同频率的简谐振动x 3 = 0.07cos (10 t +? 3 ), 则当? 3为多少时 x 1 + x 3 的振幅最大?又? 3为多少时 x 2 + x 3的振幅最小? (二)波动 1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s 。在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动, 求:(1)波动方程 (2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。 2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播。已知 原点的振动曲线如图所示。求:(1)原点的振动表达式; (2)波动表达式; (3)同一时刻相距m 1的两点之间的位相差。 3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+。S 1距P 点3个波长,S 2距P 点21/4个波长。求:两波在P 点引起的合振动振幅。 4.沿X 轴传播的平面简谐波方程为 310cos[200(t )]200x y π-=- ,隔开两种媒质的反射界面A 与坐标原点O 相距2.25m ,反射波振幅无变化,反射处为 固定端,求反射波的方程。 二、习题课 (一)振动 1. 一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点。若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,

驻波管法测量吸声材料

驻波管法测量吸声材料 实验目的: 通过本实验,掌握用驻波管法测量吸声材料法向吸声系数和法向声阻抗率的原理及操作方法。 实验原理: 1,驻波管法测量吸声材料法向吸声系数的原理和方法 吸声系数是描述吸声材料的吸收声能大小的物理量。它定义为:吸声材料所吸收的声能和入射声能之比。测量材料的吸声系数,一般采用驻波管法和混响室法,前者测量的是法向吸声系数,后者测量的屎无规入射的吸声系数。 用驻波管法测定吸声材料的法向吸声西系数,设备简单而费用低廉。根据法向吸声系数又可以推算出均匀无规则入射条件下的吸声系数。但驻波管法只适用于测量声学特性与材料尺寸无关的材料样品,多用于测量多孔材料,多孔板或,穿孔薄片结构的吸声特性。 声学测量用的驻波管结构,如图1.1所示,主要部分是一根内壁光滑而坚硬,界面均匀的管子,管子的末端装有被测材料样品。由扬声器向管中辐射的声波以平面波形式传播,理论上可以证明,为了在管中获得平面波,声波的波长要大于管子的内径并且满足要求:对于圆形管,直径d<0.586λ;对于矩形管,长边的边长L<0.5λ,其

图1.1 驻波管结构 测量装置包括以下几部分:1,驻波管,根据测试频率段不同,可选用不同内劲和不同长度的驻波管;2,可移动的刚性后盖,移动它可以调节吸声材料与刚性壁面间的距离;3,被测吸声材料4,探管式传输器,用来接收驻波管轴线上各点的声压;5,扬声器,向管中辐射声波,探管可以自由穿过其中心孔;6,传输器小车,推动它可使探管在驻波管内纵向移动;7,标尺,用来指示探管在驻波管中的位置。 平面波在材料表面被反射回来,于是在管中建立起驻波声场,从材料表面算起,管 中出现声压极大与极小的交替分布。利用可移动的探管传输器接收,在测试仪表上再 读出声压极大与极小的声级差,便可以确定垂直入射时的吸声系数αp 虽然音频振荡器输给扬声器的是单频信号,但扬声器辐射处的声波并不一定是纯音,所以在接收端必须进行滤波,这样才能滤去不必要的高次谐波分量。由于要满足在管 中传播的声波为平面波和其他测试条件,常有低,中和高频三种尺寸的驻波管,以适 用于不同的频率范围。 如前所述,当平面波从试件表面反射回来时,在管中便形成驻波。入射平面波可视为一列沿正向进入参考平面的入射波,记其声压为P i于是P i可以写成 P i=P0exp?[i(ωt+kx)] (1.1) 式中k=ω/C0=2π/λ是平面波的波数,C0为空气中的声速,λ为波长,ω为圆频率。 设材料的反射系数为R,则反射波声压P r为 P r=RP0exp?[i(ωt?kx)] (1.2) 引入相位角 ?=kx=2π x (1.3) λ

电路分析典型习题与解答

中南民族大学电子信息工程学院电路分析典型习题与解答

目录 第一章:集总参数电路中电压、电流的约束关系 (1) 1.1、本章主要内容: (1) 1.2、注意: (1) 1.3、典型例题: (2) 第二章网孔分析与节点分析 (3) 2.1、本章主要内容: (3) 2.2、注意: (3) 2.3、典型例题: (4) 第三章叠加方法与网络函数 (7) 3.1、本章主要内容: (7) 3.2、注意: (7) 3.3、典型例题: (7) 第四章分解方法与单口网络 (9) 4.1、本章主要内容: (9) 4.2、注意: (10) 4.3、典型例题: (10) 第五章电容元件与电感元件 (12) 5.1、本章主要内容: (12) 5.2、注意: (12) 5.3、典型例题: (12) 第六章一阶电路 (14) 6.1、本章主要内容: (14) 6.2、注意: (14)

6.3、典型例题: (15) 第七章二阶电路 (19) 7.1、本章主要内容: (19) 7.2、注意: (19) 7.3、典型例题: (20) 第八章阻抗与导纳 (21) 8.1、本章主要内容: (21) 8.2、注意: (21) 8.3、典型例题: (21) 附录:常系数微分方程的求解方法 (24) 说明 (25)

第一章:集总参数电路中电压、电流的约束关系 1.1、本章主要内容: 本章主要讲解电路集总假设的条件,描述电路的变量及其参考方向,基尔霍夫定律、电路元件的性质以及支路电流法。 1.2、注意: 1、复杂电路中,电压和电流的真实方向往往很难确定,电路中只标出参考 方向,KCL,KVL均是对参考方向列方程,根据求解方程的结果的正负与 参考方向比较来确定实际方向. 2、若元件的电压参考方向和电流参考方向一致,为关联的参考方向, 此时元件的吸收功率P吸=UI,或P发=-UI 若元件的电压参考方向和电流参考方向不一致,为非关联的参考方向, 此时元件的吸收功率P吸=-UI,或P发=UI 3、独立电压源的端电压是给定的函数,端电流由外电路确定(一般不为0) 独立电流源的端电流是给定的函数,端电压由外电路确定(一般不为0) 4、受控源本质上不是电源,往往是一个元件或者一个电路的抽象化模型, 不关心如何控制,只关心控制关系,在求解电路时,把受控源当成独立 源去列方程,带入控制关系即可. 5、支路电流法是以电路中b条支路电流为变量,对n-1个独立节点列KCL 方程,由元件的VCR,用支路电流表示支路电压再对m(b-n+1)个网 孔列KVL方程的分析方法.(特点:b个方程,变量多,解方程麻烦)

驻波管法吸声系数测量

驻波管法吸声系数测量 1.1引言 任何一项试验都需要做细致的前期准备工作,这样才能保证试验有序合理的进行,同时可以保证试验的延续性、重复性、可比性。前期的工作主要包括对试验对象、试验条件、试验仪器、系统的搭建进行详细的定义和说明。 1.2试验对象和条件 1.2.1待测材料的规定 1、被测材料应为多孔吸声材料; 2、被测材料应制作成直径为30mm和100mm圆形,尺寸误差在2%以内,能过正好装入; 3、材料表面应平整,材料与阻抗管之间的缝隙应用油脂密封; 4、同种材料至少准备两个被测样件。 1.2.2试验环境和设备的规定 试验过程中应保证环境的安静,同时应测量环境的温度。 试验设备应满足GB/T 18696. 1- 2004的规定。 主要实验设备:采集器、功率放大器、驻波管、传声器、线缆、声级校准器、电脑和软件。 1.2.3说明 本节关于被测材料、实验设备、环境等要求未描述者,请参考GB/T 18696. 1- 2004。 1.3试验步骤 1.3.1根据设备使用说明,依次连接好采集器、传感器、功率放大器、线

缆、电脑等设备。 1.3.2检查设备连接无误后,接通电源,将功放输出增益调制最小后,依 次打开功放、采集器、电脑和软件,并在软件里根据选择对应的采集器型号,并设置采样频率,一般设置为50kHz。 1.3.3打开传感器校准功能选项,校准传感器,通常每次测试前均需对对 各通道的传感器进行校准。 1.3.4打开材料吸声系数测量模块,进行材料吸声系数测量: 1) Setting(设置) ?Mode Choose 选择Absorption(吸声系数测试) ?TUBE 选择测试所使用的管,程序会自动给出管的参数,包括:样 品到最近传声器的距离、两个传声器的间距,测试管的内径,以及 测试的有效频率范围。 ?ENVIRONMENT 填写测试环境的大气压、温度,用来计算空气密度、 声速和特性阻抗。缺省设置为101325Pa 及20℃。 2) 按显示内容,布置传声器通道:声源-1通道- 2通道-样品 3) 点击进行测量,等待测量曲线开始稳定,比较平滑后点击 。 4) 点击,变成,按显示内容布置传声器通道:声 源-2通道- 1通道-样品交换传声器位置。 5) 重复2)过程 6) 退出

电路各章重点题型解答 第二章

第二章 2-2电路如图所示,其中电阻、电压源和电流源均已给定。求: (1)电压u 2和电流i 2 ; (2)若电阻R 1增大,问对哪些元件的电压、电流有影响?影响如何? 解: (1) S 3232i R R R i += S 323 2222i R R R R i R u += = (2) 若R 1增大,则 R 1上的电压增大,另外,R 1增大时还会影响电 流源电压,因为 S 2R i u u u u 1S -+= 2-4求图示各电路的等效电阻R ab ,其中R 1= R 2=1Ω,R 3= R 4=2Ω,R 5=4Ω,G 1= G 2=1S , R=2Ω。 解: (a)图中R 4短路,原电路等效为 Ω =+ ++=4.4R 1 R 1R 11R R 3215ab (c) 原电路可变换为 i S 3 4 a R 5 (a) b R 3 a b R 2 R 4 ( f ) a b 2Ω

由于21R R =,43R R =,故K 闭合时的等效电阻ab R 与K 打开时的相等。 ()()Ω=++=5.1R R R R R 4231ab (f)将图中1Ω,1Ω,2Ω的Y 形(兰线示之),2Ω,2Ω,1Ω的Y 形分 别转化成等值的△形,则这个等值△形的电阻分别为 Ω= ??? ???++??? ?? ?++=?9202212112121R ab Ω= ??? ???++??? ?? ?++=?21401222221111R ac Ω ==??920 R R ab bc 则该电路的等效电阻为 Ω=++??? ??+?= +?+ +? ??? ??+?+=? ???????269.11920 214092019202140920R 2R 2R R R 2R 2R R R bc bc ac ab bc bc ac ab ab 2-9试问: (1) 图a 中,R ab <16Ω还是R ab >16Ω; (2) 图b 中,R ab <16Ω还是R ab >16Ω; (3) 图c 中,R ab <16Ω还是R ab >16Ω;为什么? 解:(1)利用电源的等效变换,图(a)电路可用下图电路等效。其中 16u 98.0105i 98.0105u ab 33d ??-=??-= ab u 25.306-= 若u ab >0,则()3 d ab 1105100u u i ?+-=>0 故R ab <16Ω (2) 这时u d =306.25u ab >u ab ,则i 1<0,故R ab >16Ω a 5K Ω ( c) a b 5K Ω (a) a b 5K Ω (b) a b Ω u d

驻波管法测量吸声材料

驻波管法测量吸声材料

驻波管法测量吸声材料

驻波管法测量吸声材料 实验目的: 通过本实验,掌握用驻波管法测量吸声材料法向吸声系数和法向声阻抗率的原理及操作方法。 实验原理: 1, 驻波管法测量吸声材料法向吸声系数的原理和方法 吸声系数是描述吸声材料的吸收声能大小的物理量。它定义为:吸声材料所吸收的声能和入射声能之比。测量材料的吸声系数,一般采用驻波管法和混响室法,前者测量的是法向吸声系数,后者测量的屎无规入射的吸声系数。 用驻波管法测定吸声材料的法向吸声西系数,设备简单而费用低廉。根据法向吸声系数又可以推算出均匀无规则入射条件下的吸声系数。但驻波管法只适用于测量声学特性与材料尺寸无关的材料样品,多用于测量多孔材料,多孔板或,穿孔薄片结构的吸声特性。 声学测量用的驻波管结构,如图1.1所示,主要部分是一根内壁光滑而坚硬,界面均匀的管子,管子的末端装有被测材料样品。由扬声器向管中辐射的声波以平面波形式传播,理论上可以证明,为了在管中获得平面波,声波的波长要大于管子的内径并且满足要求:对于圆形管,直径d<0.586λ;对于矩形管,长边的边长L<0.5λ,其 刚性后盖 试件 驻波管 传输器小车 探管 拍窄带滤波 传声

|p| r λ/2x 图1.1 驻波管结构 测量装置包括以下几部分:1,驻波管,根据测试频率段不同,可选用不同内劲和不同长度的驻波管;2,可移动的刚性后盖,移动它可以调节吸声材料与刚性壁面间的距离;3,被测吸声材料4,探管式传输器,用来接收驻波管轴线上各点的声压;5,扬声器,向管中辐射声波,探管可以自由穿过其中心孔;6,传输器小车,推动它可使探管在驻波管内纵向移动;7,标尺,用来指示探管在驻波管中的位置。 平面波在材料表面被反射回来,于是在管中建立起驻波声场,从材料表面算起,管中出现声压极大与极小的交替分布。利用可移动的探管传输器接收,在测试仪表上再读出声压极大与极小的声级差,便可以确定垂直入射时的吸声系数αp 虽然音频振荡器输给扬声器的是单频信号,但扬声器辐射处的声波并不一定是纯音,所以在接收端必须进行滤波,这样才能滤去不必要的高次谐波分量。由于要满足在管中传播的声波为平面波和其他测试条件,常有低,中和高频三种尺寸的驻波管,以适用于不同的频率范围。 如前所述,当平面波从试件表面反射回来时,在管中便形成驻波。入射平面波可视为一列沿正向进入参考平面的入射波,记其声压为P i于是P i可以写成 P i=P0exp?[i(ωt+kx)](1.1) 式中k=ω/C0=2π/λ是平面波的波数,C0为空气中的声速,λ为波长,ω为圆频率。设材料的反射系数为R,则反射波声压P r为 P r=RP0exp?[i(ωt?kx)] (1.2) 引入相位角

驻波管法吸声系数与声阻抗率测量规范

更新规范 https://www.wendangku.net/doc/cc13304974.html, 中华人民共和国国家标准 驻波管法吸声系数与声阻抗率测量规范 GBJ 88-85 主编单位:同济大学 批准部门:中华人民共和国国家计划委员会 施行日期:1986年6月1日 关于发布《驻波管法吸声系数与声阻抗率测量规范》的通知 计标〔1986〕04号 根据原国家建委(81)建发设字第546号通知的要求,由全国声学标准化技术委员会负责归口组织,具体由同济大学会同有关单位编制《驻波管法吸声系数与声阻抗率测量规范》,已经全国声学标准化技术委员会会审。现批准《驻波管法吸声系数与声阻抗率测量规范》GBJ88—85为国家标准,自一九八六年六月一日起施行。 本规范具体解释等工作由同济大学负责。 国家计划委员会 1985年12月31日 编制说明

本规范是根据原国家基本建设委员会(81)建发设字546号文的要求,由全国声学标准化技术委员会委托同济大学负责编制的。 在本规范的编制过程中,编制单位调查研究了国内有关单位的实践经验和研究成果,收集并分析了国外同类测量标准及有关技术资料,对一些重要内容作了较系统的对比试验以及相应的理论分析,提出了规范征求意见稿。广泛征询了国内各有关单位的意见,并召开了座谈会,经反复修改提出了送审稿。经全国声学标准化技术委员会建筑声学分委员会讨论同意,最后由全国声学标准化技术委员会审查定稿。 本规范共五章及七个附录。内容包括:测量设备、测量方法、测量范围和测量要求。 在本规范施行过程中,希各单位注意积累资料,认真总结经验,如发现有需要修改或补充之处,请将意见和有关资料寄交同济大学声学研究所,以供今后修订时参考。 同济大学 1985年12月更新规范 https://www.wendangku.net/doc/cc13304974.html, 第一章 总则 第 1.0.1条 为了统一驻波管测量,便于测量数据的相互比较,特制订本规范。 第1.0.2条 本规范适用于吸收空气声的吸声材料和吸声构件。采用驻波管测量法向入射时的吸声系数和法向声阻抗率。 更新规范 https://www.wendangku.net/doc/cc13304974.html, 第二章 测量基本设备 第一节 测量装置 第2.1.1条 驻波管测量的设备,应由驻波管、声源系统、探测器及输出指示装置等部分所组成,如图2.1.1所示。

驻波管法测定吸声资料的吸声系数1[精品]

驻波管法测定吸声资料的吸声系数1[精品] 驻波管法测定吸声材料的吸声系数 【实验目的】 (1)了解人耳听觉得频率范围,获得对一些频率纯音得感性认识。 (2)加深对垂直入射吸声系数得理解,熟悉驻波管法是测定材料的吸声系数的方法。 【实验原理】 测量装置 1测试车 2导轨 3声源箱 4驻波管(分低、高频两种) 测量原理 驻波管为一金属(塑料)直管,它的一端可以用夹具安装试件,另一端接好扬声器,声频讯号由声频发生器产生,经放大器进行放大,由扬声器发出单频声波,声波在驻波管内传播,由于管径较小,与音频声波的波长相比,可近似将声波面看作为平面入射波,沿管内直线传播;当入射到试件后,进行反射,由于反射波与入射波传递的方向和相位相反,声压产生叠加,干涉而形成驻波,并在管2N/m内某个位置上形成声压极大值Pmax(),t和声压极较小值Pmin,其间距为l,4波长。 Er,,1,,,1, E0 , 式中: —————吸声系数 ,—————反射系数 Eo—————入射声能(W)

Er—————反射声能(W) 令称为驻波比………………(1) P/P,nmaxmin 2故有:…………………… (2) ,,,4/(1)nn 一般频谱分析仪或声级计,测试的标称值是声压级,而不是声压P值,根据声压和声压级的关系,吸声系数可如下计算。 ,L,Lmax,Lmin,20lgPmax/,,20lgPmin/,,20lgn00 LP204*10…………………………………(3) a,LP220,(110) 【测量方法】 (1) 电路接线正确后,信号发生器等电子仪器电源接通。 (2) 将试件按照要求装在试件筒内,并用凡士林将试件与筒壁接触处的缝隙填 塞,使之严密,然后再用夹具将试件筒固定在驻波管上。 315、400、500、630、800、(3) 调节声频发生器的频率,依次发出200、250、 1000、1250、1600、2000Hz不同的声频。在设置仪器输出信号的频率时,测量到的声压级波峰值不超过136分贝,声压级波谷值不低于50分贝。 (4) 将滑块移到最远处,,移动仪器屏幕上的光标,到所测量的频率的第一个峰 值位置(1/4波长)缓慢移动滑块,同时读取光标位置显示的声压级,并 记录滑块所在位置的刻度,按F7自动计算吸声系数。 (5) 移动屏幕上的光标,到所要测量的频率的第一个波谷位置,缓慢移动滑块同 时读取光标位置显示的声压级,并记录滑块所在位置的刻度。按F7自动计算吸声系数。 (6) 移动仪器屏幕的光标,到所要测量的频率的第二个波峰、波谷位置,重复(4)、

第三十七讲9-5 驻 波

第三十七讲:§9-5驻波 一、驻波的形成 1、驻波形成的条件:在同一直线上相向传播的两列同振幅、频率、波速的波的叠加,是一种波的干涉现象。 2、图示 3、特点:其波形不变,与行波不同;不是振动的传播,而是媒质中各质点都作稳定的振动。 二、驻波的波动方程 右行波:左行波:合成波: ) ( 2 cos 1λ ν π x t A y- = ) ( 2 cos 2λ ν π x t A y+ = ()()t y x A t x A y y y= = + =πν λ π 2 cos 2 cos 2 2 1

其中()x A x A =λ π 22为驻波的振幅,是x 函数;()t y t =πν2cos 为质点作简谐振动,是t 函数。 1、驻波振幅的分布特点——波腹与波节 ①波腹公式: 推导:当12cos =x λ π ,()A x A 2=,振幅最大,为波腹。 12cos =x λ π ? πλπk x ±=2 ? 2 λ k x ±= ,2,1,0=k ②波节公式: 推导:当02cos =x λ π ,()0=x A ,振幅最小,为波节。 02cos =x λ π ? ()2122πλπ +±=k x ? ()4 12λ +±=k x ,2,1,0=k ③两个相邻波腹(波节)之间的间距 2 1λ =-=?+k k x x x 2、驻波相位的分布特点 ①波节两侧点的振动相位相反,即相位差为π。 ,,,k k x 2102 =±=λ () ,2,1,04 12=+±=k k x λ

②波节之间点的振动相位相同。即相位差为π2。 ③各质点的振幅一定,仅在平衡位置附近做往复运动,顾其波形不变。 3、驻波的能量 驻波振动中无位相传播,也无能量的传播。一个波段内不断地进行动能与势能的相互转换,并不断地分别集中在波腹和波节附近而不向外传播。 ①波节处主要集中于势能(越靠近波节就越大,∵dx dy E P ∝) 。 ②波腹处主要集中于动能(越靠近波腹就越大,∵22 1υm E k =)。 ③其他各质点是动能和势能共存。 ④驻波不传递能量,与行波不同。 驻波的能量在相邻的波腹和波节间往复变化,在相邻的波节间发生动能和势能间的转换,动能主要集中在波腹,势能主要集中在波节,但无长距离的能量传播. 三、半波损失 当波从波疏介质到波密介质组成的界面上反射时,其振动方向相 反,即相位差为π?=? ? 2λ=?r ,故称为半波损失。r ?=?λ π ?2,相位 跃变π。 *四、弦线振动的简正模式(两端固定弦振动的简正模式)

电路分析练习题含答案和经典例题

答案 第一章 电路模型和电路定律 【题1】:由U AB =5V 可得:I AC .=-25A :U DB =0:U S .=125V 。 【题2】:D 。 【题3】:300;-100。 【题4】:D 。 【题5】:()a i i i =-12;()b u u u =-12;()c ()u u i i R =--S S S ;()d ()i i R u u =--S S S 1 。 【题6】:3;-5;-8。 【题7】:D 。 【题8】:P US1=50 W ;P US26=- W ;P US3=0;P IS115=- W ;P IS2 W =-14;P IS315=- W 。 【题9】:C 。 【题10】:3;-3。 【题11】:-5;-13。 【题12】:4(吸收);25。 【题13】:。 【题14】:3123I +?=;I = 1 3 A 。 【题15】:I 43=A ;I 23=-A ;I 31=-A ;I 54=-A 。 【题16】:I =-7A ;U =-35V ;X 元件吸收的功率为P UI =-=-245W 。 【题17】:由图可得U EB =4V ;流过2 Ω电阻的电流I EB =2A ;由回路ADEBCA 列KVL 得 U I AC =-23;又由节点D 列KCL 得I I CD =-4;由回路CDEC 列KVL 解得;I =3;代入上 式,得U AC =-7V 。 【题18】: P P I I 1212 2 222==;故I I 1222 =;I I 12=; ⑴ KCL :43211-= I I ;I 185=A ;U I I S =-?=218 511V 或16.V ;或I I 12=-。 ⑵ KCL :43 2 11-=-I I ;I 18=-A ;U S =-24V 。

机械波的驻波

§10.5 机械波的驻波 两列相干波,如果振幅相等,传播方向相反,它们的合成波将不是行波而是驻波。驻波的特性下文将加以说明,首先注意到形成驻波共有5个条件,即相干波源3个条件加上振幅相等、传播方向相反两个条件。 (一)驻波的数学表式 在[例题10.4C]已提到驻波与行波的数学表式有明显的不同。现在用一个较简单的例子全面分析驻波与行波的不同特点。 设有两列相干波(都是一维余弦行波)分别沿x 轴正负方向传播,其表式可按(10.1.18)与(10.1.19)式表示如下: [两相干行波叠加成驻波的例子,] (10.5.1) 沿x 轴正向传播的行波 (10.5.2) 沿x 轴负向传播的行波 为简单起见,上式选取x 轴原点的初相。上述两相干波的叠加结果,按余弦函数的化和为积方法可得: (10.5.3)合振幅 (10.5.4) 从此式可知驻波表式由一个含x 的简谐函数和一个含 t 的简谐函数的乘积组成。这与行波的表式不同,如(10.5.1)及(10.5.2)行波式所示,行波式由一个含x 与t 的简谐函数表示。 (二)驻波有波腹,行波无波腹 为了形象化地认识驻波的特点,先看一看驻波的波形图。 将相角代入驻波表式(10.5.3) 便可得到, 。这就是时刻各质点位置坐标x 与它的振动 位移y 的关系式。此余弦函数式的曲线图在(图 10.5a )中已画出, 的最大值为2A 1,出现在,与等位置。这就是此驻 波在时刻的波形曲线。 将相角 代入(10.5.3)式得,。这就是此驻波在 时刻的波形曲线表式。此波形曲线已描绘在(图10.5a )中,其最大位移位置仍然在 与 等处。 12A A =012==????? ? ?-=λπωx t A y 2cos 11??? ? ?+=λπωx t A y 2cos 22012==??t x A y y y ωλπcos 2cos 2121??? ??=+=??? ??=λπx A A 2cos 210=t ω1cos =t ω??? ??=λπx A y 2cos 210=t ωy 0=x 2λ=x λ=x 0=t ω3πω=t 21cos =t ω??? ??=λπx A y 2cos 13πω=t 0=x 2λ=x 驻波的例子 节 腹 节 腹 节 腹 (图10.5a )驻波的例子

相关文档