文档库 最新最全的文档下载
当前位置:文档库 › 拟线性椭圆算子的(S)+性质与p(x)-Laplace型方程

拟线性椭圆算子的(S)+性质与p(x)-Laplace型方程

拟线性椭圆算子的(S)+性质与p(x)-Laplace型方程
拟线性椭圆算子的(S)+性质与p(x)-Laplace型方程

椭圆方程的一个性质和应用

椭圆方程的一个性质和应用 于志洪金建荣 学习椭圆方程时,大家会发现这样一类椭圆,它们有一个共同特征,即离心率相同。 F 面将共离心率的椭圆方程的一个性质及其应用介绍给同学们,供大家学习时参考。 -.性质 X 2 和椭圆— a 2 y 2 1(a b b 2 0) 有相同离心率的椭 圆方程都具有 2 X -2 a (0)的特征。 2 X -2 a 程。 2 y 产 b 2 . 2 X a 2 .a y 2 2 1和椭圆 b 2 \ a 2 b 2 a. y 2 2 1和椭圆 b 2 X 2 设椭圆 1的离心率分别为e 和e',则 a 2 b 2 a e' .a 2 b 2 e',故椭圆 0)有相同的离心 率。 也就是说,和椭圆飞 a b 0)有相同的离心率的椭圆方程都具有 0)的特 征。 应用 X 2 2 y 2 1有相同离心率,且与直线 3X 例.求和椭圆 4 (2003年全国重点名校高考模拟题) 2、7y 16 0相切的椭圆方 解法1 :由以上性质,可设所求椭圆方程为 2小 16 0相切,故由方程组x 2 4y 2 得16y 2 16-. 7y 64 9 0。其判别式 2 2 4,故所求椭圆方程为 X y 1 16 4 3x 迂 4 ,3X 16、、7)2 y 2 ( 2, 7y 16 4 16 解法2 :设所求椭圆方程为 X 2 4y 2 0)。因其与直线 0联立消去X ,整理 (64 9 )0,解得 因它与直线 3X 27y 16 0相切,则设切点为( 27 4 X 1, 表示为同一直线,所以 X 1 4y 1 X 1 y 1),故切线方程为 3 4 y 1 X 1X 4y 』 4 。两直线 ¥。将 X 1和y 1同时代入椭圆方 程,得(? )2 4(乂 4 8 2 故所求椭圆方程为 — 16 )2 化简整理得 0,解得 4或 0 (舍去)。 2 y_ 4 X 2 2 a 2 ?. , bi 。设切点为 (2 cos 解法3 :设所求椭圆方程为 2 即— 4 r~ . 、sin 则 a 2 4 , b 2 , ),则椭圆的切线方程为

椭圆的标准方程与性质

椭圆的标准方程与性质 教学目标: 1了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用; 2 掌握椭圆的定义、几何图形、标准方程及简单几何性质. 高考相关点: 在高考中所占分数:13分 考查出题方式:解答题的形式,而且考查方式很固定,涉及到的知识点有:求曲线方程,弦长,面积,对称关系,范围问题,存在性问题。 涉及到的基础知识 1.引入椭圆的定义 在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|=2c)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数: 有以下3种情况 (1)若a>c,则集合P为椭圆; (2)若a=c,则集合P为线段; (3)若a

标准方程x2 a2 +\f(y2,b2)=1 (a>b>0) \f(y2,a2)+错误!=1 (a>b>0) 图形 性质范围 -a≤x≤a -b≤y≤b -b≤x≤b -a≤y≤a 对称性对称轴:坐标轴;对称中心:原点 顶点 A1(-a,0),A2(a,0) B1(0,-b),B2(0,b) A1(0,-a),A2(0,a) B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b 焦距|F1F2|=2c 离心率e=错误!∈(0,1) a,b,c的关系c2=a2-b2题型总结

类型一椭圆的定义及其应用 例1:如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是( ) A.椭圆? B.双曲线 C.抛物线 D.圆 【解析】根据CD是线段MF的垂直平分线.可推断出,进而可以知道 结果为定值,进而根据椭圆的定义推断出点P的轨迹【答案】根据题意知,CD是线段MF的垂直平分线.,(定值),又显然,根 据椭圆的定义可推断出点P轨迹是以F、O两点为焦点的椭圆.所以A选项是正确的 练习1:已知F1,F2是椭圆C: 22 22 1 x y a b +=(a>b>0)的两个焦点,P为椭圆C 上的一点,且 错误! 1⊥2 PF,若△PF1F2的面积为9,则b=________. 【解析】由题意的面积∴故答案为: 【答案】3 练习2:已知F1,F2是椭圆错误!+错误!=1的两焦点,过点F2的直线交椭圆于A,B两点,在△AF1B中,若有两边之和是10,则第三边的长度为() A.6?B.5 C.4 D.3

二四阶拟线性椭圆方程组的弱解存在性

摘要利用变分方法,讨论了二四阶拟线性椭圆方程组对更一般的f、g在较弱的条件下获得弱解的存在性。 关键词拟线性椭圆方程组变分法弱解 Existence of the Weak Solution for Second and Fourth-Order Quasilinear Elliptic Equations//DiFang AbstractUsingthevariationalmethod,thispaperdiscussedtheweaksolutionexistenceofsecondandfourth-orderquasilinearellipticequationstomoregeneralf,gundertheweakercondition.Key wordsthevariationalmethod;calculusofvariations;weaksolution Author's addressMathematicsResearchCenter,CollegeofSan-Jiang,210012,Nanjing,Jiangsu,China 1引言 设Ω为Rn的有界开子集,本文考虑二四阶拟线性椭圆方程组问题。 -div(g 1 (|荦u|2)荦u)=f(x,u,v)在Ω中 △(g 2 ((△u)2)△u)=g(x,u,v)在Ω中 u| 坠Ω=v| 坠Ω =△v| 坠Ω = 荦荦荦荦荦荦荦荦荦 荦荦荦荦0 (1.1) 本文的目的是用变分方法,研究二四阶拟线性椭圆方程组问题(1.1)对更一般的函数f、g,在较弱的条件下获得弱解的存在性。 2基本引理 设Ω奂Rn为有界开子集。又设H:Ω×R→R为c1类的,(Hu,Hv)=(f,g)且f,g:Ω×R→R为Caratheodory函数,且满足下列条件: (i)存在a,b≥0和f1,g1缀Lq(Ω)使 |f(x,s,t)|≤a(|s|2+|t|2)r/2+f1(x),|g(x,s,t)|≤b(|s|2+|t|2)r/2+g1(x),a.e.x缀Ω,坌s缀R,这里1≤r<(n+2)/(n-2)(n≥3),p=r+1和1/p+1/q=1。 (ii)存在λ缀L∞(Ω)使 limsup|μ|→∞2F(x,u,v) u+|v| ≤λ(x), a.e.x缀Ω,这里F(x,u)= u 0 乙f(x,s)ds 设g1,g2缀C(R,R),为连续的非减函数。又设g1和g2满足下列条件: (iii)存在α1,α2,β1和β2缀R使 0<α1≤g1(t)≤β1,0<α2≤g2(t)≤β2 在上述条件下,通过方法我们给出问题(1.1)的弱解的存在性定理。 给定的开集Ω奂Rn。设V表示Hilbert空间H1 0 (Ω)×H(Ω) ∩H1 0 (Ω),V上的范数定义为 ||(u,v)||2= Ω 乙|荦u|2+(△v)2 乙乙dx(2.1) 设λk(k=1,2,…)表示为特征值问题 △u+λu=0在Ω中, u| 坠Ω = 乙 0 (2.2)的特征值,准k(k=1,2,…)为相应的特征函数(关于L2(D)的内积适当规范化)。其中每一特征值λk依重数重复计数,且0<λ1<λ2≤λ3≤…,λk→∞,φ1(x)>0,x缀Ω。 △2u=μu在Ω中, u| 坠Ω =△u| 坠Ω = 乙 0 (2.3) 有无穷多特征值μ k =λ2 k ,k=1,2,…, 对应特征函数准k(x). {准k}构成V的一组正交基,因此,V的元素(u,v)能表成 u= ∞ k=1 Σak准k,v=∞ k=1 Σbkφk,∞ k=1 Σa2k<∞,∞ k=1 Σb2k<∞,(2.4)用V'表示V的对偶空间,<,>表示V'与V之间的对偶积。 定义映像Bg:V→V'为 <B g (u,v),(准,ψ)>= Ω 乙[g1(|荦u|2)荦u荦准+g2((△v)2)△u△ψ]dx(2.5)坌(u,v),(准,ψ)缀V. 定义2.1.称u缀V为问题(1.1)的弱正解,如果下列等式成立 <B g (u,v),(准,ψ)>= Ω 乙[f(x,u,v)准+g(x,u,v)ψ]dx(2.6)坌(准,ψ)缀V. 下面是本文得到的主要结果: 定理2.1.设α1≤α2,又设(i),(ii)和(iii)成立.假定在Ω上λ(x)≤α1λ1(1+λ1),在Ω的正测子集上λ(x)<α1λ1(1+λ1).则问题(1.1)至少有一个弱解。 定理2.2,设α1≥α2又设(i),(ii)和(iii)成立.假定在Ω上λ(x)≤α2λ1(1+λ1),在Ω的正测子集上λ(x)<α2λ1(1+λ1).则问题(1.1)至少有一个弱解。 3定理的证明 设Ω奂Rn为有界开子集,设V=H1 0 (Ω)×H(Ω)∩H1 0 (Ω)。 中图分类号:O13文献标识码:A文章编号:1672-7894(2012)33-0100-02100

椭圆方程及性质的应用-课时作业

学习资料[文档副标题] [日期] 世纪金榜 [公司地址]

椭圆方程及性质的应用 (45分钟 100分) 一、选择题(每小题6分,共30分) 1.(2013·重庆高二检测)已知直线l过点(3,-1),且椭圆C:+=1,则直线l与椭圆C的公共点的个数为( ) A.1 B.1或2 C.2 D.0 2.若AB为过椭圆+=1的中心的弦,F1为椭圆的左焦点,则△F1AB面积的最大值为( ) A.6 B.12 C.24 D.36 3.椭圆+=1上的点到直线x+2y-=0的最大距离为( ) A.3 B. C. D.2 4.直线y=1-x交椭圆mx2+ny2=1于M,N两点,MN的中点为P,若k OP=(O为原点),则等于( ) A. B. C.- D.- 5.(2013·南昌高二检测)已知椭圆的一个焦点为F,若椭圆上存在点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为( ) A. B. C. D. 二、填空题(每小题8分,共24分) 6.(2013·绵阳高二检测)短轴长为,离心率e=的椭圆的两焦点为F1,F2,过F1作直线交椭圆于A,B两点,则△ABF2的周长为. 7.(2013·宜春高二检测)椭圆+=1(a>b>0)的离心率为,若直线y=kx与其一

个交点的横坐标为b,则k的值为. 8.过椭圆+=1内的一点P(2,-1)的弦AB,满足=(+),则这条弦所在的直线方程是. 三、解答题(9题,10题14分,11题18分) 9.(2013·合肥高二检测)已知椭圆C的焦点F1(-2,0)和F2(2,0),长轴长为6,设直线l交椭圆C于A,B两点,且线段AB的中点坐标是P(-,),求直线l的方程. 10.(2013·安阳高二检测)已知椭圆的两焦点为F1(-,0),F2(,0),离心率e=. (1)求此椭圆的方程. (2)设直线l:y=x+m,若l与此椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值. 11.(能力挑战题)已知大西北某荒漠上A,B两点相距2km,现准备在荒漠上开垦出一片以AB为一条对角线的平行四边形区域建成农艺园,按照规划,围墙总长为8km. (1)试求四边形另两个顶点C,D的轨迹方程. (2)农艺园的最大面积能达到多少? (3)该荒漠上有一条直线型小溪l刚好通过点A,且l与AB成30°角,现要对整条小溪进行加固改造,但考虑到今后农艺园的小溪要重新设计改造,因此,对小溪可能被农艺园围进的部分暂不加固,则暂不加固的部分有多长?

二阶线性微分方程解的结构

二阶线性微分方程解的结构

————————————————————————————————作者: ————————————————————————————————日期: ?

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++= (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于

'()y p x y =- 而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A .2),在其两端同乘以函数()d p x x e ? ()d ()d ()d '()()p x x p x x p x x e y p x e y e f x ???+= 注意到上面等式的左端 ()d ()d ()d ''()p x x p x x p x x e y p x e y e y ?????+= ??? ‘ 因此有 ()d ()d '()p x x p x x e y e f x ????= ??? ‘ 两端积分 ()d ()d ()d p x x p x x e y C e f x x ??=+?‘ 其中C 是任意常数。进一步有 ()d ()d ()d p x x p x x y e C e f x x -????=+ ??? ?‘ 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --???=+?‘ (A.5)

椭圆方程及性质的应用

椭圆方程及性质的应用 教学目标 1.掌握直线与椭圆的位置关系.(重点) 2.通过一元二次方程根与系数关系的应用,解决有关椭圆的简单综合问题.(重点) 3.能利用椭圆的有关性质解决实际问题.(难点) 教材整理1 点与椭圆的位置关系 设点P(x0,y0),椭圆x2 a2+ y2 b2=1(a>b>0). (1)点P在椭圆上?x20 a2+ y20 b2=1;(2)点P在椭圆内? x20 a2+ y20 b2<1; (3)点P在椭圆外?x20 a2+ y20 b2>1. 课堂练习 已知点(2,3)在椭圆x2 m2+ y2 n2=1上,则下列说法正确的是________ ①点(-2,3)在椭圆外②点(3,2)在椭圆上 ③点(-2,-3)在椭圆内④点(2,-3)在椭圆上【解析】由椭圆的对称性知点(2,-3)也在椭圆上.【答案】④ 教材整理2 直线与椭圆的位置关系 1.直线与椭圆的位置关系及判定 直线y=kx+m与椭圆x2 a2+ y2 b2=1(a>b>0)联立 ?? ? ?? y=kx+m, x2 a2+ y2 b2=1, 消去y得一个 一元二次方程.

2.弦长公式 设直线y =kx +b 与椭圆的交点坐标分别为A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|= 1+1 k 2·|y 1-y 2|. 判断(正确的打“√”,错误的打“×”) (1)点P (2,1)在椭圆x 24+y 2 9=1的内部.( ) (2)过椭圆外一点一定能作两条直线与已知椭圆相切.( ) (3)过点A (0,1)的直线一定与椭圆x 2 +y 2 2=1相交.( ) (4)长轴是椭圆中最长的弦.( ) 【答案】 (1)× (2)√ (3)√ (4)√ 例题分析 (1)若直线mx +ny =4和⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 2 4=1的交点个数为( ) A.2个 B.至多一个 C.1个 D.0个 (2)已知椭圆4x 2+y 2=1及直线y =x +m ,问m 为何值时,直线与椭圆相切、相交? 【精彩点拨】 利用几何法判断直线与椭圆的位置关系. 【自主解答】 (1)若直线与圆没有交点,则d = 4m 2 +n 2 >2, ∴m 2+n 2<4,即m 2+n 24<1.∴m 29+n 24<1,∴点(m ,n )在椭圆的内部,故直 线与椭圆有2个交点. 【答案】 A (2)将y =x +m 代入4x 2+y 2=1, 消去y 整理得5x 2+2mx +m 2-1=0. Δ=4m 2-20(m 2-1)=20-16m 2.

二阶线性微分方程解的结构

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++=L (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于 而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A.2),在其两端同乘以函数()d p x x e ?

注意到上面等式的左端 因此有 两端积分 其中C 是任意常数。进一步有 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --? ??=+?‘ (A.5) 其中C 是任意常数。 观察(A.4)式和(A.5)式,我们发现一阶线性非齐次常微分方程(A.1)的解等于 一阶线性齐次常微分方程( A.2)的通解()d p x x Ce -?加上函数()d ()d *()()d p x x p x x y x e e f x x -??=?。容易验证,*()y x 是方程(A.1)的一个特解。这符合线性方程解的结构规律。 例1 求解一阶常微分方程 解 此时()2()1p x f x =-=,,由(A.5)式,解为 其中C 是任意常数。 A.2 二阶线性常微分方程 将具有以下形式的方程 "()'()()y p x y q x y f x x I ++=∈,, (A.6) 称为二阶线性常微分方程,其中(),(),()p x q x f x 都是变量x 的已知连续函数。称 "()'()0y p x y q x y x I ++=∈,, (A.7) 为与(A.6)相伴的齐次方程. A .2.1 二阶线性微分方程解的结构 首先讨论齐次方程(A.7)解的结构。

【课时作业 必修1】椭圆方程及性质的应用+参考答案

椭圆方程及性质的应用 (45分钟100分)一、选择题(每小题6分,共30分) 1.(2013·重庆高二检测)已知直线l过点(3,-1),且椭圆C:x2 25+y2 36 =1,则直线l与椭圆 C的公共点的个数为( ) A.1 B.1或2 C.2 D.0 2.若AB为过椭圆x2 25+y2 16 =1的中心的弦,F1为椭圆的左焦点,则△F1AB面积的最大 值为( ) A.6 B.12 C.24 D.36 3.椭圆x2 16+y2 4 =1上的点到直线x+2y-√2=0的最大距离为( ) A.3 B.√11 C.√10 D.2√2 4.直线y=1-x交椭圆mx2+ny2=1于M,N两点,MN的中点为P,若k OP=√2 2 (O为原点),则m等于( ) A.√2 2B.√2 C.-√2 2 D.-√2 5.(2013·南昌高二检测)已知椭圆的一个焦点为F,若椭圆上存在点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为( ) A.√5 3B.2 3 C.√2 2 D.5 9 - 1 -

二、填空题(每小题8分,共24分) 6.(2013·绵阳高二检测)短轴长为√5,离心率e=2 3 的椭圆的两焦点为F1,F2,过F1作直线交椭圆于A,B两点,则△ABF2的周长为. 7.(2013·宜春高二检测)椭圆x2 a2+y2 b2 =1(a>b>0)的离心率为√2 2 ,若直线y=kx与其一 个交点的横坐标为b,则k的值为. 8.过椭圆x2 6+y2 5 =1内的一点P(2,-1)的弦AB,满足OP→=1 2 (OA→+OB→),则这条弦所在 的直线方程是. 三、解答题(9题,10题14分,11题18分) 9.(2013·合肥高二检测)已知椭圆C的焦点F1(-2√2,0)和F2(2√2,0),长轴长为6, 设直线l交椭圆C于A,B两点,且线段AB的中点坐标是P(-9 10,1 10 ),求直线l的方 程. 10.(2013·安阳高二检测)已知椭圆的两焦点为F1(-√3,0),F2(√3,0),离心率e=√3. (1)求此椭圆的方程. (2)设直线l:y=x+m,若l与此椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值. 11.(能力挑战题)已知大西北某荒漠上A,B两点相距2km,现准备在荒漠上开垦出一片以AB为一条对角线的平行四边形区域建成农艺园,按照规划,围墙总长为8km. - 1 -

二阶线性微分方程解的结构

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++= (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于 '()y p x y =-

而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A.2),在其两端同乘以函数()d p x x e ? ()d ()d ()d '()()p x x p x x p x x e y p x e y e f x ???+= 注意到上面等式的左端 ()d ()d ()d ''()p x x p x x p x x e y p x e y e y ?????+= ??? ‘ 因此有 ()d ()d '()p x x p x x e y e f x ????= ??? ‘ 两端积分 ()d ()d ()d p x x p x x e y C e f x x ??=+?‘ 其中C 是任意常数。进一步有 ()d ()d ()d p x x p x x y e C e f x x -??? ?=+ ??? ?‘ 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --???=+?‘ (A.5) 其中C 是任意常数。 观察(A.4)式和(A.5)式,我们发现一阶线性非齐次常微分方程(A.1) 的解等于一阶线性齐次常微分方程(A.2)的通解()d p x x Ce -?加上函数

椭圆标准方程及其性质知识点大全

【专题七】椭圆标准方程及其性质知识点大全 (一)椭圆的定义及椭圆的标准方程: ●椭圆定义:平面内一个动点 P 到两个定点1F 、2F 的距离之和等于常数 )2(2121F F a PF PF >=+ , 这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点, 两焦点的距离叫作椭圆的焦距. 注意:①若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; ②若)(2121 F F PF PF <+,则动点P 的轨迹无图形 (二)椭圆的简单几何性: ●标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。 标准方程 122 22=+b y a x )0(>>b a 122 22=+b x a y )0(>>b a 图形 性质 焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F 焦距 c F F 221= c F F 221= 范围 a x ≤, b y ≤ b x ≤,a y ≤ 对称性 关于x 轴、y 轴和原点对称 顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ± 轴长 长轴长12A A , 12A A =a 2,短轴长12B B ,12B B =b 2

离心率 ①(01)c e e a = << ,②21()b e a =-③2 22b a c -= (离心率越大,椭圆越扁) 1.方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点F 1,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a ,b ,c 都大于零,其中 a 最大且a 2= b 2+ c 2. 2. 方程22 Ax By C +=表示椭圆的充要条件是:ABC ≠0,且A ,B ,C 同号,A ≠B 。A >B 时,焦点在y 轴上,A <B 时,焦点在x 轴上。 (三)焦点三角形的面积公式:122tan 2 PF F S b θ ?=如图: ●椭圆标准方程为:122 22=+b y a x )0(>>b a ,椭圆焦点三角形:设P 为椭圆上任意一点,12 ,F F 为焦点且∠12F PF θ=,则△12F PF 为焦点三角形,其面积为122tan 2 PF F S b θ ?=。 (四)通径 :如图:通径长 2 2b MN a = ●椭圆标准方程:122 22=+b y a x )0(>>b a , (五)点与椭圆的位置关系: (1)点00(,)P x y 在椭圆外?22 00 221x y a b +>;(2)点00(,)P x y 在椭圆上?220220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< (六)直线与椭圆的位置关系: ●设直线l 的方程为:Ax+By+C=0,椭圆122 22=+b y a x (a ﹥b ﹥0),联立组成方程 组,消去y(或x)利用判别式△的符号来确定: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; M N F x y

椭圆的性质及应用

第5讲 椭圆的性质及应用 一、知识梳理 1 x 2 y 2 y 2 x 2 2、椭圆的几何性质分为两类 (1)一类是与坐标系无关的椭圆本身故有的性质:长轴长、短轴长、焦距、离心率等. (2)一类是与坐标系有关的性质:顶点坐标、焦点坐标等. 在解题时要特别注意第二类性质,应根据椭圆方程的形式,首先判断椭圆的焦点在哪条坐标轴上,然后再进行求解. 问题 为什么椭圆的离心率决定椭圆的扁平程度? 提示:椭圆的离心率反映了焦点远离中心的程度,e 的大小决定了椭圆的形状,反映了椭圆的圆扁程度. 因为a 2=b 2+c 2,所以b a =1-e 2,因此,当e 越趋近于1时,b a 越接近于0,椭圆越扁;当e 越趋近于0时, b a 越接近于1,椭圆越接近于圆. 题型(一) 求椭圆的离心率 例1 (1)下列椭圆中最扁的一个是( ) A . B . C . D . 【解答】解:椭圆的离心率越小,椭圆越圆,越大,离心率越大,椭圆越扁,越小, A 中=,B 中=,C 中= ,D 中= , 故选:B . (2)若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为________. 解析: 依题意,△BF 1F 2是正三角形,

∵在Rt △OBF 2中,|OF 2|=c ,|BF 2|=a ,∠OF 2B =60°,∴a cos 60°=c ,∴c a =1 2 , 即椭圆的离心率e =12.,答案: 1 2 (3)如图,设椭圆的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆于C 点,若直线BF 平分线段AC 于M ,则椭圆的离心率是( ) A . B . C . D . 【解答】解:如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线, ∴OM ∥AB ,于是△OF A ∽△AFB ,且==,即=,可得e ==. 故选:C . (4)《九章算术)是我国古代内容极为丰富的数学名著第九章“勾股”,讲述了“勾股定理及一些应用.直角三角形的两直角边与斜边的长分别称“勾”“股”“弦”,且“勾2 +股2 =弦2 ”.设F 是椭圆= 1(a >b >0)的左焦点,直线y =x 交椭圆于A 、B 两点,若|AF |,|BF |恰好是Rt △ABF 的”勾”“股”, 则此椭圆的离心率为( ) A . B . C . D . 【解答】解:∵|AF |,|BF |恰好是Rt △ABF 的”勾”“股”,∴AF 1⊥BF 1,∴OA =OB =OF 1=c . ∴A (, ),∴ ? , ,? ,e 2 =1﹣ =4﹣2,∴﹣1. 故选:A .

椭圆标准方程及其性质知识点大全

【专题七】椭圆标准方程及其性质知识点大 (一)椭圆的定义及椭圆的标准方程: ?椭圆定义:平面内一个动点P 到两个定点F 1、 F 2的距离之和等于常数 长轴长 AA 2,|AAj =2a ,短轴长 BB 2, |B 1B 2|=2b PF I PF 2 2a F 1F 2),这个动点P 的轨迹叫椭圆?这两个定点叫椭圆的 焦 点,两焦点的距离叫作椭圆的 注意:①若(PF 1 ②若(PF 1 F I F 2),则动点P 的轨迹为线段F I F 2 ; PF 2 F 1F 2 ),则动点P 的轨迹无图形 (二)椭圆的简单几何性: 坐标轴为对称轴的标准位置的椭圆方程。 标准方程 2 2 养 1(a b °) 2 2 ;2 2 1(a b 0) 图形 焦占 八 F i ( c,0),F 2(C ,0) F I (0, C ),F 2(0,C ) 焦距 F 1F 2 2C 2C 范围 性质 对称性 关于x 轴、y 轴和原点对称 顶点 (a,0) , (0, b) (0, a), ( b,0) 轴长 >■'

离心率 ① e - (0 e 1),② e 』1 (b )2 ③ c 2 a 2 b 2 a V a (离心率越大,椭圆越扁) 1?方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点 F 1 , F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数 a , b , c 都大于零,其中 a 最大且 a 2 = b 2+ c 2. 2 2 2.方程Ax By C 表示椭圆的充要条件是:ABC 工0,且A , B , C 同号,A 工 是 : B o A > B 时,焦点在y 轴上,A v B 时,焦点在x 轴 上。 (三)焦点三角形的面积公式: PF 1F 2 b2 tan 2 如 图: 金 \ A 0 2 ?椭圆标准方程为:令 a 2 y_ b 2 1 (a b 0),椭圆焦点三角形: 设P 为椭圆上任意一点, F I ,F 2为焦点且/ F 1PF 2 则厶F 1PF 2为焦点三角形,其面积为 (四)通径:如图:通径长 |MN | 也 a 2 S PFF b tan —。 12 2 2 y_ b 2 (五)点与椭圆的位置关系: 2 X ?椭圆标准方程:二 a (a b 0), (1 )点P(x o , y o )在椭圆外 2 X o 2 a 2 y 。 b 2 x 1 ; (2)点 a (3)点P(x o , y o )在椭圆内 (六)直线与椭圆的位置关系 2 X o 2 a y b 2 2 £ 1 (a > b > 0),联立组成方程 b 2 2 ?设直线I 的方程为:Ax+By+C=0,椭圆% a 组,消去y(或x)利用判别式△的符号来确定: (1)相交: 0 直线与椭圆相交;(2)相切: 0 直线与椭圆相切;

阶线性微分方程解的结构

阶线性微分方程解的结 构 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方 程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++= () 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(),则称其为常微分方程()在 I 上的一个解。,()f x 称为方程()的自由项,当自由项()0f x ≡时方程()称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. () 当()0f x ≡,方程退化为 '()0y p x y +=, ()

假设()y x 不恒等于零,则上式等价于 而()'ln 'y y y =,从而()的通解为 ()d ()p x x y x Ce -?= ( ) 对于非齐次一阶线性常微分方程(),在其两端同乘以函数()d p x x e ? 注意到上面等式的左端 因此有 两端积分 其中C 是任意常数。进一步有 综上有如下结论 定理 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程()的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --???=+?‘ () 其中C 是任意常数。 观察()式和()式,我们发现一阶线性非齐次常微分方程()的解等于一阶线性齐次常微分方程()的通解()d p x x Ce -?加上函数 ()d ()d *()()d p x x p x x y x e e f x x -??=? 。容易验证,*()y x 是方程()的一个特解。这符合线性方程解的结构规律。 例1 求解一阶常微分方程

常系数线性微分方程的解的结构分析

常系数线性微分方程的解的结构分析 【 摘要】在参考和总结了许多场系数线性微分方程的解法的基础上,本文总结了一些常系数微分方程的解的解法,并针对一类常系数线性微分方程的已有结论给予证明,以解给予一些结论证明思路,以及一些实例,并向高阶推广。 【关键词 】常系数 线性 微分方程 结构 一阶常系数齐次线性微分方程 0=+ax dt dx , (1.1) 的求解 上式可以改写为 adt x dx -= , (1.2) 于是变量x 和t 被分离,再将两边积分得 c at x +-=ln , (1.3) 这里的c 为常数。又由对数的定义,上式可以变为 at ce x -= , (1.4) 其中c= , 因为x=0也是方程的解,因此c 可以是任意常数。 这里首先是将变量分离,然后再两边积分,从而求出方程的解。这便要方程式可以分离变量的,也就是变量分离方程。 一阶常系数微分方程 )()(x Q y x P dx dy += , (2.1) 其中P (x ),Q(x)在考虑的区间上式连续函数,若Q (x )=0 ,上式就变为 y x P dx dy )(= , (2.2) 上式为一阶齐次线性微分方程。还是变量分离方程我们可以参考上面变量分离方程的解法,先进行变量分离得到 dx x P y dy )(= , (2.3) 两边同时积分,得到 ? =dx x p ce y )( , (2.4) 这里c 是常数。 若Q (x )≠ 0 , 那么上式就变成了 一阶非齐次线性微分方程。 我们知道一阶齐次线性微分方程是一阶常微分方程的一种特殊情况,那么可以设想将一阶

齐次线性微分方程的解 ? =dx x p ce y )( , (2.5) 中的常数c 变易成为待定的函数c (x ),令 ?=dx x p e x c y )()( , (2.6) 微分之,就可以得到 ?+?=dx x p dx x p e x P x c e dx x dc dx dy )()()()()( , (2.7) 以(2.7),(2.6)代入2.1,得到 )()()()()()()()()(x Q e x c x p e x P x c e dx x dc dx x p dx x p dx x p +?=?+?,(2.8) 即 ?=-dx x p e x Q dx x dc )()() (, 积分后得到 c (x )=c dx e x Q dx x p +?? -)()( , (2.9) 这里c 是任意常数,将上式代入(2.6)得到方程(2.1)的通解 ))(()()(c dx e x Q e y dx x p dx x p +? ? =?- (2.91) 在上面的一阶线性微分方程中,是将一阶齐次线性微分方程中的通解中的常数c 变成c(x) ,常数变易法一阶非齐次线性微分方程的解, 感觉这个方法之所以用x 的未知函数u(x)替换任意常数C,是因为C 是任意的,C 与x 形成函数关系,要确定C,需要由初始条件确定,一个x,确定一个C,也就形成一对一或多对多的映射,也就是函数关系,而这里的C 是任意的,也就可以用一个未知的,也就是任意的函数u(x)来代替,进而求得非齐次线性微分方程的解。这种将常数变异为待定函数的方法,我们通常称为常数变易法。常数变易法实质也是一种变量变换的方法,通过变换(2.6可将方程(2.1)化为变量分离方程。 二阶常系数线性微分方程 (1)二阶常系数线性齐次方程 022=++qy dx dy p dx y d (3.1) 其中p 、q 是常数,我们知道,要求方程(3.1)的通解,只要求出其任意两个线性无关的特 解y 1,y 2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(3.1)可能具有什么形式的特解,从方程的形式上来看,它的特点是22dx y d ,

线性微分方程

第4章 线性微分方程 1.了解n 阶线性微分方程的概念,知道n 阶线性微分方程与一阶线性微分方程组的关系,了解n 阶线性微分方程解的存在唯一性定理. (1)在n 阶线性微分方程 y (n ) + p 1(x )y (n -1) + … + p n -1(x )y ′+ p n (x )y = f (x ) (4.5) 中,令y ′= y 1,y ″= y 2,…,y (n -1) = y n -1,(4.5)式就可以化成一阶方程组 ? ?????? ??? ???+----====-----)()()()(d d d d d d d d 11111 122 11x f y x p y x p y x p x y y x y y x y y x y n n n n n n (4.7) (4.7)可以写成向量形式 )()(d d x x x F A Y += (4.8) (2)n 阶线性微分方程与一阶线性微分方程组的关系: 方程(4.5)与方程组(4.7)是等价的,即若y=φ(x )是方程(4.5)在区间I 上的解,则y=φ(x ),y 1=φ′(x ),…,y n-1 = φ(n -1)(x )是方程组(4.7)在区间I 上的解;反之,若y=φ(x ),y 1=φ1(x ),…,y n-1=φn-1(x )是方程组(4.7)在区间I 上的解,则y=φ(x )是方程(4.5)在区间I 上的解. (3)n 阶线性微分方程解的存在唯一性定理: 条件:方程y x p y x p y n n n '+++--)()(1) 1(1) ( )()(x f y x p n =+的系数)(x p k (k= 1,2,…,n )及其右端函数f (x )在区间I 上有定义且连续; 结论:对于I 上的任一0x 及任意给定的) 1(000,,,-'n y y y ,方程的满足初始条件 00)(y x y =的解在I 上存在且唯一. 2.理解n 阶线性齐次微分方程解的结构和通解基本定理,了解n 阶线性齐次微分方程的基本解组,掌握刘维尔公式. (1)朗斯基(Wronski)行列式定义: 设函数组φ1(x ),φ2(x ),…,φn (x ) 中每一个函数φk (x )(k =1,2,…,n )均有n -1阶导数,我们称行列式 ) ()() ()(')(')(')()() ()() 1() 1(2 ) 1(1 2121x x x x x x x x x x W n n n n n n ---= ????????? 为已知函数组的朗斯基(Wronski)行列式. (2)n 阶齐次方程的解的线性无关性判别定理: 齐次方程0)()()(1) 1(1) (=+'+++--y x p y x p y x p y n n n n 的n 个解 )(1x ?,)(2x ?,…,)(x n ? 在其定义区间I 上线性无关(相关)的充要条件是在I 上存在点x 0,使得它们的朗斯基行列

相关文档
相关文档 最新文档