文档库 最新最全的文档下载
当前位置:文档库 › 糖尿病中线粒体功能与内皮细胞的关系

糖尿病中线粒体功能与内皮细胞的关系

糖尿病中线粒体功能与内皮细胞的关系
糖尿病中线粒体功能与内皮细胞的关系

J. Smooth Muscle Res. (2012) 48 (1): 1–26Correspondence to: Ayako Makino, Ph.D., Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, 1819 West Polk Street, M/C 640, Chicago, Illinois 60612, USA Phone: +1312-355-1018 Fax: +1312-413-0437 e-mail: aymakino@https://www.wendangku.net/doc/ca14001366.html, ?2012 The Japan Society of Smooth Muscle Research

1Invited Review for the 2011 Hirosi Kuriyama Award

Mitochondrial function in vascular endothelial cell

in diabetes

Meenal P angare and Ayako M akino

University of Illinois at Chicago, USA

Received December 24, 2011; Accepted January 13, 2012

Abstract

Micro- and macrovascular complications are commonly seen in diabetic patients and en-

dothelial dysfunction contributes to the development and progression of the complications.

Abnormal functions in endothelial cells lead to the increase in vascular tension and atheroscle-

rosis, followed by systemic hypertension as well as increased incidence of ischemia and stroke

in diabetic patients. Mitochondria are organelles serving as a source of energy production

and as regulators of cell survival (e.g., apoptosis and cell development) and ion homeostasis

(e.g., H +, Ca 2+). Endothelial mitochondria are mainly responsible for generation of reactive oxy-

gen species (ROS) and maintaining the Ca 2+ concentration in the cytosol. There is increasing

evidence that mitochondrial morphological and functional changes are implicated in vascular

endothelial dysfunction. Enhanced mitochondrial fission and/or attenuated fusion lead to mi -

tochondrial fragmentation and disrupt the endothelial physiological function. Abnormal mito-

chondrial biogenesis and disturbance of mitochondrial autophagy increase the accumulation of

damaged mitochondria, such as irreversibly depolarized or leaky mitochondria, and facilitate

cell death. Augmented mitochondrial ROS production and Ca 2+ overload in mitochondria not

only cause the maladaptive effect on the endothelial function, but also are potentially detrimen-

tal to cell survival. In this article, we review the physiological and pathophysiological role of

mitochondria in endothelial function with special focus on diabetes.

Key words: fission and fusion, biogenesis, mitophagy, apoptosis, complications

Introduction

Diabetes is a metabolic disorder characterized by glucose intolerance and hyperglycemia due to deficiency of insulin and/or loss of effectiveness to insulin action. There are two main types of diabe -tes: Type-1 diabetes and Type-2 diabetes. Type-1 diabetes mellitus is mainly caused by autoimmune destruction of the beta cells in the islets of pancreas, where insulin is secreted upon glucose absorption.

M. P angare et al.

2

The patients with Type-1 diabetes exhibit lower or loss of plasma insulin and are characterized by total reliance on exogenous insulin for survival. On the other hand, Type-2 diabetic patients still produce and secrete insulin. However, they develop diabetes because of insufficient production/secretion of in-sulin and/or improper utilization of insulin (called insulin resistance). Type-1 diabetes usually develops in children or in young adults, whereas Type-2 diabetes mellitus is mainly seen in people over the age of 45 and accounts for nearly 90–95 percent of all diabetes cases. Not surprisingly, the prevalence of Type-2 diabetes in children and adolescents is growing worldwide, which correlates with obesity rate in the population (Rosenbloom, 1999; Broomgarden, 2004).

The common complications of diabetes are heart disease, hypertension, stroke, retinopathy, ne-phropathy, and neuropathy. Heart disease includes coronary artery disease and cardiac myopathy, which are the risk factors of the heart failure, and it is the leading cause of mortality and morbidity in patients with diabetes. Coronary artery disease is the result from narrowing the diameter of small coronary arteries by atherosclerotic lesion and increased coronary arterial tension. Hypertension is the most common complication in diabetic patients and is induced by increased vascular reactivity in the resistant arteries (e.g., mesenteric artery). Stroke and retinopathy are also caused by abnor-mal vascular reactivity. Endothelial cells serve as a key player in the development of these diseases. Vascular endothelium, which is a monolayer lining the inner surface of the blood vessels, plays an important role in a) vascular barrier function, which prevents the migration of inflammatory cells and fluid leakage into vascular media (Rao et al., 2007; Dejana et al., 2009), b) regulating vascular tone by releasing vasoconstrictors and vasodilators (Conger, 1994; Esper et al., 2006; Dora, 2010), and c) new vascular formation (Carmeliet, 2000; Madeddu, 2005). Endothelial dysfunction is implicated in many cardiovascular diseases including diabetes. It has been shown that in diabetic patients, as well as in diabetic animal models, 1) vascular tension is increased by attenuated endothelium-dependent relax-ation and increased release of vasoconstrictors from endothelium cells (Hink et al., 2001; Vinik and Flemmer, 2002; Farhangkhoee et al., 2006; Hermans, 2007), 2) vascular inflammation is augmented via increased endothelial permeability (Zhang et al., 2003; Spinetti et al., 2008) and surface adhesion molecules (Baumgartner-Parzer et al., 1995; Zou et al., 2002; Savoia and Schiffrin, 2007), and 3) endo-thelial apoptosis is increased, which is a main cause of the blood-retina barrier breakdown (Kern, 2007; Barber et al., 2011) and the decrease in capillary density in the heart (Yoon et al., 2005).

The mitochondria play a critical role in cell survival and death by regulating ATP synthesis through lipid and glucose metabolism, ROS generation, calcium homeostasis, apoptosis stimulation, and aging (McBride et al., 2006; Contreras et al., 2010). Therefore, the abnormal function of mitochon-dria leads to various cardiovascular diseases (Duchen, 2004; Ballinger, 2005; Davidson and Duchen, 2007). Endothelial cells produce the energy mainly via the anaerobic glycolytic metabolism of glucose but not through the mitochondrial ATP synthesis (Culic et al., 1997; Quintero et al., 2006), it is thus endothelial mitochondria are more like the sensor and initiator of the cell death. In this article, we will review the mitochondrial functions in the vascular endothelial cells and the pathophysiological role of mitochondria in endothelial dysfunction in diabetes mellitus.

Mitochondria in endothelium3

Mitochondrial fusion and fission

1) Mitochondrial fusion- and fission-related proteins

Mitochondria are complex organelles that move, fuse, divide, and constantly change their volume/ structure upon physiological stimulus and any stress (Frazier et al., 2006; Bereiter-Hahn et al., 2008). The definition of mitochondrial fission is the division of a mitochondrion within a cell to form two or more separate mitochondrial compartments, whereas mitochondrial fusion is merging two or more mi-tochondria within a cell to form a single compartment. Increased mitochondrial fission and decreased mitochondrial fusion result in the mitochondrial fragmentation (Detmer and Chan, 2007; Knott et al., 2008).

In mammals, mitochondrial fusion is regulated by at least three proteins: optic atrophy 1 (OPA1), mitofusin 1 (MFN1), and mitofusin 2 (MFN2) (Cipolat et al., 2004), whereas mitochondrial fission is controlled by dynamin related protein 1 (DRP1/DLP1/DNM1) and fission 1 (FIS1) (Yoon et al., 2003) (Fig. 1). A recent study identified another tail-anchored mitochondrial outer membrane protein, mito-chondrial fission factor (MFF) (Gandre-Babbe and van der Bliek, 2008), and the physiological function of MFF is for the recruitment of DRP1 to the mitochondrial membrane (Otera et al., 2010). Classically, FIS1 was the only one that recruits DRP1 from the cytosol to mitochondria upon the fission reaction (Mozdy et al., 2000; Yoon et al., 2003). OPA1 is located in the inner-mitochondrial membrane, and MFN1 and MFN2 are localized to the outer mitochondrial membrane. During mitochondrial fusion, OPA1 interacts with MFN1 and MFN2 (Cassina et al., 2000; Olichon et al., 2006). These proteins are first found to be related to neuropathy (Delettre et al., 2000; Zuchner et al., 2004; Ferre et al., 2005).

The function of fission/fusion-related proteins is regulated by various regulators, cleavage of the protein, posttranslational modifications, protein-protein interactions, and the lipid environment. GTP hydrolysis is required for fission/fusion-related proteins to be activated (Chan, 2006). DRP1 activity is negatively controlled by cyclic AMP. Phosphorylated DRP1 by cyclic AMP-dependent protein kinase increases the mitochondrial tubular formation, whereas dephosphorylation of DRP1 by calcineurin increases mitochondrial fission (Cribbs and Strack, 2007). OPA1 exhibits both long and short forms for fusion to proceed, and the balance of those forms is maintained by constitutive processing. There are two cleavage sites in OPA1, S1 and S2, and YME1L (an intermembrane space AAA protease) cleaves OPA1 at the site of S2 constitutively following mitochondrial import, whereas the loss of mitochon-drial membrane potential leads to the cleavage of the S1 site by OMA1 (zinc metalloprotease), which is followed by complete conversion of OPA1 to the short isoform and shutting off mitochondrial fusion (Griparic et al., 2007; Song et al., 2007; Head et al., 2009). Various posttranscriptional modifications of proteins regulate the activity of the fusion and fission machineries. MARCH5, a ubiquitin ligase in the outer membrane, associates with and ubiquitylates MFN1, MFN2, DRP1, and FIS1 (Yonashiro et al., 2006; Park et al., 2010). Although MARCH5 binds to both fission and fusion related proteins, knockdown of MARCH5 induces the mitochondrial elongation via notable accumulation of MFN1 protein (Park et al., 2010). DRP1 is sumoylated by mitochondrial-anchored protein ligase (MAPL, small ubiquitin-like modifier [SUMO] ligase) (Braschi et al., 2009) and desumorylated by sentrin-specific protease 5 (SENP5) (Zunino et al., 2007). Sumoylation of DRP1 stimulates mitochondrial fission (Harder et al., 2004; Zunino et al., 2007; Braschi et al., 2009). We have recently reported that high-glucose treatment leads to O-GlcNAcylation of OPA1 and mitochondrial fragmentation, while an

M. P angare et al.

4inhibition of O -GlcNAcylation by overexpression of GlcNAcase decreases the mitochondrial fragmen -tation induced by high glucose (Makino et al., 2011). S-nitrosylation of DRP1 results in mitochondrial fission (Cho et al., 2009).

An imbalance in the fusion/fission dynamics dramatically changes overall mitochondrial mor -phology (Bereiter-Hahn and Voth, 1994). Recent evidence from our laboratory, as well as others, has shown that mitochondrial dynamics play important roles in mitochondrial functions, including cell development, apoptosis, ROS generation and functional complementation of mitochondrial DNA (mtDNA) mutations by context mixing (Nakada et al., 2001; Frazier et al., 2006; Makino et al., 2010). Mitochondrial fission is essential for appropriate redistribution of mtDNA during cell division (Scott et al., 2003; Hales, 2004; Taguchi et al.

, 2007). In addition, damaged mitochondria are removed by mi-

Fig. 1. Mitochondrial fusion and fission. Mitochondrial fusion is regulated by optic atrophy 1 (OPA1), mitofusin 1 (MFN1), and mitofusin 2 (MFN2), whereas mitochondrial fission is controlled by dynamin related protein 1 (DRP1/DLP1/DNM1), fission 1 (FIS1), and mito -chondrial fission factor (MFF). OPA1 is located in the inner-mitochondrial membrane, and MFN1 and MFN2 are localized to the outer mitochondrial membrane. During mitochondrial fusion, OPA1 interacts with MFN1 and MFN2. FIS1 and MFF recruit DRP1 from the cyto-sol to mitochondria upon the fission reaction.

Mitochondria in endothelium5 tophagy through mitochondrial fission (Twig et al., 2008a; Twig et al., 2008b). Fusion also influences mitochondrial distribution in neural cells (Chen et al., 2007). Fused mitochondrial networks serve as electrically united systems that transmit the membrane potential generated by the proton pumps of the respiratory chain (Amchenkova et al., 1988; Skulachev, 2001) and also facilitate the propagation of Ca2+ wave and energy transfer in the cells (Szabadkai et al., 2004; Jou, 2008). Mitochondrial fusion is dramatically increased when mitochondrial ATP synthesis is enhanced (Tondera et al., 2009). The damaged/depolarized parts of the mitochondrial membrane are recovered by mitochondrial fusion that facilitates proper mixing of mtDNA and metabolites (Nakada et al., 2001; Twig et al., 2008b).

2) Other factors which induce mitochondrial fragmentation

The endoplasmic reticulum (ER) is an intracellular Ca2+store and releases Ca2+ via Ca2+ releasing channels upon the stimulation. The mitochondria are located close to the ER to support communication between them such as the transferring lipids, and the exchange of calcium and ATPs (Vance and Shiao, 1996; Mannella et al., 1998; Hayashi et al., 2009; Rizzuto et al., 2009). At the pathological condition, Ca2+ release from the ER causes calcium overload in the mitochondria and leads to mitochondrial frag-mentation via facilitating the DRP1 translocation to the mitochondrial outer membrane (Breckenridge et al., 2003).

Mitochondria constantly generate ROS via the electron transport chain reaction. At the physi-ological condition, majority of molecular oxygen is converted to water and less than 5% of the oxygen is incompletely reduced to O2-. Massive ROS production in the mitochondria is implicated in various cardiovascular diseases (Griendling and FitzGerald, 2003; Sugamura and Keaney, 2011), whereas ROS leads to the mitochondrial fragmentation in many cell types like rat cardiac myocytes (Yu et al., 2008; Fan et al., 2010), and mouse coronary endothelial cells (Makino et al., 2010). These data imply that mitochondrial fragmentation is enhanced by excess ROS production in pathophysiological condition.

3) Mitochondrial morphological change in endothelial cells in diabetes

There is increasing evidence showing that mitochondrial morphology is sensitive to the metabolic properties. The exposure of high glucose to endothelial cells ex vivo increases mitochondrial fragmen-tation (Makino et al., 2010; Trudeau et al., 2010; Shenouda et al., 2011). We demonstrate that mouse coronary endothelial cells isolated from Type-1 diabetic mice exhibit more fragmented mitochondrial structure and higher DRP1 protein expression levels than endothelial cells from control mice (Makino et al., 2010). The study examining the mitochondrial morphology using venous endothelial cells iso-lated from patients with Type-2 diabetes shows that FIS1 protein expression level and mitochondrial fragmentation are significantly increased in endothelial cells from diabetic patients compared with cells from control patients (Shenouda et al., 2011). Interestingly, mitochondria in retina endothelial cells are more elongated in the diabetic rat compared to the control rat, although MFN2 protein expres-sion level is significantly decreased and DRP1 expression level is increased in diabetes, implying that the mitochondrial morphological change might not be regulated by fission-fusion related proteins in this case (Zhong and Kowluru, 2011).

M. P angare et al.

6

4) Altered mitochondrial morphology in other cell types in diabetes

The exposure of free fatty acid (FFA) to the C2C12 muscle cells augments mitochondrial frag-mentation via increased DRP1 and FIS1 protein expression levels and mitochondrial in skeletal muscles in obesity and Type-2 diabetic mice are more fragmented (Jheng et al., 2012). In Type-2 diabetic pa-tients, MFN2 protein expression level is decreased in skeletal muscle compared with control patients (Zorzano et al., 2009). High glucose treatment increases mitochondrial fragmentation (Yu et al., 2008; Makino et al., 2011) via decreased OPA1 protein expression in the neonatal cardiac myocyte (Makino et al., 2011). High glucose or high insulin treatment increases the protein expression of DRP1 and enhances mitochondrial fragmentation in adult dorsal root ganglion neurons, suggesting that mito-chondrial morphological change might contribute to the neuropathy in Type 2 diabetes (Vincent et al., 2010). Ex vivo high glucose treatment leads to mitochondrial fragmentation in β-cell via increase in DRP1 protein expression (Men et al., 2009). Mitochondria in β-cell from Type-2 diabetic rat exhibit more fragmented structure than that in control (Dlaskova et al., 2010). Mitochondrial fission- and fusion-related proteins are cloned during the last decade and we expect to see more functional roles of these proteins in diabetic complications in the next decade.

Mitochondrial biogenesis

1) Proteins related with mitochondrial biogenesis

The cells undergo mitochondrial biogenesis process in response to various physiological stimulus and tissue- or signal-specific modification of mitochondrial gene expression and function. Mitochon-drial biogenesis is a complex process that involves the synthesis, import, and incorporation of proteins and lipids to the existing mitochondrial reticulum, as well as replication of the mtDNA (Lopez-Lluch et al., 2008). Upon the stimulation of mitochondrial biogenesis, mitochondrial genes in the nucleus and in mitochondria will be transcribed. Majority of genes required for mitochondrial biogenesis and function are in the nucleus, and the few genes crucial for oxidative phosphorylation, are on the mito-chondrial gene. The peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is the nucleus genome-encoded protein and a transcriptional coactivator of nuclear respiratory factor (NRF)-1, GA-binding protein (GABP) (also known as NRF-2), and peroxisome proliferator-activated receptors (PPARs) (Puigserver et al., 1998; Wu et al., 1999; Duncan et al., 2007). The activation of NRF-1 and 2 by PGC-1α leads to the expression of mitochondrial transporters, mitochondrial ribosomal proteins, oxidative phosphorylation components, and mitochondrial transcription factor (TFAM) (Feige and Au-werx, 2007; Scarpulla, 2008). PPARs regulate a broad set of genes which are required for lipid homeo-stasis and glucose and lipid oxidation (Djouadi et al., 1998; Burkart et al., 2007; Yang and Li, 2007).

PGC-1α activity is regulated by various kinds of posttranslational modifications. Phosphoryla-tion is required for the activation of PGC-1α and its phosphorylation is regulated by AMP-activated protein kinase (Jager et al., 2007), mitogen-activated protein kinase p38 (Knutti et al., 2001; Akimoto et al., 2005), and glycogen synthase kinase-3 (GSK-3) (Anderson et al., 2008), acetylation by Sirtuin 1 (SIRT1) (Rodgers et al., 2005; Gerhart-Hines et al., 2007), and arginine methylation by protein argi-nine N-methyltransferase 1 (PRMT1) (Teyssier et al., 2005). In the muscle cells, the increase in cyto-solic Ca2+ leads to PGC-1α activation through Ca2+/calmodulin-dependent kinases and p38 activation

Mitochondria in endothelium7 (Ojuka et al., 2003; Wright et al., 2007). Nitric oxide (NO) increases PGC-1α expression via cyclic GMP dependent pathway (Nisoli et al., 2003). On the other hand, PGC-1α is negatively regulated via deacetylation by GCN5 (Lerin et al., 2006) and ubiquitination by SCF cdc4 (Olson et al., 2008).

2) Mitochondrial biogenesis in endothelial cells in diabetes

Since the energy in endothelial cells is mainly generated by glycolytic metabolism instead of via mitochondrial ATP synthesis, mitochondrial biogenesis is not as critical as in muscle cells or in adipo-cytes. It is, however, important to maintain good quality and quantity of mitochondria in endothelial cells for cell survival. mtDNA copy number, PGC-1α and NRF-1 protein expression in nuclear extract, PGC-1α activity, and TFAM protein expression level in mitochondria are commonly used to determine the mitochondrial biogenesis. Hyperglycemia significantly decreases PGC-1α protein expression in retinal endothelial cells (Zheng et al., 2010). Santos et al. (2011) demonstrate that retinal mtDNA copy number is decreased in Type-1 diabetic mice and the mitochondrial number is lowered in retina in dia-betic patients, and in retinal endothelial cells treated with high glucose.

PPARγ activator, thiazolidinedione (TZD), is approved for use in Type-2 diabetic patients to im-prove insulin sensitivity by several mechanisms, including increased uptake and metabolism of free fatty acids in adipose tissue (Saltiel and Olefsky, 1996; Spiegelman, 1998; Kalaitzidis et al., 2009). Recent reports demonstrate that TZD induces mitochondrial biogenesis via the activation of PGC-1α in human umbilical vein endothelial cells (Fujisawa et al., 2009) and other cell types (see next paragraph). PGC-1α is the coactivator of PPARγ and the activation of PPARγ by TZD induces PGC-1α expression. Further studies are required to identify the role of TZD on mitochondrial biogenesis and the regulatory mechanisms of the positive feedback by PPARγ activation in endothelial cells.

3) Mitochondrial biogenesis in other cell types in diabetes

mtDNA copy number and mRNA expression of PGC-1α and TFAM are significantly decreased in aorta from Type-2 diabetic mice compared with the control (Csiszar et al., 2009). Lowered mtDNA copy number is observed in skeletal muscle from the patient with Type-2 diabetes (Hsieh et al., 2011) and muscles from Type-2 diabetic rats compared with the control (Shen et al., 2008). On the other hand, it has been reported that there is increased mitochondrial area, mitochondrial number and mtDNA in the heart of Type-1 diabetic mice, but the function of mitochondria is attenuated (Shen et al., 2004).

PGC-1α is induced by TZD in white and brown adipocyte cells (Wilson-Fritch et al., 2004; Hond-ares et al., 2006), and neuronal cells (Miglio et al., 2009). The adipose tissue obtained from the patient with Type-2 diabetes exhibits lower mitochondrial number and TFAM mRNA expression level com-pared with the control; TZD treatment restores the mitochondrial abnormality (Bogacka et al., 2005; Hakansson et al., 2011). Mitochondrial biogenesis is significantly attenuated in adipose tissue from Type-2 diabetic mice compared with the control, whereas TZD increases PGC-1α mRNA expression and restores the mitochondrial biogenesis in diabetic mice (Rong et al., 2007). PGC-1β also serves as a key regulator in energy metabolism by promoting mitochondrial biogenesis. There is increasing evidence showing that TZD enhances mitochondrial biogenesis by increase in PGC-1β expression, but not PGC-1α, in adipocyte cells (Deng et al., 2011; Pardo et al., 2011) and osteocytes (Wei et al., 2010).

M. P angare et al.

8

Mitochondrial autophagy/mitophagy

1) Molecular mechanisms of mitophagy

Autophagy is a cellular degradation system through the encapsulation by a double membrane structure called an autophagosome (Kelekar, 2005). There are two types of autophagy, non-selective autophagy and cargo-specific autophagy. At the low level of energy demand or at the starvation condi-tion, cells undergo non-selective autophagy to supply/re-use the metabolic component and energy by degradation of their organelles, whereas the cargo-specific autophagy could be initiated independent from the nutrient level (Kundu and Thompson, 2005; Komatsu and Ichimura, 2010; Rabinowitz and White, 2010). The selective elimination of mitochondria is called mitophagy (Lemasters, 2005). The purpose of mitophagy is primarily 1) to maintain the mitochondrial integrity in the cells and 2) to eliminate the damaged mitochondria (Narendra et al., 2008; Twig et al., 2008a). The excess amount of mitochondria at the low energy demand is the source of excessive ROS. The damaged mitochondria re-lease various apoptosis-promoting factors and lead to further damage of neighboring mitochondria and entire cell (Crompton et al., 1999). Therefore, mitophagy is the well-designed cytoprotective pathway.

Depolarized mitochondrial membrane is the hallmark of damaged mitochondria and sustains the mitochondrial fission status (Song et al., 2007; Twig et al., 2008a). Mitochondrial fusion is the physi-ological function to fuse the damaged membrane with intact membrane and minimize the damage. Damaged mitochondria that failed to be fused will be the target of the mitophagy. The PTEN-induced putative kinase protein 1 (PINK1) is a voltage-sensitive kinase, and it will be accumulated on the outer membrane in the mitochondria upon the membrane depolarization (Narendra et al., 2008; Jin et al., 2010; Matsuda et al., 2010). The accumulation of PINK1 facilitates the recruitment of Parkin, an E3 ubiquitin ligase, to the mitochondrial surface (Sha et al., 2010; Vives-Bauza et al., 2010). Ubiquitinated mitochondrial proteins by Parkin interact with the autophagy adaptor p62, and subsequently lead to the autophagosomal degradation of the mitochondria (Geisler et al., 2010; Okatsu et al., 2010) (Fig. 2). An-other protein which regulates mitophagy in mammalian cells is NIX (Kanki, 2010), although detailed mechanism is not clear.

Extensive damage by sustained membrane depolarization facilitates the opening of the mitochon-drial permeability transition pore (mPTP), increases mitochondrial membrane permeability and re-leases of pro-apoptotic molecules, and results in cell apoptosis. This will be described in the following section (Mitochondria-induced cell apoptosis).

The autophagy induced by starvation (non-selective autophagy) is mediated by mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) pathway. At the high nutrient, mTOR phosphorylates UNC-51-like kinase (ULK) that has inhibitory effects on the kinase activity of ULK. Starvation increases AMPK activation, which promotes mTOR inhibition and activates ULK, and sub-sequently leads to autophagy (Lee et al., 2010; Egan et al., 2011; Kim et al., 2011). It has to be noted that AMPK increases SIRT1 activity, which deacetylates PGC-1, and results in mitochondrial biogenesis as described above (2. Mitochondrial biogenesis). Therefore, mitochondrial autophagy and biogenesis are coordinately regulated.

There are other factors which possibly regulate the autophagy, including ROS and Bcl-2. During autophagic process, autophagy-regulating protein (ATG) 8 conjugates to the autophagosomal mem-brane through an ubiquitin-like conjugation system. ATG4 negatively regulates ATG8 function by

Mitochondria in endothelium 9

cleavage of ATG8, which releases ATG8 from the autophagosomal membrane and inhibits autophagy (Kaminskyy and Zhivotovsky, 2012). ATG4 is redox sensitive and oxidation of ATG4 inhibits the cleav -age activity of ATG4 and stabilizes the ATG8-mediated autophagosomal expansion (Scherz-Shouval et al., 2007). Beclin1, the mammalian ortholog of yeast ATG6, was identified as a Bcl-2-interacting protein (Kabeya et al., 2000) and it induces the formation of autophagosomes and promotes autophagy (Sinha and Levine, 2008). Anti-apoptotic protein Bcl-2 binds to Beclin1 and inhibits autophagy (Pat-tingre et al., 2005; Kang et al., 2011).

2) Mitophagy in diabetes

Interestingly, there is no report that demonstrates the change in mitochondrial autophagy/mi-tophagy in endothelial cells in diabetes. The exposure of oxidized LDL (ox-LDL) leads to autophagic pathway in HUVECs and HMECs (Zhang et al., 2010; Muller et al., 2011). High-glucose treatment augments autophagy in H9c2 cardiomyoblasts via increase in Beclin1 and LC3 protein expression level (Younce et al., 2010). Cardiac myocytes in Type-1 diabetic mice exhibit decreased autophagy deter-mined by the number of autophagic vacuoles in the cells (Xie et al.

, 2011), whereas skeletal muscles Fig. 2. Mitophagy. At the healthy condition, the Pten-induced novel kinase 1 (PINK1) is degraded by presenilins-associated rhomboid-like protein (PARL). Upon mitochondrial damage or loss of mitochondrial membrane potential, PINK1 accumulates on the outer mitochondrial membrane (OMM) without degradation and recruits Perkin from the cytosol to the OMM. Perkin ubiquitylates OM proteins and these ubiquitylated proteins are recognized by the adaptor protein p62, targeted by autophagosomes, and eventually degraded in lysosomes.

M. P angare et al.

10

from Type-2 diabetic rats show increased autophagy assessed by the protein expression level of LC3 and Beclin1 (Yan et al., 2011). Mitochondrial autophagy is increased in pancreatic cell of Type-2 dia-betic mice (Lo et al., 2010) and in adipose tissue in Type-2 diabetic patients (Ost et al., 2010). The reason for these inconsistent results might be due to the differences of the diabetic model, tissues used for the experiments, and methods to determine the mitochondrial autophagy.

Mitochondria-induced cell apoptosis

Mitochondria serve as the key organelles which maintain the cell function via generating ATP, regulating cellular Ca2+ homeostasis and heme biosynthesis, whereas mitochondria also determine the cell fate, as well as terminate the cell life, through several mitochondria-induced cell apoptosis path-ways. In this section, we discuss the cell apoptosis pathway induced by mitochondria (e.g., regulation of Bcl-2 protein family, mitochondrial ROS generation and mitochondrial Ca2+ overload).

1) Mitochondria-mediated apoptosis

There are two main apoptotic pathways: the extrinsic pathway and intrinsic pathway (Fig. 3). The extrinsic pathway is initiated by the binding of the ligands to the cell surface-specific receptors, called “death receptors”, whereas the intrinsic pathway is initiated by mitochondria. Both pathways are over-lapped at the point of mitochondrial outer membrane permeabilization (MOMP). MOMP is triggered by the formation of pores in the outer mitochondrial membrane (OMM), and the Bcl-2 protein family regulates the pore formation. Bcl-2 protein families can be classified into four groups based on their functions: 1) effectors whose oligomerization creates pores [Bax and Bak], 2) inhibitors of Bax and Bak [Bcl-2, Mcl1 and BclxL], 3) activators of Bax and Bak [Bid and Bim], and 4) sensitizers which antagonize antiapoptotic Bcl-2 like proteins [Bad, Bik, Noxa and Bmf]. The extrinsic pathway involves formation of a death-inducing signal complex (DISC) in the plasma membrane. DISCs contain multiple adaptor proteins that recruit and promote the activation of initiator procaspases, including procaspase 8. Activated caspase 8 induces cell apoptosis through two pathways; 1) direct cleavage of procaspase 3 followed by the cleavage of a variety of substrates and the cell apoptosis, 2) truncation of Bid to tBid, which leads to Bax/Bak oligomers, creates pores in OMM, and releases proapoptotic peptides such as cytochrome c (Liu et al., 1996), apoptosis inducing factor (AIF) (Susin et al., 1999), endonuclease G (EndoG) (Li et al., 2001), Smac/Diablo (Du et al., 2000), and Omi/HtrA2 (Hedge et al., 2002). These molecules activate both caspase dependent and independent cell death pathways (Donovan and Cotter, 2004).

The intrinsic pathway involves both MOMP and the opening of the mPTP. The mPTP is a trans-membrane channel formed between the inner and outer mitochondrial membranes and composed of voltage-dependent anion channel (VDAC) in OMM, adenine nucleotide translocator (ANT) in the in-ner mitochondrial membrane, and cyclophilin D in the mitochondrial matrix (Crompton et al., 1999; Halestrap and Pasdois, 2009). VDAC is a bidirectional transporter and permeable to solutes of up to 5 kDa. Under physiological conditions, VDAC serves as a shuttle of ATP and other small morecules. On the other hand, ANT is impermeable under normal conditions. During apoptosis, excess Ca2+ influx triggers the increase of ANT conductivity, followed by an inward flux of protons and ions through

Mitochondria in endothelium 11

ANT. The increase in matrix osmolality leads to water influx, mitochondrial swelling, and apoptogenic protein release from the mitochondrial storage to the cytosol though the mPTP opening, BAX/BAK-VDAC channel, and/or ruptured OMM (Ott et al., 2002; Tsujimoto and Shimizu, 2002; Baines, 2011). It has been reported that the opening of mPTP is regulated by Bcl-2 and pH change in inner mitochon-drial membrane (Matsuyama and Reed, 2000).

2) Mitochondrial O 2-generation and apoptosis

Mitochondria continuously generate superoxide anion (O 2-) through reduction of molecular oxy-gen by the electron transport chain (ETC) to water. The ETC is composed of four multiple subunit complexes; complex I (NADH-ubiquinone oxidoreductase), II (succinate-dehydrogenease), III (ubiqui-nol-cytochrome c oxidoreductase), and IV (cytochrome c oxidase), and the main function is to oxidize NADH and FADH 2 to NAD + and FAD +, that will be used in the tricarboxylic acid cycle (TCA cycle) to generate ATPs. The protons transported across the membrane in the ETC will serve as a motive force Fig. 3. Apoptotic Pathways . Extrinsic Pathway . The binding of the death ligands to the death re-ceptors forms a death-inducing signal complex (DISC). Procaspase 8 is autoactivated at the DISC and converted to the active form, caspase 8. Caspase 8 leads to cell apoptosis via caspase 3 activation and by truncation of Bid to tBid. Intrinsic Pathway . Intrinsic pathway is activated by intracellular stimuli (e.g., ROS) and involves the formation of the pore in the OMM (Bax/Bak oligomer) and the opening of the mitochondrial permeability transition

pore (mPTP). These pores release proapoptotic peptides and induce cell apoptosis.

M. P angare et al.

12

in complex V to synthesize ATPs. O2- is primarily generated at complexes I and III; complex I releases O2- predominately into the matrix, while complex III releases O2- to both sides of the mitochondrial in-ner membrane (Han et al., 2001; Muller et al., 2004; Lenaz et al., 2006). O2- is dismutated to hydrogen peroxide by CuZn-superoxide dismutase (SOD, in the intermembrane space and cytosol) and Mn-SOD (in the matrix) (Faraci and Didon, 2004), and subsequently reduced to water by catalase (in the cytosol) and glutathione peroxidase (in mitochondria and cytosol) (Chance et al., 1979; Phung et al., 1994). Ma-jority of O2- is reduced to water and very few O2- is leaked out from the ETC in normal cells, whereas excess O2- production in mitochondria is implicated in the pathogenesis of cardiovascular diseases (Li and Shah, 2004; Ballinger, 2005).

mtDNA is more sensitive than genomic DNA to ROS-induced damage, as it is not protected by histones and its repair capabilities are limited (Wei and Lee, 2002). Damaged mtDNA promotes outer membrane permeabilization and the release of cytochrome c, AIF, or Smac/Diablo from mitochondria to the cytosol and leads to cell apoptosis (Ryter et al., 2007). ROS also stimulates the extrinsic or in-trinsic apoptotic signaling via activation of JNK (Dhanasekaran and Reddy, 2008). The translocation of activated JNK to nucleus initiates activator protein 1-mediated expression of proapoptotic factors, such as TNFα, FasL, and Bak (Fan et al., 2001), while the translocation to mitochondria promotes to release cytochrome c (Kharbanda et al., 2000). Furthermore, the interaction of ROS with NO regulates the cell apoptotic pathway (Cassina et al., 2000; Jang and Han, 2006; Nakagawa et al., 2007; Wang et al., 2008).

3) Mitochondrial Ca2+ homeostasis and apoptosis

There are several Ca2+-sensitive intramitochondrial enzymes that regulate physiological cell func-tions (e.g., pyruvate dehydrogenase phosphate phosphatase, NAD+-isocitrate dehydrogenase) (McCor-mack and Denton, 1984). It is thus important to maintain appropriate level of Ca2+ in the mitochondria for their routine work, while Ca2+ overload in mitochondria causes the maladaptive effect on mitochon-drial function, as well as cell function, and it is implicated in variety of different disease processing (Esper et al., 2006; Halestrap and Pasdois, 2009). Mitochondrial Ca2+ overload leads to an opening of mPTP and it is followed by cell apoptosis and necrosis (see detailed in section 4.1.). Excess mitochon-drial [Ca2+] causes an increase in mitochondrial O2- via several mechanisms including by stimulation of the ETC to increase electron leak, by facilitating cytochrome c dislocation and by enhancing NO gen-eration which blocks complex IV and causes electron leak from complex III (Peng and Jou, 2010), and subsequently leads to mitochondria-mediated cell apoptosis (see detailed in section 4.2.). Ca2+ overload in mitochondria decreases mitochondrial membrane potential, which leads to mitochondrial fission. The fragmented/damaged mitochondria will be the target of the mitophagy, but too much fission will lead to more caspase release and cause cell apoptosis (Jeong and Seol, 2008; Suen et al., 2008; Liesa et al., 2009; Jahani-Asl et al., 2010; Westermann, 2011).

Where is the source of Ca2+ which accumulates in mitochondria? Mitochondria increase their [Ca2+] in response to elevated cytosolic [Ca2+] (Szabadkai et al., 2001; Pitter et al., 2002), and this Ca2+ transfer might be required for the physiological mitochondrial function such as ATP synthesis. There is increasing evidence showing that Ca2+ released from the ER is the main source of mitochondrial Ca2+ overload under pathophysiological condition (reviewed in Contreras et al., 2010; de Brito and Scorrano, 2010; Patergnani et al., 2011). Mitochondrial Ca2+ uptake is achieved by VDAC in the OMM and mitochondrial Ca2+ uniporter (MCU) in the IMM. VDAC is a channel permeable to both anions

Mitochondria in endothelium13 and cations, and the selectivity of the channel depends on the mitochondrial membrane potential; low potential is more preferable to anion transfer and high potential to cation. It has been demonstrated that VDAC is more permeable to Ca2+ in the closed states of the channel, and thus VDAC closure is a proapoptotic signal (Rostovtseva et al., 2005; Tan and Colombini, 2007). MCU is the highly selective ion channel and Ca2+ uptake by MCU is also driven by the membrane potential (Gunter and Gunter, 1994). It has been shown that Ca2+ has a biphasic effect on the MCU activity. Before reaching a certain level, cytosolic Ca2+ inactivates the uniporter and prevents further Ca2+ uptake. This mechanism al-lows the mitochondrial Ca2+ oscillation, but it prevents an excessive mitochondrial Ca2+ accumulation. Above the certain range of [Ca2+]cyt, Ca2+ activates MCU by the Ca2+-dependent calmodulin activation (Moreau et al., 2006).

4) Mitochondria-induced endothelial cell apoptosis in diabetes

Pathophysiological changes of metabolic parameters in diabetes are related with, or lead to, the increase in endothelial apoptosis (Nakagami et al., 2005; Piconi et al., 2006; Leduc et al., 2010; van den Oever et al., 2010; Barber et al., 2011). As described above, cell apoptosis could be induced in a mitochondria-dependent or mitochondria-independent manner, and the mitochondria-dependent cell apoptosis is modulated by mitochondrial functional and morphological changes including the increase in mitochondrial ROS formation, mitochondrial fission, mitochondrial Ca2+ overload, and the opening of mPTP. In addition, these mitochondrial pathophysiological changes interact and regulate each other. Although the initiation of mitochondria-mediated apoptosis could be varied and complex, it seems to be one common downstream, which is the opening of mPTP and the release of the proapoptotic fac-tors from mitochondrial to the cytosol. In diabetes, increased mitochondrial O2- is well documented in endothelial cells (Nishikawa and Araki, 2007; Di Lisa et al., 2009; Giacco and Brownlee, 2010; Cheng et al., 2011). Hyperglycemia leads to increased BAX expression (Meng et al., 2008; Yang et al., 2008; Guan et al., 2011), mitochondrial Ca2+ overload (Paltauf-Doburzynska et al., 2004), opening of mPTP in endothelial cells (Detaille et al., 2005; Huang et al., 2010) and releasing the proapoptotic proteins from the mitochondria (Kowluru and Abbas, 2003; Detaille et al., 2005; Kowluru, 2005; Leal et al., 2009; Li et al., 2009; Trudeau et al., 2010; Chong et al., 2011; Li et al., 2011), and subsequently in-creases endothelial apoptosis. Type-2 diabetes mellitus is usually accompanied by hyperlipidemia and ox-LDL accumulation (Shimada et al., 2004). Increased ox-LDL also induces mitochondria-mediated apoptosis in endothelial cells (Zhang et al., 2003; Chen et al., 2004; Vindis et al., 2005; Takabe et al., 2010; Chang et al., 2011). These data suggest that the changes of metabolic parameter in diabetes lead to endothelial cell apoptosis via mitochondrial dysfunction that may regulate the vascular permeability and capillary density as well as the vascular tone in diabetes.

5) Mitochondria-mediated apoptosis in other cell types in diabetes

Although there are many reports describing the mitochondria-mediated cell apoptosis in diabetes (reviewed in Duchen, 2004; Allen et al., 2005; Joza et al., 2009 Szabadkai and Duchen, 2009), there is a limited number of reports in which the actual assessment of the mPTP activity is carried out. Most prominent cell types which were examined for mPTP opening in diabetes are the cardiac myocyte. Cardiac myocytes isolated from diabetic patients (Anderson et al., 2010) and diabetic animal models (Oliveira, 2005; Bhamra et al., 2008; Williamson et al., 2010; Lumini-Oliveira et al., 2011) exhibit

M. P angare et al.

14

augmented mPTP activity compared with the control. On the other hand, the increase in proapoptotic protein in the cytosol has been demonstrated in many cell types in diabetes, which is the downstream cascade of the mPTP opening (reviewed in (Adeghate, 2004; Duchen, 2004).

Apoptosis plays an important role in biological processes and various pathophysiological events. An alteration of mitochondrial function is heavily involved in the death pathway, which results in the cardiovascular dysfunction in many diseases. The molecular mechanisms of mitochondria-mediated cell apoptosis has been extensively studied during the past 10 years and it greatly helps understanding the cell fate determined by mitochondria in diabetes.

Conclusion

Mitochondria are small organelles in the cytosol and have been known as an ATP-producing or-ganelle. During past decades, their role has been expanded not only in the physiological cell function, but also in the development and progression of many diseases including diabetes. The main function of mitochondrial morphological changes is to ensure proper inheritance and distribution of mitochondria and to maintain them in a healthy state. Mitochondrial autophagy takes care of damaged mitochondria to minimize the maladaptive effect on cell functions, and mitochondrial biogenesis keeps energy sup-ply to the cell demands. Any abnormal alteration in these steps affects cell fate and tissue functions.

Endothelial dysfunction is the key risk factor of complications seen in diabetes, and here we demonstrate that mitochondrial dysfunction in endothelial cells represent a crucial step in the develop-ment of endothelial dysfunction. There are still many things to be examined to define mitochondrial pathophysiological role in endothelial function in diabetes, such as the relation between mitochondrial autophagy and endothelial dysfunction in diabetes and the contribution of mitochondrial abnormality to decreased quantity and quality of circulating endothelial progenitor cells in diabetes. Mitochondrial morphological and functional alteration in endothelial cells will remain an exciting field of diabetic research in another decade.

Acknowledgments

This work was supported by grant DK083506 (A. Makino) from the National Institutes of Health.

References

Adeghate, E. (2004). Molecular and cellular basis of the aetiology and management of diabetic cardiomyopa-thy: a short review. Mol. Cell Biochem. 261: 187–191.

Akimoto, T., Pohnert, S.C., Li, P., Zhang, M., Gumbs, C., Rosenberg, P.B., Williams, R.S. and Yan, Z. (2005).

Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK

pathway. J. Biol. Chem. 280: 19587–19593.

Allen, D.A., Yaqoob, M.M. and Harwood, S.M. (2005). Mechanisms of high glucose-induced apoptosis and its relationship to diabetic complications. J. Nutr. Biochem. 16: 705–713.

Mitochondria in endothelium15 Amchenkova, A.A., Bakeeva, L.E., Chentsov, Y.S., Skulachev, V.P. and Zorov, D.B. (1988). Coupling mem-branes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes. J. Cell Biol. 107: 481–495.

Anderson, E.J., Rodriguez, E., Anderson, C.A., Thayne, K., Chitwood, W.R. and Kypson, A.P. (2010). In-creased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways. Am. J. Physiol. 300: H118–H124.

Anderson, R.M., Barger, J.L., Edwards, M.G., Braun, K.H., O'Connor, C.E., Prolla, T.A. and Weindruch, R.

(2008). Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adap-tation in calorie restriction and the stress response. Aging Cell 7: 101–111.

Baines, C.P. (2011). The mitochondrial permeability transition pore and the cardiac necrotic program. Pediatr.

Cardiol. 32: 258–262.

Ballinger, S.W. (2005). Mitochondrial dysfunction in cardiovascular disease. Free Radic. Biol. Med. 38: 1278–1295.

Barber, A.J., Gardner, T.W. and Abcouwer, S.F. (2011). The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 52: 1156–1163.

Baumgartner-Parzer, S.M., Wagner, L., Pettermann, M., Gessl, A. and Waldhausl, W. (1995). Modulation by high glucose of adhesion molecule expression in cultured endothelial cells. Diabetologia38: 1367–1370.

Bereiter-Hahn, J. and Voth, M. (2008). Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc. Res. Tech. 27: 198–219.

Bereiter-Hahn, J., Voth, M., Mai, S. and Jendrach, M. (2008). Structural implications of mitochondrial dynam-ics. Biotechnol. J. 3: 765–780.

Bhamra, G.S., Hausenloy, D.J., Davidson, S.M., Carr, R.D., Paiva, M., Wynne, A.M., Mocanu, M.M. and Yel-lon, D.M. (2008). Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochon-drial permeability transition pore opening. Basic Res. Cardiol. 103: 274–284. Bloomgarden, Z.T. (2004). Type 2 diabetes in the young: the evolving epidemic. Diabetes Care 27: 998–1010. Bogacka, I., Xie, H., Bray, G.A. and Smith, S.R. (2005). Pioglitazone induces mitochondrial biogenesis in hu-man subcutaneous adipose tissue in vivo. Diabetes 54: 1392–1399.

Braschi, E., Zunino, R. and McBride, H.M. (2009). MAPL is a new mitochondrial SUMO E3 ligase that regu-lates mitochondrial fission. EMBO Rep. 10: 748–754.

Breckenridge, D.G., Stojanovic, M., Marcellus, R.C. and Shore, G.C. (2003). Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cy-tochrome c release to the cytosol. J. Cell Biol. 160: 1115–1127.

Burkart, E.M., Sambandam, N., Han, X., Gross, R.W., Courtois, M., Gierasch, C.M., Shoghi, K., Welch, M.J.

and Kelly, D.P. (2007). Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J. Clin. Invest. 117: 3930–3939.

Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6: 389–395.

Cassina, A.M., Hodara, R., Souza, J.M., Thomson, L., Castro, L., Ischiropoulos, H., Freeman, B.A. and Radi, R. (2000). Cytochrome c nitration by peroxynitrite. J. Biol. Chem. 275: 21409–21415.

Chan, D.C. (2006). Mitochondrial fusion and fission in mammals. Annu. Rev. Cell Dev. Biol. 22: 79–99. Chance, B., Sies, H. and Boveris, A. (1979). Hydroperoxide metabolism in mammalian organs. Physiol. Rev.

59: 527–605.

Chang, H.C., Chen, T.G., Tai, Y.T., Chen, T.L., Chiu, W.T. and Chen, R.M. (2011). Resveratrol attenuates oxi-dized LDL-evoked Lox-1 signaling and consequently protects against apoptotic insults to cerebrovas-cular endothelial cells. J. Cereb. Blood Flow Metab. 31: 842–854.

Chen, H. and Chan, D.C. (2005). Emerging functions of mammalian mitochondrial fusion and fission. Hum.

Mol. Genet. 14 Spec No. 2: R283–R289.

Chen, H., McCaffery, J.M. and Chan, D.C. (2007). Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130: 548–562.

16

M. P angare et al.

Chen, J., Mehta, J.L., Haider, N., Zhang, X., Narula, J. and Li, D. (2004). Role of caspases in Ox-LDL-induced apoptotic cascade in human coronary artery endothelial cells. Circ. Res. 94: 370–376.

Cheng, X., Siow, R.C. and Mann, G.E. (2011). Impaired redox signaling and antioxidant gene expression in endothelial cells in diabetes: a role for mitochondria and the nuclear factor-E2-related factor 2-Kelch-like ECH-associated protein 1 defense pathway. Antioxid. Redox Signal 14: 469–487.

Cho, D.H., Nakamura, T., Fang, J., Cieplak, P., Godzik, A., Gu, Z. and Lipton, S.A. (2009). S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science324: 102–105. Chong, Z.Z., Hou, J., Shang, Y.C., Wang, S. and Maiese, K. (2011). EPO relies upon novel signaling of Wnt1 that requires Akt1, FoxO3a, GSK-3beta, and beta-catenin to foster vascular integrity during experi-mental diabetes. Curr. Neurovasc. Res. 8: 103–120.

Cipolat, S., Martins de Brito, O., Dal Zilio, B. and Scorrano, L. (2004). OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. U S A 101: 15927–15932.

Conger, J.D. (1994). Endothelial regulation of vascular tone. Hosp. Pract. (Off Ed.) 29: 117–122, 125–116. Contreras, L., Drago, I., Zampese, E. and Pozzan, T. (2010). Mitochondria: the calcium connection. Biochim.

Biophys. Acta 1797: 607–618.

Cribbs, J.T. and Strack, S. (2007). Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8: 939–944. Crompton, M., Virji, S., Doyle, V., Johnson, N. and Ward, J.M. (1999). The mitochondrial permeability transi-tion pore. Biochem. Soc. Symp. 66: 167–179

Csiszar, A., Labinskyy, N., Pinto, J.T., Ballabh, P., Zhang, H., Losonczy, G., Pearson, K., de Cabo, R., Pacher, P., Zhang, C. and Ungvari, Z. (2009). Resveratrol induces mitochondrial biogenesis in endothelial cells. Am. J. Physiol. 297: H13–H20.

Culic, O., Gruwel, M.L. and Schrader, J. (1997). Energy turnover of vascular endothelial cells. Am. J. Physiol.

273: C205–C213.

Davidson, S.M. and Duchen, M.R. (2007). Endothelial mitochondria: contributing to vascular function and disease. Circ. Res. 100: 1128–1141.

de Brito, O.M. and Scorrano, L. (2010). An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J. 29: 2715–2723.

Dejana, E., Tournier-Lasserve, E. and Weinstein, B.M. (2009). The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev. Cell 16: 209–221.

Delettre, C., Lenaers, G., Griffoin, J.M., Gigarel, N., Lorenzo, C., Belenguer, P., Pelloquin, L., Grosgeorge, J., Turc-Carel, C., Perret, E., Astarie-Dequeker, C., Lasquellec, L., Arnaud, B., Ducommun, B., Kaplan, J. and Hamel, C.P. (2000). Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet.26: 207–210.

Deng, T., Sieglaff, D.H., Zhang, A., Lyon, C.J., Ayers, S.D., Cvoro, A., Gupte, A.A., Xia, X., Baxter, J.D., Webb, P. and Hsueh, W.A. (2011). A peroxisome proliferator-activated receptor gamma (PPARga-mma)/PPARgamma coactivator 1beta autoregulatory loop in adipocyte mitochondrial function. J.

Biol. Chem. 286: 30723–30731.

Detaille, D., Guigas, B., Chauvin, C., Batandier, C., Fontaine, E., Wiernsperger, N. and Leverve, X. (2005).

Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeabil-ity transition-dependent process. Diabetes 54: 2179–2187.

Detmer, S.A. and Chan, D.C. (2007). Functions and dysfunctions of mitochondrial dynamics. Nat. Rev. Mol.

Cell Biol. 8: 870–879.

Dhanasekaran, D.N. and Reddy, E.P. (2008). JNK signaling in apoptosis. Oncogene 27: 6245–6251.

Di Lisa, F., Kaludercic, N., Carpi, A., Menabo, R. and Giorgio, M. (2009). Mitochondria and vascular pathol-ogy. Pharmacol. Rep. 61: 123–130.

Djouadi, F., Weinheimer, C.J., Saffitz, J.E., Pitchford, C., Bastin, J., Gonzalez, F.J. and Kelly, D.P. (1998). A gender-related defect in lipid metabolism and glucose homeostasis in peroxisome proliferator- acti-vated receptor alpha- deficient mice. J. Clin. Invest. 102: 1083–1091.

Mitochondria in endothelium17 Dlaskova, A., Spacek, T., Santorova, J., Plecita-Hlavata, L., Berkova, Z., Saudek, F., Lessard, M., Bewersdorf, J. and Jezek, P. (2010). 4Pi microscopy reveals an impaired three-dimensional mitochondrial network of pancreatic islet beta-cells, an experimental model of type-2 diabetes. Biochim. Biophys. Acta 1797: 1327–1341.

Donovan, M. and Cotter, T.G. (2010). Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. Biochim. Biophys. Acta 1644: 133–147.

Dora, K.A. (2010). Coordination of vasomotor responses by the endothelium. Circ. J. 74: 226–232.

Du, C., Fang, M., Li, Y., Li, L. and Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33–42.

Duchen, M.R. (2004). Roles of mitochondria in health and disease. Diabetes 53 Suppl. 1: S96–S102. Duncan, J.G., Fong, J.L., Medeiros, D.M., Finck, B.N. and Kelly, D.P. (2007). Insulin-resistant heart exhibits

a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/

PGC-1alpha gene regulatory pathway. Circulation 115: 909–917.

Egan, D., Kim, J., Shaw, R.J. and Guan, K.L. (2011). The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy7: 643–644.

Esper, R.J., Nordaby, R.A., Vilarino, J.O., Paragano, A., Cacharron, J.L. and Machado, R.A. (2006). Endothe-lial dysfunction: a comprehensive appraisal. Cardiovasc. Diabetol. 5: 4.

Fan, M., Goodwin, M.E., Birrer, M.J. and Chambers, T.C. (2001). The c-Jun NH(2)-terminal protein kinase/ AP-1 pathway is required for efficient apoptosis induced by vinblastine. Cancer Res. 61: 4450–4458. Fan, X., Hussien, R. and Brooks, G.A. (2010). H2O2-induced mitochondrial fragmentation in C2C12 myocytes.

Free Radic. Biol. Med. 49: 1646–1654.

Faraci, F.M. and Didion, S.P. (2004). Vascular protection: superoxide dismutase isoforms in the vessel wall.

Arterioscler. Thromb. Vasc. Biol. 24: 1367–1373.

Farhangkhoee, H., Khan, Z.A., Kaur, H., Xin, X., Chen, S. and Chakrabarti, S. (2006). Vascular endothelial dysfunction in diabetic cardiomyopathy: pathogenesis and potential treatment targets. Pharmacol.

Ther. 111: 384–399.

Feige, J.N. and Auwerx, J. (2007). Transcriptional coregulators in the control of energy homeostasis. Trends Cell Biol. 17: 292–301.

Ferre, M., Amati-Bonneau, P., Tourmen, Y., Malthiery, Y. and Reynier, P. (2005). eOPA1: an online database for OPA1 mutations. Hum. Mutat.25: 423–428.

Frazier, A.E., Kiu, C., Stojanovski, D., Hoogenraad, N.J. and Ryan, M.T. (2006). Mitochondrial morphology and distribution in mammalian cells. Biol. Chem. 387: 1551–1558.

Fujisawa, K., Nishikawa, T., Kukidome, D., Imoto, K., Yamashiro, T., Motoshima, H., Matsumura, T. and Araki, E. (2009). TZDs reduce mitochondrial ROS production and enhance mitochondrial biogenesis.

Biochem. Biophys. Res. Commun.379: 43–48.

Gandre-Babbe, S. and van der Bliek, A.M. (2008). The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell 19: 2402–2412. Geisler, S., Holmstrom, K.M., Skujat, D., Fiesel, F.C., Rothfuss, O.C., Kahle, P.J. and Springer, W. (2010).

PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12: 119–131.

Gerhart-Hines, Z., Rodgers, J.T., Bare, O., Lerin, C., Kim, S.H., Mostoslavsky, R., Alt, F.W., Wu, Z. and Puigserver, P. (2007). Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 26: 1913–1923.

Giacco, F. and Brownlee, M. (2010). Oxidative stress and diabetic complications. Circ. Res. 107: 1058–1070. Griendling, K.K. and FitzGerald, G.A. (2003). Oxidative stress and cardiovascular injury: Part II: animal and human studies. Circulation 108: 2034–2040.

Griparic, L., Kanazawa, T. and van der Bliek, A.M. (2007). Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J. Cell Biol. 178: 757–764.

Guan, Q., Zhang, Y., Yu, C., Liu, Y., Gao, L. and Zhao, J. (2011). Hydrogen sulfide protects against high

18

M. P angare et al.

glucose-induced apoptosis in endothelial cells. J. Cardiovasc. Pharmacol. 2011.

Gunter, K.K. and Gunter, T.E. (1994). Transport of calcium by mitochondria. J. Bioenerg. Biomembr. 26: 471–485.

Hakansson, J., Eliasson, B., Smith, U. and Enerback, S. (2011). Adipocyte mitochondrial genes and the fork-head factor FOXC2 are decreased in type 2 diabetes patients and normalized in response to rosigli-tazone. Diabetol. Metab. Syndr. 3: 32.

Hales, K.G. (2004). The machinery of mitochondrial fusion, division, and distribution, and emerging connec-tions to apoptosis. Mitochondrion 4: 285–308.

Halestrap, A.P. and Pasdois, P. (2009). The role of the mitochondrial permeability transition pore in heart dis-ease. Biochim. Biophys. Acta 1787: 1402–1415.

Han, D., Williams, E. and Cadenas, E. (2001). Mitochondrial respiratory chain-dependent generation of super-oxide anion and its release into the intermembrane space. Biochem. J. 353: 411–416.

Harder, Z., Zunino, R. and McBride, H. (2004). Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr. Biol. 14: 340–345.

Hayashi, T., Rizzuto, R., Hajnoczky, G. and Su, T.P. (2009). MAM: more than just a housekeeper. Trends Cell Biol. 19: 81–88.

Head, B., Griparic, L., Amiri, M., Gandre-Babbe, S. and van der Bliek, A.M. (2009). Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J. Cell Biol. 187: 959–966. Hegde, R., Srinivasula, S.M., Zhang, Z., Wassell, R., Mukattash, R., Cilenti, L., DuBois, G., Lazebnik, Y., Zervos, A.S., Fernandes-Alnemri, T. and Alnemri, E.S. (2002). Identification of Omi/HtrA2 as a mi-tochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction.

J. Biol. Chem. 277: 432–438.

Hermans, M.P. (2007). Diabetes and the endothelium. Acta Clin. Belg. 62: 97–101.

Hink, U., Li, H., Mollnau, H., Oelze, M., Matheis, E., Hartmann, M., Skatchkov, M., Thaiss, F., Stahl, R.A., Warnholtz, A., Meinertz, T., Griendling, K., Harrison, D.G., Forstermann, U. and Munzel, T. (2001).

Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ. Res. 88: E14–E22. Hondares, E., Mora, O., Yubero, P., Rodriguez de la Concepcion, M., Iglesias, R., Giralt, M. and Villarroya,

F. (2006). Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coact-

ivator (PGC)-1alpha gene transcription: an autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation. Endocrinology 147: 2829–2838.

Hsieh, C.J., Weng, S.W., Liou, C.W., Lin, T.K., Chen, J.B., Tiao, M.M., Hung, Y.T., Chen, I.Y., Huang, W.T.

and Wang, P.W. (2011). Tissue-specific differences in mitochondrial DNA content in type 2 diabetes.

Diabetes Res. Clin. Pract. 92: 106–110.

Huang, Q.R., Li, Q., Chen, Y.H., Li, L., Liu, L.L., Lei, S.H., Chen, H.P., Peng, W.J. and He, M. (2010). In-volvement of anion exchanger-2 in apoptosis of endothelial cells induced by high glucose through an mPTP-ROS-Caspase-3 dependent pathway. Apoptosis 15: 693–704.

Jager, S., Handschin, C., St-Pierre, J. and Spiegelman, B.M. (2007). AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. U. S. A.

104: 12017–12022.

Jahani-Asl, A., Germain, M. and Slack, R.S. (2010). Mitochondria: joining forces to thwart cell death. Biochim.

Biophys. Acta 1802: 162–166.

Jang, B. and Han, S. (2006). Biochemical properties of cytochrome c nitrated by peroxynitrite. Biochimie 88: 53–58.

Jeong, S.Y. and Seol, D.W. (2008). The role of mitochondria in apoptosis. BMB Rep. 41: 11–22.

Jheng, H.F., Tsai, P.J., Guo, S.M., Kuo, L.H., Chang, C.S., Su, I.J., Chang, C.R. and Tsai, Y.S. (2012). Mito-chondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle.

Mol. Cell Biol. 32: 309–319.

Jin, S.M., Lazarou, M., Wang, C., Kane, L.A., Narendra, D.P. and Youle, R.J. (2010). Mitochondrial mem-

Mitochondria in endothelium19 brane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191: 933–942.

Jou, M.J. (2008). Pathophysiological and pharmacological implications of mitochondria-targeted reactive oxy-gen species generation in astrocytes. Adv. Drug Deliv. Rev. 60: 1512–1526.

Joza, N., Pospisilik, J.A., Hangen, E., Hanada, T., Modjtahedi, N., Penninger, J.M. and Kroemer, G. (2009).

AIF: not just an apoptosis-inducing factor. Ann. N. Y. Acad. Sci. 1171: 2–11.

Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y. and Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J.19: 5720–5728.

Kalaitzidis, R.G., Sarafidis, P.A. and Bakris, G.L. (2009). Effects of thiazolidinediones beyond glycaemic control. Curr. Pharm. Des. 15: 529–536.

Kaminskyy, V. and Zhivotovsky, B. (2012). Proteases in autophagy. Biochim. Biophys. Acta 1824: 44–50. Kang, R., Zeh, H.J., Lotze, M.T. and Tang, D. (2011). The Beclin 1 network regulates autophagy and apoptosis.

Cell Death Differ. 18: 571–580.

Kanki, T. (2010). Nix, a receptor protein for mitophagy in mammals. Autophagy 6: 433–435.

Kelekar, A. (2005). Autophagy. Ann. N. Y. Acad. Sci. 1066: 259–271.

Kern, T.S. (2007). Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp. Diabetes Res. 2007: 95–103.

Kharbanda, S., Saxena, S., Yoshida, K., Pandey, P., Kaneki, M., Wang, Q., Cheng, K., Chen, Y.N., Campbell,

A., Sudha, T., Yuan, Z.M., Narula, J., Weichselbaum, R., Nalin, C. and Kufe, D. (2000). Translocation

of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. J. Biol.

Chem. 275: 322–327.

Kim, J., Kundu, M., Viollet, B. and Guan, K.L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13: 132–141.

Knott, A.B., Perkins, G., Schwarzenbacher, R. and Bossy-Wetzel, E. (2008). Mitochondrial fragmentation in neurodegeneration. Nat. Rev. Neurosci. 9: 505–518.

Knutti, D., Kressler, D. and Kralli, A. (2001). Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor. Proc. Natl. Acad. Sci. U. S. A. 98: 9713–9718.

Komatsu, M. and Ichimura, Y. (2010). Selective autophagy regulates various cellular functions. Genes Cells 15: 923–933.

Kowluru, R.A. (2005). Diabetic retinopathy: mitochondrial dysfunction and retinal capillary cell death. Anti-oxid. Redox Signal 7: 1581–1587.

Kowluru, R.A. and Abbas, S.N. (2003). Diabetes-induced mitochondrial dysfunction in the retina. Invest. Oph-thalmol. Vis. Sci. 44: 5327–5334.

Kundu, M. and Thompson, C.B. (2005). Macroautophagy versus mitochondrial autophagy: a question of fate?

Cell Death Differ. 12 Suppl. 2: 1484–1489.

Leal, E.C., Aveleira, C.A., Castilho, A.F., Serra, A.M., Baptista, F.I., Hosoya, K., Forrester, J.V. and Ambrosio,

A.F. (2009). High glucose and oxidative/nitrosative stress conditions induce apoptosis in retinal en-

dothelial cells by a caspase-independent pathway. Exp. Eye Res.88: 983–991.

Leduc, L., Levy, E., Bouity-Voubou, M. and Delvin, E. (2010). Fetal programming of atherosclerosis: possible role of the mitochondria. Eur. J. Obstet. Gynecol. Reprod. Biol. 149: 127–130.

Lee, J.W., Park, S., Takahashi, Y. and Wang, H.G. (2010). The association of AMPK with ULK1 regulates autophagy. PLoS. One 5: e15394.

Lemasters, J.J. (2005). Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxida-tive stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 8: 3–5.

Lenaz, G., Fato, R., Genova, M.L., Bergamini, C., Bianchi, C. and Biondi, A. (2006). Mitochondrial Complex I: structural and functional aspects. Biochim. Biophys. Acta 1757: 1406–1420.

Lerin, C., Rodgers, J.T., Kalume, D.E., Kim, S.H., Pandey, A. and Puigserver, P. (2006). GCN5 acetyltrans-ferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell

20

M. P angare et al.

Metab. 3: 429–438.

Li, J., Chen, X., Xiao, W., Ma, W., Li, T., Huang, J., Liu, X., Liang, X., Tang, S. and Luo, Y. (2011). Mito-chondria-targeted antioxidant peptide SS31 attenuates high glucose-induced injury on human retinal endothelial cells. Biochem. Biophys. Res. Commun. 404: 349–356.

Li, J.M. and Shah, A.M. (2004). Endothelial cell superoxide generation: regulation and relevance for cardiovas-cular pathophysiology. Am. J. Physiol. 287: R1014–R1030.

Li, L.Y., Luo, X. and Wang, X. (2001). Endonuclease G is an apoptotic DNase when released from mitochon-dria. Nature 412: 95–99.

Li, Y., Wu, H., Khardori, R., Song, Y.H., Lu, Y.W. and Geng, Y.J. (2009). Insulin-like growth factor-1 recep-tor activation prevents high glucose-induced mitochondrial dysfunction, cytochrome-c release and apoptosis. Biochem. Biophys. Res. Commun. 384: 259–264.

Liesa, M., Palacin, M. and Zorzano, A. (2009). Mitochondrial dynamics in mammalian health and disease.

Physiol. Rev. 89: 799–845.

Liu, X., Kim, C.N., Yang, J., Jemmerson, R. and Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147–157.

Lo, M.C., Lu, C.I., Chen, M.H., Chen, C.D., Lee, H.M. and Kao, S.H. (2010). Glycoxidative stress-induced mitophagy modulates mitochondrial fates. Ann. N. Y. Acad. Sci. 1201: 1–7.

Lopez-Lluch, G., Irusta, P.M., Navas, P. and de Cabo, R. (2008). Mitochondrial biogenesis and healthy aging.

Exp. Gerontol. 43: 813–819.

Lumini-Oliveira, J., Magalhaes, J., Pereira, C.V., Moreira, A.C., Oliveira, P.J. and Ascensao, A. (2011). Endur-ance training reverts heart mitochondrial dysfunction, permeability transition and apoptotic signal-ing in long-term severe hyperglycemia. Mitochondrion 11: 54–63.

Madeddu, P. (2005). Therapeutic angiogenesis and vasculogenesis for tissue regeneration. Exp. Physiol. 90: 315–326.

Makino, A., Scott, B.T. and Dillmann, W.H. (2010). Mitochondrial fragmentation and superoxide anion pro-duction in coronary endothelial cells from a mouse model of type 1 diabetes. Diabetologia 53: 1783–1794.

Makino, A., Suarez, J., Gawlowski, T., Han, W., Wang, H., Scott, B.T. and Dillmann, W.H. (2011). Regulation of mitochondrial morphology and function by O-GlcNAcylation in neonatal cardiac myocytes. Am.

J. Physiol. 300: R1296–R1302.

Mannella, C.A., Buttle, K., Rath, B.K. and Marko, M. (1998). Electron microscopic tomography of rat-liver mitochondria and their interaction with the endoplasmic reticulum. Biofactors 8: 225–228. Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C.A., Sou, Y.S., Saiki, S., Kawajiri, S., Sato,

F., Kimura, M., Komatsu, M., Hattori, N. and Tanaka, K. (2010). PINK1 stabilized by mitochondrial

depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J.

Cell Biol. 189: 211–221.

Matsuyama, S. and Reed, J.C. (2000). Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death Differ. 7: 1155–1165.

McBride, H.M., Neuspiel, M. and Wasiak, S. (2006). Mitochondria: more than just a powerhouse. Curr. Biol.

16: R551–560.

McCormack, J.G. and Denton, R.M. (1984). Role of Ca2+ ions in the regulation of intramitochondrial me-tabolism in rat heart. Evidence from studies with isolated mitochondria that adrenaline activates the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes by increasing the intramito-chondrial concentration of Ca2+. Biochem. J. 218: 235–247.

Men, X., Wang, H., Li, M., Cai, H., Xu, S., Zhang, W., Xu, Y., Ye, L., Yang, W., Wollheim, C.B. and Lou, J.

(2009). Dynamin-related protein 1 mediates high glucose induced pancreatic beta cell apoptosis. Int.

J. Biochem. Cell Biol. 41: 879–890.

Meng, X., Li, Z.M., Zhou, Y.J., Cao, Y.L. and Zhang, J. (2008). Effect of the antioxidant alpha-lipoic acid on apoptosis in human umbilical vein endothelial cells induced by high glucose. Clin. Exp. Med. 8:

线粒体与细胞凋亡

万方数据

万方数据

万方数据

线粒体与细胞凋亡 作者:周艺群, 谷志远, ZHOU Yi-qun, GU Zhi-yuan 作者单位:浙江大学医学院附属口腔医院口腔颌面外科,浙江,杭州,310006 刊名: 解剖科学进展 英文刊名:PROGRESS OF ANATOMICAL SCIENCES 年,卷(期):2006,12(1) 被引用次数:14次 参考文献(17条) 1.樊廷俊;夏兰;韩贻仁线粒体与细胞凋亡[期刊论文]-生物化学与生物物理学报 2001(01) 2.赵云罡;徐建兴线粒体,活性氧和细胞凋亡[期刊论文]-生物化学与生物物理进展 2001(02) 3.蔡循;陈国强;陈竺线粒体跨膜电位与细胞凋亡[期刊论文]-生物化学与生物物理进展 2001(01) 4.Hortelano S;Dallaporte B;Zamzami N Nitric oxide induces apoptosis via triggering mitochondrial permeability transition[外文期刊] 1997(2-3) 5.Marchetti P;Hirsch T;Zamzami N Mitochondrial permeability transition triggers lymphocyte apoptosis 1996(11) 6.Marchetti P;Castodo M;Susin SA Mitochondrial permeability transition is a central coordinating event of apoptosis[外文期刊] 1996(03) 7.Susin SA;Zamzami N;Castedo M Bcl-2 inhibits the mitochondrial release of an apoptogenic protease [外文期刊] 1996(04) 8.Chou JJ;Li H;Salvesen GS Solution structure of BID,an intracellular amplifier of apoptotic signaling[外文期刊] 1999 9.Ji HB;Zhai QW;Liu XY Transcription regulation of bcl-2gene 2000(02) 10.Tsujimoto Y;Shimizu S Bcl-2 family:Life or death switch 2000(01) 11.Zamzami N;Susin SA;Marchetti P Mitochondrial control of nuclear apoptosis 1996(04) 12.Ruth MK;Ella BW;Douglas RG The release of cytochrome c from apoptosis[外文期刊] 1997(5303) 13.Narita M;Shimizu S;ItoT Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondrial 1998(25) 14.Cosulich SC;Savory PJ;Clarke PR Bcl-2 regulates amplification of caspase activation by cytochrome C[外文期刊] 1999(03) 15.Bossy-Wetzel E;Green DR Caspases induce cytochrome C release from mitochondria by activating cytosolic factors[外文期刊] 1999(25) 16.Sutton VR;Davis JE;Cancilla M Initiation of apoptosis by granzyme B requires direct cleavage of bid,but not direct granzyme B-mediated caspase activation[外文期刊] 2000(10) 17.Stoka V;Turk B;Schendel SL Lysosomal protease pathways to apoptosis.Cleavage of bid,not pro-caspases,is the most likely route[外文期刊] 2001(05) 本文读者也读过(10条) 1.杨胜细胞凋亡机制简述[期刊论文]-科技信息(学术版)2007(26) 2.冯俊奇.李秀兰.白人骁.FENG Jun-qi.LI Xiu-lan.BAI Ren-xiao细胞凋亡机制研究进展[期刊论文]-国际生物医学工程杂志2006,29(1)

《中国2型糖尿病防治指南(2020版)》要点

《中国2型糖尿病防治指南(2020版)》要点 2020年11月25-27日,中华医学会糖尿病学分会第二十四次全国学术会议(CDS)在苏州市以线上线下相结合的形式火热召开。《中国2型糖尿病防治指南(2020版)》的发布无疑是本次大会最为引人注目的焦点之一,更新版指南结合了最新的国际糖尿病管理指南和临床证据,为我国2型糖尿病的临床诊疗提供指导。 更新要点一:糖尿病患病率 2020版指南:根据最新的流调数据,依WHO诊断标准,我国糖尿病患病率上升至11.2%。

图1 我国糖尿病患病率的变化 更新要点二:将“糖化血红蛋白”纳入到糖尿病诊断标准 2020版指南:在有严格质量控制的实验室,采用标准化检测方法测定的糖化血红蛋白(HbA1c)可以作为糖尿病的补充诊断标准。(B) 表1 糖尿病的诊断标准 更新要点三:新增个体化HbA1c控制目标设定的“主要影响因素” 2020版指南:HbA1c控制目标应遵循个体化原则,年龄较轻、病程较短、预期寿命较长、无并发症、未合并心血管疾病的2型糖尿病患者在没有低血糖及其他不良反应的情况下可采取更严格的HbA1c控制目标,反之则采取相对宽松的HbA1c目标。(B)

图2 个体化HbA1c控制目标的主要影响因素 更新要点四:高血糖的药物治疗要点 2020版指南: ?生活方式干预和二甲双胍为2型糖尿病患者高血糖的一线治疗。生活方式干预是2型糖尿病的基础治疗措施,应贯穿于治疗的始终。若无禁忌证,二甲双胍应一直保留在糖尿病的治疗方案中。(A) ?一种降糖药治疗而血糖不达标者,采用2种甚至3种不同作用机制的药物联合治疗。也可加用胰岛素治疗。(A) ?合并ASCVD或心血管风险高危的2型糖尿病患者,不论其HbA1c 是否达标,只要没有禁忌证都应在二甲双胍的基础上加用具有ASCVD获益证据的GLP-1RA或SGLT2i。(A)

线粒体功能失调与胰岛素抵抗

线粒体功能失调在胰岛素抵抗中作用 (Jeong-a Kim, Yongzhong Wei, James R. Sowers Role of Mitochondrial Dysfunction in Insulin Resistance Circulation Research 102(4)401-14, 2008 胰岛素抵抗是肥胖,2型糖尿病和包括高血压,血脂紊乱的心代谢综合症的特征之一,这些因素都归结于心血管病危险。胰岛素在经典胰岛素靶组织(骨骼肌,脂肪和肝)的代谢作用,以及在非经典组织的作用(心血管组织)有助于解释胰岛素抵抗和代谢紊乱是心代谢综合症和心血管病的核心病因。糖和脂通过细胞线粒体代谢产生能量,当营养素氧化不充分,ATP产生/氧消耗比例低,导致超氧离子产生。活性氧类形成可增加突变率和刺激致炎过程的不良结局。除活性氧形成外,遗传因素、衰老和线粒体生物起源减少等都促进线粒体功能失调。这些因素也导致经典和非经典胰岛素靶组织胰岛素抵抗,而起源于线粒体功能失调的胰岛素抵抗可能促进代谢和心血管异常,和相继的心血管疾病。因此改善线粒体功能的干预可能改善胰岛素抵抗,这些观察提示线粒体功能失调可能是胰岛素抵抗和相关并发症的中心原因。 胰岛素抵抗,心代谢综合症主要特征与组织肾素-血管紧张素系统活性提高关系,综合症成分间连接增加有关。研究显示刺激血管紧张素II的1型受体增加AngII的表达可以引起骨骼肌和肝线粒体(图1)和心脏(图2)功能和形态改变,阻断 AT1R减少啮齿类模型动物过度肾素-血管紧张素系统的氧化应激和线粒体结构和功能异常。代谢调节主要依赖在能量稳态起重要作用的线粒体(通过代谢营养素,产生ATP和热量),能量摄取和消耗之间不平衡导致线粒体功能失调,其特征为能量产生(ATP产生)/呼吸的比例降低。遗传和环境因素包括运动,食物,衰老和应激都影响线粒体功能和胰岛素敏感性。已经表明线粒体功能失调与骨骼肌和其他组织(肝,脂肪,心脏,血管和胰腺等胰岛素抵抗相关,因此对许多慢性疾病部分因线粒体功能失调引起的胰岛素抵抗可能是一个共同的病理生理上的因素。 线粒体功能 线粒体分内外膜,线粒体呼吸链位于内膜,ATP主要通过2步产生,NADH(或FADH2)氧化和ADP 磷酸化形成ATP (氧化磷酸化)[OXPHOS]). 这些反应偶联于线粒体,在喜氧机体的氧化磷酸化是充分有效和产能存能途径,葡萄糖通过糖酵解和三羧酸循环或脂肪酸β氧化产生NADH或FADH2 ,NADH或 FADH2被氧化成NAD+或FAD而质子通过复合物I,III,IV被泵到线粒体膜间,然后通过呼吸链复合物电子从NADH或FADH2转移给O2,最终产生H2O. 跨膜质子梯度是ATP合成酶(F0F1-ATP 酶)从ADP产生ATP的驱动力。ATP通过腺嘌呤核苷酸转运体与ADP交换进入细胞浆,用于需要能量的各种细胞事件。另外通过质子漏出机制,线粒体产热,质子从膜空间漏出到线粒体基质(解偶联)减少质子移动力和替代ATP的产热,在减少质子梯度中解偶联蛋白Uncoupling proteins (UCPs)起主要作用。 UCP1 专有性表达在褐色脂肪组织,UCP2 到处都有表达,而UCP3表达在骨骼肌 。UCP1(~10%膜蛋白)调节适应性产热,而,UCP2 和 -3 在产热中似不起作用。事实上

线粒体与细胞凋亡

线粒体与细胞凋亡 苑金香(潍坊学院生物系山东潍坊261043) 摘要 细胞凋亡是一种由基因控制的自主性死亡过程。近年来研究发现,线粒体在细胞凋亡过程中起重要作用,它可以通过改变膜通透性、释放凋亡活性物质等介导细胞凋亡。 关键词 线粒体 细胞凋亡 线粒体作为真核细胞能量代谢中心已为人熟知,然而近年来的研究发现,线粒体在细胞的另一重要生理活动 细胞凋亡中还扮演着重要角色。细胞凋亡即细胞程序性死亡(programmed cell death),是一种由基因编程调控的细胞主动自杀过程,细胞凋亡在胚胎发育、机体内环境的稳定、细菌和病毒感染细胞的清除过程中起重要作用,许多疾病的发生与细胞凋亡失控有关,而线粒体在细胞凋亡过程中起着重要作用。 1 线粒体膜的通透性改变与细胞凋亡 线粒体起着启动细胞凋亡的重要作用,其主要机制与线粒体渗透性转换孔(mitochondrial permeability transi tion pore,mtPTP)开放有关,mtPTP位于线粒体内膜和外膜的交界处,是一种由多种蛋白组成的复合体。mtPTP参与调节线粒体基质中的Ca2+、pH值电荷等,维持线粒体内环境的稳定性,保持氧化还原通路的畅通。mtPTP平时允许不大于0.15 104的小分子物质通过。当线粒体内Ca2+超载、自由基对线粒体膜造成氧化损伤,或者是能量产生下降时,均可引起mtPTP开放。在细胞凋亡发生早期,线粒体膜mtPTP打开,线粒体内膜电位( m)降低,一方面使得线粒体内的死亡促进因子(deathe-promoting factor,DPF)释放出来,促进凋亡的进行;另一方面,又使得细胞质进入线粒体基质,由此引起膜质子的转运异常,导致线粒体处于高渗状态,线粒体基质扩张,细胞骨架蛋白受压,直接导致细胞凋亡。 2 线粒体释放物与细胞凋亡 研究发现,线粒体内含有许多促死亡因子,包括细胞色素C,凋亡诱导因子(apoptosis-inducing factor,AIF),胱冬酶原及其他线粒体蛋白等。这些因子从线粒体中释放出来以后,以不同的方式参与到细胞凋亡的过程,影响细胞凋亡的进程。 2.1 细胞色素C的释放与细胞凋亡 1996年德克萨斯西南医学院研究中心王晓东研究小组发现细胞色素C参与细胞凋亡的过程。当细胞受凋亡信号刺激后,细胞色素C能迅速从线粒体释放到胞浆中,在细胞色素C含量丰富的细胞中,细胞将进入快速凋亡机制,释放出来的细胞色素C参与激活凋亡的酶通路,细胞内仍有许多未释放的细胞色素C,它们维持电子传递和有氧呼吸,从而产生足够的ATP,为细胞凋亡提供足够的能量。而在细胞色素C含量较少的细胞中,由于细胞色素C的大量释放,使电子传递链受阻,ATP产量骤减,无法提供足够的能量,因而使细胞走向与凋亡完全不同的坏死过程。 72h,凋亡细胞数从6.65%增加到16.42%;若处理96h 后,凋亡细胞数从4.71%增加到21.94%,这说明染料木黄酮可诱导前裂腺癌细胞的凋亡,通过这种办法可预防前列腺癌的发生。 另外,许多不同种类的化学物质(如亚硝胺类、杂环胺类、多环氮氢化物和糖醛核呋喃等)、外界微生物的侵袭、高温和放射线等化学的、物理的和生物的因素是影响癌细胞的生长和凋亡的外源性调节因素。还有一些常规使用的肿瘤化疗药物(如顺铂、维甲酸、羟基脲等)和 射线都可诱导多种肿瘤细胞凋亡。 4 结论 在正常机体内,细胞增殖和细胞凋亡处于一种动态平衡。故癌的发生和细胞的生与死密切相关。一方面,细胞的过度增殖导致了癌的发生,一些化学预防剂抑制癌发生的一个重要机制就是抑制细胞增殖;另一方面,细胞凋亡过程的失调也是癌发生的另一原因。研究细胞凋亡与癌发生的关系,进而诱导细胞凋亡对癌的预防具有重要的意义。 参考文献 1 Davis JN et al.Nutr Cancer,1998,32:123 131. 2 Li M et al.Cancer Epidemiol Biom Prev,2000,9(6):545 550. 3 方福德等.分子生物学前沿技术.北京医科大学、中国协 和医科大学联合出版社,1998,76 174. 4 贾旭东.细胞增殖和细胞凋亡和癌的发生和预防.国外 医学卫生学分册,2001,28(2):65 68. (B H) 17 2003年第38卷第5期 生 物 学 通 报

[整理]中国2型糖尿病防治指南科普版部分.

糖尿病 什么是糖尿病? 糖尿病是一种遗传因素和环境因素长期共同作用所导致的慢性、全身性、代谢性疾病,以血浆葡萄糖水平增高为特征,主要是因体内胰岛素分泌不足或作用障碍引起的糖、脂肪、蛋白质代谢紊乱而影响正常生理活动的一种疾病。 糖尿病有哪些特点? 1、常见病 2、终身疾病 3、可控制疾病 4、需配合部分管理的疾病 5、病情不断变化的疾病 哪些人容易患上糖尿病呢? 1、糖尿病家族史 2、超重、肥胖 3、多食少动 4、年龄>45岁 5、出生时低体重<5斤 6、有异常分娩史。如有原因不明的多次流产史、死胎、死产、早产、畸形儿或巨大儿等。

糖尿病有哪临床表现? 一、糖尿病的典型症状:“三多一少”,即多饮、多尿、多食和消瘦(体重下降)。 有典型症状的糖尿病病友通常会主动就诊,而绝大多数的糖尿病病友,特别是2型糖尿病病友都没有任何症状,或者只有一些不引人注意的不舒服,若不加以注意,则慢慢地随着糖尿病的发展,才会出现一些其他并发症症状。 二、糖尿病的不典型症状: 1、反复生痔长痈、皮肤损伤或手术后伤口不愈合; 2、皮肤瘙痒,尤其是女性外阴瘙痒或泌尿系感染; 3、不明原因的双眼视力减退、视物模糊; 4、男性不明原因性功能减退、勃起功能障碍(阳痿)者; 5、过早发生高血压、冠心病或脑卒中; 6、下肢麻木、烧灼感; 7、尿中有蛋白(微量或明显蛋白尿)。

2型糖尿病会出现在孩子身上吗? 在临床中发现,前来就诊的2型糖尿病患儿多数是“小胖墩”,他们的生活方式有很大的共性,如偏食、嗜食肉类、薯片等油炸类食品,排斥蔬菜、水果,喜欢吃肯德基、麦当劳等“洋快餐”,贪睡,不爱运动,一有时间不是玩电子游戏就是看电视。正是这些不良的生活习惯使“小胖墩”越来越多,也使2型糖尿病离孩子们越来越近。 夫妻,母子、祖孙之间会“传染”糖尿病吗? 有血缘关系的人可能具有相同的遗传基因,即父母与孩子之问、爷爷奶奶与孙子孙女之间无论哪一个人得了糖尿病,同家族的人得糖尿病的可能性也比较大。遗传因素另一方面的含义是,没有血缘关系的人不会传染糖尿病,如夫妻之间、朋友之间或同事之间,即使有紧密接触,也没有传染糖尿病的可能。 当然,妻子得了糖尿病,不会因为做家务、做饭就把疾病传染给丈夫和孩子,奶奶也不会因为带孙子就把糖尿病传染给孙子。但是,与糖尿病病友有血缘关系的人到底会不会得糖尿病,还取决于环境因素。大量的流行病学资料显示,环境因素是发生糖尿病的重要因素,其中生活方式、饮食习惯、运动习惯.性格等都与糖尿病的发生有关。

第八版-内科学-糖尿病-诊断与鉴别诊断(糖尿病)

诊断与鉴别诊断 在临床工作中要善于发现糖尿病,尽可能早期诊断和治疗。糖尿病诊断以血糖异常升高作为依据,血糖的正常值和糖代谢异常的诊断切点是依据血糖值与糖尿病和糖尿病特异性并发症(如视网膜病变)发生风险的关系来确定。应注意如单纯检查空腹血糖,糖尿病漏诊率高,应加验餐后血糖,必要时进行OGTT。诊断时应注意是否符合糖尿病诊断标准、分型、有无并发症(及严重程度)和伴发病或加重糖尿病的因素存在。 (一)诊断线索 ①三多一少症状。②以糖尿病各种急、慢性并发症或伴发病首诊的患者。③高危人群:有IGR史;年龄≥45岁;超重或肥胖;T2DM的一级亲属;有巨大儿生产史或GDM史;多囊卵巢综合征;长期接受抗抑郁症药物治疗等。 此外,30-40岁以上健康体检或因各种疾病、手术住院时应常规排除糖尿病。 (二)诊断标准 我国目前采用国际上通用的WHO糖尿病专家委员会(1999)提出的诊断和分类标准,要点如下: 1.糖尿病诊断是基于空腹(FPG)、任意时间或OGTT中2小时血糖值(2h PG)。空腹指至少8小时内无任何热量摄入;任意时间指一日内任何时间,无论上一次进餐时间及食物摄入量。糖尿病症状指多尿、烦渴多饮和难于解释的体重减轻。 2.糖尿病的临床诊断推荐采用葡萄糖氧化酶法测定静脉血浆葡萄糖。 3.严重疾病或应激情况下,可发生应激性高血糖;但这种代谢紊乱常为暂时性和自限性,因此在应激时,不能据此时血糖诊断糖尿病,必须在应激消除后复查才能明确其糖代谢状况。 4.儿童糖尿病诊断标准与成人相同。 5.妊娠糖尿病:强调对具有高危因素的孕妇(GDM个人史、肥胖、尿糖阳性或有糖尿病家族史者),孕期首次产前检查时,使用普通糖尿病诊断标准筛查孕前未诊断的T2DM,如达到糖尿病诊断标准即可判断孕前就患有搪尿病。如初次检查结果正常,则在孕24一28周行75g OGTT,筛查有无GDM, GDM的诊断定义为达到或超过下列至少一项指标:FPG ≥ 5. 1 mmol/L,1 h PG≥10.Ommo1/L和(或)2h PG≥8.5mmolL。 6.关于应用HbA1c诊断糖尿病 HbAlc能稳定和可靠地反映患者的预后。ADA已经把HbA1c≥6.5%作为糖尿病的诊断标准,WHO也建议在条件成熟的地方采用HbA1c作为糖尿

中国肥胖及2型糖尿病外科治疗指南(2019版)

中国肥胖及2型糖尿病外科治疗指南(2019版) 中国医师协会外科医师分会肥胖和糖尿病外科医师委员会 (Chinese Society for Metabolic & Bariatric Surgery,CSMBS)于2014年组织国内减重代谢外科及内分泌科专家共同制定了我国首个减重代谢外科指南——《中国肥胖和2型糖尿病外科治疗指南(2014)》[1]。在该指南的指导和规范下,尤其在中华医学会外科学分会甲状腺及代谢外科学组成立后,我国的减重代谢外科取到了长足的发展,特别是全国各地区相继建立了临床研究中心,并开展了多中心合作,不断积累详实的多中心临床数据。我国减重代谢手术已经由2014年的4000例增长到1万例以上,术式方面也与欧美等发达国家没有明显差异[2-3]。2017年,美国和欧洲肥胖代谢外科指南进行了相应更新,包括胃束带手术(AGB)等治疗方式基本退出历史舞台[4-5]。鉴于此,中华医学会外科学分会甲状腺及代谢外科学组联合CSMBS组织专家对2014年版指南进行修订和更新,参考西方国家指南及立场声明更新,并采纳我国近5年的临床数据及相关文献,在适应证和禁忌证、手术方式的合理选择、术前评估与准备、术后并发症以及围手术期管理等方面进行阐述说明,以更好地适应减重代谢外科的发展,规范疾病的治疗,共同推进学科健康快速发展。 1 手术适应证及禁忌证 1.1 手术适应证 单纯肥胖病人手术适应证:(1)BMI≥37.5,建议积极手术;32.5≤BMI<37.5,推荐手术;27.5≤BMI<32.5,经改变生活方式和内科治疗难以控制,且至少符合2项代谢综合征组分,或存在合并症,综合评估后可考虑手术[6-7]。(2)男性腰围≥90cm、女性腰围≥85cm,参考影像学检查提示中心型肥胖,经多学科综合治疗协作组(MDT)广泛征询意见后可酌情提高手术推荐等级[8]。(3)建议手术年龄为16~65岁。 注:(1)代谢综合征组分(国际糖尿病联盟定义)包括:高三酰甘油(TG,空腹≥ 1.70mmol/L)、低高密度脂蛋白胆固醇(HDL-ch,男性空腹<1.03mmol/L,女性空腹<1.29mmol/L)、高血压(动脉收缩压≥130mmHg或动脉舒张压≥85mmHg, 1mmHg=0.133kPa)。(2)合并症包括糖代谢异常及胰岛素抵抗,阻塞性睡眠呼吸暂停低通气综合征(OSAHS)、非酒精性脂肪性肝炎(NASH)、内分泌功能异常、高尿酸血症、男性性功能异常、多囊卵巢综合征、变形性关节炎、肾功能异常等,尤其是具有心血管风险因素或2型糖尿病(T2DM)等慢性并发症。(3)对BMI为27.5~<32.5的病人有一定疗效,但国内外缺少长期疗效的充分证据支持,建议慎重开展。(4)如双能X线吸收法测量Android脂肪含量与腹部脂肪及内脏脂肪分部相关,如Android脂肪含量显著升高提示中心型肥胖。或MRI对腹部内脏脂肪含量进行评估

细胞生物学

10.以动物细胞摄入LDL为例,概述受体介导胞吞的组成结构、运行过程及生理意义。 组成结构:衔接蛋白、网格蛋白、发动蛋白、受体、膜 过程:低密度脂蛋白LDL,先与细胞表面的互补性受体相结合,形成受体-配体复合物并引起细胞膜的局部内化作用,先是质膜在网格蛋白的参与作用下内陷形成有被小窝,然后是深陷的小窝脱离质膜形成有被小泡。即完成胞吞过程(后又脱包被,胞内体作用等)。生理意义:作为一种选择性浓缩机制,既保证了细胞大量的摄入特定的大分子,同时又避免了吸入胞外大量的液体。 11.比较两种胞吐途径的特点及功能。 类型特点功能 组成型合成就外排补充膜成分;信号介导完成其他生命活动;可形成外周 蛋白、基质等 调节型合成先储存,等信号刺激 短时间内大量释放,维持机体平衡 12. 甾类激素是如何通过胞内受体介导的信号通路去调节基因表达? 甾类激素与受体结合时,导致抑制性蛋白脱离,暴露出受体上DNA结合位点而被激活。受体结合的DNA序列是转录增强子,可增加某些相邻基因的转录水平。甾类激素诱导的基因活化分两个阶段: 1)初级反应阶段:直接活化少数特殊基因,发生迅速 2)延迟的次级反应:由初级反应的基因产物,再活化其他基因,对初级反应起放大作用。NO是自由基性质的气体,具脂溶性,可快速扩散透过细胞膜,对邻近靶细胞起作用。血管内皮细胞和神经细胞中有一氧化氮合酶(NOS),能催化合成NO,当血管神经末释放乙酰胆碱作用于血管内皮,使其合成释放NO,所以才快速缓解心绞痛。 13. 以突触处神经递质作用为例,说明离子通道偶联受体介导的信号通路特点。离子通道偶联受体本身具信号结合点,又是离子通道,其跨膜信号转导无需中间步骤。神经递质(胞外化学信号)与受体结合而引起通道蛋白变构,导致离子通道开启,使突触后细胞膜出现过膜离子流(如Na+和Ca2+),从而将胞外化学信号转换成胞内电信号,导致突触出后细胞的兴奋。当胆碱脂酶将神经递质水解后,离子通道关闭,信号传递中断。 14. 概述G蛋白偶联受体介导的信号通路的组成、特点及主要功能。组成:细胞外配体、细胞表面受体、G蛋白(分子开关)、第二信使、靶蛋白 G蛋白偶联受体介导的信号通路整体的传递过程:细胞外配体—→细胞表面受体—→G蛋白(分子开关)—→第二信使—→靶蛋白(酶或离子通道)—→细胞应答根据第二信使的不同,信号通路可以分为两类: (1)cAMP信号通路信号通路信号通路信号通路cAMP的产生有腺苷酸环化酶催化完成,而该酶的活性由激活性激素(肾上腺素、胰高血糖素)或抑制性激素(前列腺素、腺苷)调控。激素-→G蛋白偶联受体-→G蛋白-→腺苷酸环化酶-(激素作用)→cAMP-→cAMP依赖的蛋白激酶A(PKA)产生PKA后,他可以激活下游的靶酶以及开启基因表达:(前者是快速反应,后者是慢速反应)a. 活化的PKA—>靶酶蛋白磷酸化—>细胞代谢核细胞行为(如肾上腺素刺激骨骼肌细胞导致糖原分解) b. 活化的PKA—>基因调控蛋白—>基因转录 (2)磷脂酰肌醇信号通路磷脂酰肌醇信号通路磷脂酰肌醇信号通路磷脂酰肌

线粒体和细胞凋亡

无论从原始的生物线虫到高级的哺乳动物乃至人类,还是从生物体外周器官到中枢神经系统,细胞凋亡都广泛存在。它作为生命的基本现象之一,可以发生在生理或病理条件下[1]。最初人们仅从形态学表现的特征上加以认识,如胞膜对称性丧失、染色质凝集、细胞皱缩、DNA破碎、线粒体肿胀和凋亡小体形成。随着科学的发展,人们开始发现线粒体在细胞凋亡中的起着重要的作用。随着对细胞凋亡研究的深入,人们对线粒体与体细胞凋亡的关系有了新的认识。

2.1细胞凋亡的概念 细胞凋亡是细胞程序性死亡(programmed cell death, PCD)是一种细胞自身有基因控制的主动性死亡过程,其形态特征为核染色体固缩、DNA片段化、胞质浓缩、胞膜皱缩并形成凋亡小体,生化上表现为DNA梯形条带。而最新研究表明人类许多疾病都与其相关,如爱滋病、神经变性性疾病、骨髓发育不全综合征、酒精中毒性肝病、缺血性损伤, 尤其宫内窘迫所致胎儿缺血缺氧性脑损伤。神经细胞的凋亡,更是目前关的焦点,凋亡程度与胎儿乃至新生儿的脑发育、智力发育密切相关[2]。而科学家们发现,用溴化乙锭除去线粒体DNA(mtDNA)诱导一株人成纤维细胞凋亡,表明线粒体在细胞凋亡中起作用[3]。现在认为,细胞凋亡有胞核和胞质两条途径,随着对细胞凋亡研究的深入,人们对线粒与体细胞凋亡的关系有了新的认识。 2.2细胞凋亡与细胞坏死区别 细胞凋亡是细胞受基因调控的一种自然死亡过程,同细胞生长分化一样是生命活动中重要的细胞学事件。细胞凋亡与坏死不同,是一种细胞遵循自身程序结束其生命的主动的细胞学过程,对机体清除衰老或受损细胞具有重要意义[4]。细胞凋亡与坏死在形态特征上有明显的区别,凋亡细胞表现为染色质固缩,常聚集于核周边,呈境界分明的颗粒块状或新月形小体;细胞浆浓缩,密度增高;细胞核裂解为碎片,而线粒体形态结构保持完整(凋亡细胞细胞膜和线粒体的动态变化)。坏死是一种由多种刺激所引起的非特异性细胞死亡。如补体作

我国2型糖尿病防治指南(2018版)(四)

中国2型糖尿病防治指南(2017年版)(四) 高血糖的药物治疗要点提示●生活方式干预是糖尿病治疗的基础,如血糖控制不达标(HbA1c≥7.0%)则进入药物治疗(A)●二甲双胍、α-糖苷酶抑制剂或胰岛素促泌剂可作为单药治疗的选择,其中,二甲双胍是单药治疗的首选(A)●在单药治疗疗效欠佳时,可开始二联治疗、三联治疗或胰岛素多次注射(B) 一口服降糖药物高血糖的药物治疗多基于纠正导致人类血糖升高的两个主要病理生理改变——胰岛素抵抗和胰岛素分泌受损。根据作用效果的不同,口服降糖药可分为主要以促进胰岛素分泌为主要作用的药物(磺脲类、格列奈类、DPP-4抑制剂)和通过其他机制降低血糖的药物(双胍类、TZDs、α-糖苷酶抑制剂、SGLT2抑制剂)。磺脲类和格列奈类直接刺激胰岛b细胞分泌胰岛素;DPP-4抑制剂通过减少体内GLP-1的分解、增加GLP-1浓度从而促进胰岛b细胞分泌胰岛素;双胍类的主要药理作用是减少肝脏葡萄糖的输出;TZDs的主要药理作用为改善胰岛素抵抗;α-糖苷酶抑制剂的主要药理作用为延缓碳水化合物在肠道内的消化吸收。SGLT2抑制剂的主要药理作用为通过减少肾小管对葡萄糖的重吸收来增加肾脏葡萄糖的排出。 糖尿病的医学营养治疗和运动治疗是控制2型糖尿病高血糖

的基本措施。在饮食和运动不能使血糖控制达标时应及时采用药物治疗。

2型糖尿病是一种进展性的疾病。在2型糖尿病的自然病程中,对外源性的血糖控制手段的依赖会逐渐增大。临床上常需要口服药物间及口服药与注射降糖药间(胰岛素、GLP-1受体激动剂)的联合治疗。 (一)二甲双胍目前临床上使用的双胍类药物主要是盐酸二甲双胍。双胍类药物的主要药理作用是通过减少肝脏葡萄糖的输出和改善外周胰岛素抵抗而降低血糖。许多国家和国际组织制定的糖尿病诊治指南中均推荐二甲双胍作为2型糖尿病患者控制高血糖的一线用药和药物联合中的基本用药。对临床试验的系统评价显示,二甲双胍的降糖疗效(去除安慰剂效应后)为HbA1c下降1.0%~1.5%,并可减轻体重[101-103]。在我国2型糖尿病人群中开展的临床研究显示,二甲双胍可使HbA1c下降0.7%~1.0%[104-105]。在500~2 000 mg/d剂量范围之间,二甲双胍疗效呈现剂量依赖效应[104,106],在低剂量二甲双胍治疗的基础上联合DPP-4抑制剂的疗效与将二甲双胍的剂量继续增加所获得的血糖改善程度和不良事件发生的比例相似[107-108]。UKPDS结果证明,二甲双胍还可减少肥胖的2型糖尿病患者心血管事件和死亡[78]。在我国伴冠心病的2型糖尿病患者中开展的针对二甲双胍与磺脲类药物对再发心血管事件影响的临床随机分组对照试验结果显示,二甲双胍的治疗与主要心血管事件的显著下降相关[109]。单独使用二甲双胍不导致低血糖,但二

线粒体与细胞凋亡研究进展

·综述· 线粒体与细胞凋亡研究进展 曾凯星1 1.中山大学药学院,广州,510006 【摘要】线粒体是细胞凋亡的执行者。当线粒体受到内外环境因素的影响时,会造成线粒体通透性转运孔持续开放,细胞色素C的释放、Caspase蛋白的激活以及活性氧的作用。本文阐述了三者变化的多种机制,同时也论述了Bcl-2家族和AIF因子在凋亡过程中的调节作用机制,为寻找肿瘤靶点提供机遇。【关键词】线粒体;细胞凋亡;线粒体通透性转运孔;细胞色素C;Caspase Study Progress of Mitochondria and Apoptosis Kai-xing ZENG1 1.School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 51006, China Abstract: Mitochondria are the executors of apoptosis. When the mitochondria are affected internal and external environmental factors, can cause mitochondrial permeability transition pore remain open, release of cytochrome C and activation of Caspase protein. This paper describes the various mechanisms of the three variations, but also discusses the Bcl-2 family and AIF factor regulating mechanism during apoptosis, these mechanisms provides an opportunity to find tumor targets. Keywords: Mitochondria; Cell apoptosis; mitochondrion permeability transition pore; Cytochrome C; Caspase

线粒体与细胞凋亡

线粒体与细胞凋亡 细胞凋亡是一种由基因控制的、细胞自主的、有序的死亡过程,与多种疾病的发生、发展均有直接或间接的关系。线粒体作为细胞内一类重要的细胞器,除了可以为生命的存在提供能量外,还参与了包括细胞凋亡在内的多种生理过程的发生。但是,对于线粒体和细胞凋亡之间的关系并不明确。因此,文章对两者之间可能存在的联系进行了总结和综述。 标签:线粒体;细胞凋亡;线粒体融合蛋白 细胞凋亡的紊乱与疾病的发生、发展有着直接或间接的关系:当细胞凋亡不足时,可能发生恶性肿瘤疾病或自身免疫性疾病等;而当凋亡过度时,则可能导致神经元退行性疾病、病毒感染等。总之,细胞凋亡的失调与疾病的发生密切相关。 1 细胞凋亡的基本概念及意义 生物体内的细胞是不可能永久性存在的,死亡是这些细胞的必然结局。然而,有些细胞的死亡是生理性的,有些则属于病理性死亡。目前,人类对细胞死亡的分类主要分为细胞凋亡与细胞坏死两种类型。近年来对细胞凋亡方面的研究越来越成为生理学、病理学等医学研究的热点。 细胞凋亡的过程大体上可以分为4个部分:凋亡信号的转导、凋亡基因的激活、凋亡的启动以及凋亡细胞的清除。如若这一系列过程中的任何一个环节出现了问题,就有可能导致疾病的发生。 2 细胞凋亡的重要相关因子 细胞凋亡的过程是多基因联合调控的过程,包括Bcl-2家族、Caspase家族、P53基因等联合发挥作用。随着医学的发展,人们对多种细胞的凋亡过程有了一定的认识:细胞的凋亡机制大致分为氧化损伤(即自由基的作用)、钙稳态失衡以及线粒体损伤三种。 许多生理性的死亡信号和病理性的细胞损伤都会产生程序性的细胞凋亡。细胞凋亡的途径主要有两条:一条是通过细胞外信号,激活细胞内的凋亡酶Caspase;另一条是通过线粒体途径释放凋亡酶激活因子从而激活Caspase。 细胞凋亡最典型的特征之一就是细胞内的特异性蛋白水解酶--胱天蛋白酶Caspase的激活。Caspase在细胞凋亡的执行中处于中心地位,其家族属于半胱天冬蛋白酶,相当于线虫中的ced-3。现有研究已经证实,细胞的凋亡过程本质上是Caspase蛋白水解酶不可逆的水解底物而进行的级联放大反应。 目前,尚未完全明确的是Caspase引起细胞凋亡的全部过程是如何发挥作用

关于2型糖尿病的全球指南

关于2型糖尿病的全球指南 袁申元(北京同仁医院内分泌科教授,北京市糖尿病防治办公室主任) 大家知道糖尿病在我国是越来越多,我国的糖尿病人是4000万,各国也有糖尿病治疗的自己指南,中华糖尿病协会也有自己的指南,为什么今天讨论全球的指南,主要是在2005年全球糖尿病联盟,请了各国全世界中的发达国家、发展中国家和贫穷国家,这些国家都有代表参加来讨论究竟糖尿病这样一个复杂病怎么治,应该怎么全面治疗,怎么才能达到所谓治疗的目的,怎样才能规范达标。目前糖尿病的治疗,比如降血压治疗的达标率可以达到20%,降血糖治疗只有25%,由于血糖控制不好难免并发症逃不了。因此,我们一定要全面控制,有了糖尿病要全面预防并发症。为此国家糖尿病联盟定了全球指南。 今天给我们汇报的全球指南不是我有什么借鉴,而是国际上糖尿病专家们一起得出的指南。所谓指南是给我们同行在诊断治疗的过程中是把握一个方向,达到一个什么样的目标,用什么样的手段能够使得糖尿病病人的利益获得最大的益处。指南由英国纽卡斯尔糖尿病中心及纽卡斯尔大学的教授来,有指南有个网站,是https://www.wendangku.net/doc/ca14001366.html,。 什么是国际糖尿病联合会?IDF是全球糖尿病患者的代言人,是150多个国家的190余个糖尿病学会与社团的联盟。IDF是西太平洋区有其自己的活动。IDF为什么要制定全球指南?从循证指南的20世纪末临床研究比较科学的方法,很多国家没有以循证医学为基础的指南,所以他为了弥补各国缺乏指南,所以要定指南。而指南主要目的是为了更多地糖尿病患者,要得到最佳治疗、最好的治疗。主要为了全球糖尿病病人能够获得最佳的治疗,而且获得最佳治疗一定要改善他的生活质量、要提供依据。依据来至于大量的循证医学。这次指南跟以前不一样的是,专家们重视了费用和效益之间的关系。不是用药越贵越好,不是这样。大家在讲义上也看到,特别重视费用和效益之间的比例,用最少的钱,能够使得病人获得最佳的效果。总指南目的建立国际通用标准循证医学指南,按照循证医学为基础的指南,使得国际上不管是发达国家还是发展中国家以及贫穷国家的糖尿病人都能获益。因为各国经济不一样,指南的特点,第一次把治疗分成三个层次,1、标准式的;2、标准治疗;3、全面治疗。针对三种经济水平情况的国家采用不同的方式进行治疗。不管是穷人、有钱人方法可以不一样,但治疗的控制达标应该是一样的。 标准治疗是适合最大多数国家的治疗,标准治疗应该是适合于所有的糖尿病患者。达到这个治疗目标应该是所有的国家只要有健全治疗体系最好能够按照标准治疗来治疗,所以标准治疗是核心。我国的各大城市的糖尿病病人应该获得标准治疗的方法。而我国西部边缘地区比较贫穷的农村可能获得标准治疗就有困难。因此,来看看贫穷地区进行基本治疗,基本治疗尽管经济不太发达,但糖尿病的患者也应该获得的最低水平的治疗。钱可以花的少,但我们的治疗也应该达标,所以治疗的目标是一样的。他在经济不发达的情况下,也应该得到最低水平的治疗,也是相对于我们医保最低水平的治疗。国际糖尿病联盟说了,所不幸的是,许多糖尿病患者尽管是在发展中国家还是发达国家他们还没有达到这种治疗水平,他说的非常对。就拿北京、上海应该是医疗资源非常丰富的地方,曾经在北京西直门外人民医院附近做过调查,调查1000多名糖尿病病人,尽管在医院看病定期吃药,但是中间治疗达标的也就10%-20%,也在吃药也在治疗,但治疗并没有达到预期目标,因此这样的治疗也是不够满意的。循证医学要求治疗达到才能避免基本的并发症。 全面治疗适合于发达国家、适合有钱人,有钱人希望达到最佳的治疗目标、最好的治疗

细胞生物学笔记线粒体

线粒体(mt) 在电镜下线粒体是由二层单位膜组成的细胞器,是细胞内氧化磷酸化、产能、贮能的重要场所。 一、光镜结构 二、mt电镜结构 ①外膜:脂类和蛋白质各占1/2,蛋白质为转运蛋白,形成含水通道。 ②内膜:高度特化,是胞质与mt基质之间的主要通道屏障。其中蛋白质占76%,主要是合成ATP的F0F1复合体和电子传递链。脂类主要是心磷脂,使内膜对质子及离子的通透性减小,从而产生了内膜两侧质子的动力势和电位差。 ③mt嵴: ④基粒: 头部:又称偶联因子F1,由五种亚基(αβγδε)组成,αβ亚基各有3个,形成一个球状小体,是催化ADP和磷酸化合成A TP的关键装置。 柄部:是F1和F0连接部位,由F1和F0各有一部分组成,其作用调控质子通道。 基部:称F0偶联因子。 ⑤膜间腔(嵴内腔或mt外室) ⑥转位接触点: ⑦基质腔(嵴间腔或内室):是三羧酸循环的重要部位。 ⑧基质:主要是催化三羧酸循环、脂肪酸氧化、核酸、蛋白质酶类。 三、mt的化学成份 主要蛋白质、脂类以及DNA、多种辅酶,如NAD、FMN、FAD、COQ等。 ①蛋白质:干重65~70%。 可溶性蛋白:基质中的酶和膜外周蛋白 不可溶性蛋白:膜镶嵌蛋白、结构蛋白以及部分酶类 ②脂类:干重25%~30%,主要是磷脂(占90%)。 即卵磷脂、脑磷脂以及少量的心磷脂和胆固醇。其中外膜所含磷脂和胆固醇比内膜多3倍,内膜含心磷脂多,胆固醇少;心磷脂能减小内膜对质脂和离子的通透性 四、线粒体的遗传体系(半自主性) 线粒体是由两个遗传体系所控制,即线粒体基因组和细胞核基因组两个彼此分开的遗传系统,线粒体的这种特性称为线粒体的半自主性;线粒体DNA构成了线粒体基因组 (一)mt遗传体系 1、mt DNA结构特点 1)封闭、环状、双链,无组蛋白;2)不含内含子,非编码区和调节序列很少; 3)不严格的密码子配对;4)部分遗传密码与通用密码的意义不同; 5)起始密码为AUA而非AUG;6)编码产物只自用; 7)依赖nDNA发挥功能; 2、线粒体基因组及其所编码的13种蛋白质 ①基因组:人类mtDNA含有16569个碱基对,呈小分子双链环状DNA,双链中一条为重链(H),另一条为轻链(L),两条链共组成37个基因,其中H链28个基因,L链9个基因。 ②13个编码蛋白质的基因负责编码 3、线粒体DNA复制 ①mtDNA含有两个单向复制叉,H链和L链各含1个复制叉。 ②H链与L链合成的方向相反。 ③mtDNA复制不受细胞周期影响。 4、线粒体DNA转录 ①需要核基因编码的mtRNA聚合酶和mt转录因子ACTFA。 ②重链和轻链各有一个启动子HSP和LSP,转录三种RNA,转录出来的mtRNA在mt内合成蛋白。 (二)线粒体内蛋白质合成:

IDF发布老年2型糖尿病管理全球指南

IDF发布老年2型糖尿病管理全球指南 [导读]国际糖尿病联盟(IDF )发布最新的《老年2型糖尿病管理全球指南》。该指南专门为70岁以上的老年2型糖尿病人群而制定(也适用于1型糖尿病),旨在改善全球老年糖尿病的管理,并于上周在IDF举办的2013年世界糖尿病大会上首次公布 国际糖尿病联盟(IDF )发布最新的《老年2型糖尿病管理全球指南》。该指南专门为70岁以上的老年2型糖尿病人群而制定(也适用于1型糖尿病),旨在改善全球老年糖尿病的管理,并于上周在IDF举办的2013年世界糖尿病大会上首次公布。(2013IDF老年2型糖尿病管理全球指南下载) IDF估计,60岁~79岁人群中超过19%患有糖尿病,即1.34亿人群。截止2035年,这一数字预计将超过2.52亿。此外,IDF估计超过一半的2型糖尿病患者未被确诊,导致糖尿病诊断之前就有致残并发症的发生。 新指南指出,当前许多老年糖尿病患者的管理并不理想,一大部分老年人群的临床和社会需求未被满足。新指南建议临床医生制定适合老年人年龄和身体功能的管理决策,建议设置政府管理标准和医务人员需遵守的目标。 新指南的关键信息是预防,通过主动进行风险评估和筛查来减少老年糖尿病患者的各种风险,基于患者的功能状态(包括精神和身体方面的功能)进行治疗规划,以及开展势在必行的个体化治疗。指南的内容涉及心血管风险、教育、肾脏受损以及糖尿病足等话题,还包括性健康和临终关怀等通常较少强调的领域。 指南编写者之一、IDF副主席Trisha Dunning教授说,管理糖尿病是一项挑战,尤其是在常伴有精神、躯体和感知改变的老年人群中。当合并其他老年相关状况时,糖尿病导致老年人群的结局更差。老年人常见的周围神经病变可增加跌倒和骨折风险;糖尿病发展为痴呆的风险是非糖尿病人群的1.5倍;由于跌倒和承受骨折、疼痛、肾脏和肝损害等伤害的风险更高,老年人的药物治疗更加复杂,并增加药物相互作用等不良事件的风险。因此,老年人管理中测定功能状态和考虑预期寿命十分重要。 Trisha Dunning教授强调,相比年轻糖尿病患者,应该对老年人进行更为频繁的评估。因为身体状况较好的高龄患者一旦出现问题,会突然恶化。另外,低血糖和足部感染应该是治疗老年糖尿病患者时主要关注的问题。在临床实践中,对于身体虚弱的老年患者,其糖化血红蛋白(HbA1c)应稳定在8.5%左右。HbA1c<7 %表明低血糖风险非常高,而>7 %表明有高血糖风险。长期的高血糖状态会增加尿道感染和足部伤口感染风险,造成截肢率和足部问题的发病率升高。还应注意避免老年糖尿病患者出现高渗性状态,脱水会导致认知改变和谵妄,使住院死亡率高达30%。 指南另一编写者、英国贝德福德大学Alan Sinclair教授说:“许多医务保健人员缺乏为老年糖尿病患者提供教育和管理的知识。因此,政府应制定相应的卫生政策,包括战略计划、强调老年人的具体需求和培养医务保健人员管理老年糖尿病患者的知识和能力。”

相关文档
相关文档 最新文档