文档库 最新最全的文档下载
当前位置:文档库 › 抽水站水泵汽蚀原因及技术改造论文

抽水站水泵汽蚀原因及技术改造论文

抽水站水泵汽蚀原因及技术改造论文
抽水站水泵汽蚀原因及技术改造论文

抽水站水泵汽蚀原因及技术改造论文

【摘要】水泵的质量及顺畅运行是保证抽水机工作效率的核心问题。在发生水泵的汽蚀现象后,可运用现今先进科学技术对水泵汽蚀现象的原因进行检测,如,超声波法、噪声法等。对抽水机水泵进行技术改造,通过改换叶片的质量及材质,在入流口加设导流墙等方式能够有效减轻抽水机水泵的汽蚀现象,延长机组的寿命,减轻管理上的负担,提高水泵的工作效率,从而提高抽水机的经济效益,具有参考价值。

水泵是一种增加液体或气体的压力,使之输送流动的机械,是一种用来移动液体、气体或特殊流体介质的装置,其功能与人类和动物的心脏类似,负责将水输送到各个部分。

一、水泵的汽蚀现象产生的原理分析

水泵的汽蚀是由水的汽化引起的,水的汽化过程实质就是一个由液态转化为气态的过程。温度、压力与水的汽化关系密切,水的汽化产生的条件需要一定的压力及达到一定数值的温度,若温度在一定的范围内,压力降低到一定的数值,也会产生水汽现象。若在流动过程中,某一局部地区的压力等同于或低于与水温相对应的汽化压力时,水就会在该处发生汽化。汽化发生后,形成的许多气体与蒸汽混合的小汽泡就会随同水流从低压区流向高压区,然后在高压的作用下发生破裂,高压水以极其快的速度流向这些原汽泡占有的空间,形成一个冲击力。金属表面在水击压力与空气中的氧气的共同作用下,发生氧化,在其表面形成氧化膜,产生严重破坏,而后这层氧化膜又在同样

汽蚀的成因及危害

汽蚀的成因及危害 液体在一定温度下,降低压力,当压力达到该温度下的汽化压力时,液体便产生汽泡而汽化。这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,在其过流部分的局部区域,通常是叶轮叶片进口稍后的区域,因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力,液体便在该处开始汽化,产生大量蒸汽,形成气泡。 当含有大量气泡的液体向前流动,经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在这个及其短暂的瞬间,液滴质点将产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒数万次,严重时会将壁板击穿。 在水泵中产生气泡和气泡破裂,过流部件遭受到损坏乃至破坏的过程称之为水泵的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,同时导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 降低汽蚀现象的措施 一、增大装置的汽蚀余量 准确计算离心泵的安装高度选择合适的安装位置增大泵前贮液罐中液面的压力,降低被输送液体的温度以降低,的值减小吸入管路的阻力增加吸入管直径缩短吸入长度减少弯管阀门选用吸入良好的喇叭管,将调节阀安装在排出管线上在满足生产需要的前提下降低叶轮的转速,可适当降低离心泵工作时的流量,也可起到增大装置汽蚀余量的目的。将吸上装置改为倒灌装置。 二、1)提高泵本身的抗汽蚀性能 改进泵本身结构或结构形式使泵具有尽,可能小的允许汽蚀余量,改进泵的入口至叶轮附近的结构设计增大,过流面积,增大叶轮盖板进口段的曲率半

水泵七大常见故障及解决方法

水泵七大常见故障及解决方法 水泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。 教您如何解决水泵故障。 1、无法启动 首先应检查电源供电情况:接头连接是否牢靠;开关接触是否紧密;保险丝是否熔断;三相供电的是否缺相等。如有断路、接触不良、保险丝熔断、缺相,应查明原因并及时进行修复。其次检查是否是自身的机械故障,常见的原因有:填料太紧或叶轮与泵体之间被杂物卡住而堵塞;泵轴、轴承、减漏环锈住;泵轴严重弯曲等。排除方法:放松填料,疏通引水槽;拆开泵体清除杂物、除锈;拆下泵轴校正或更换新的泵轴。 2、水泵发热 原因:损坏;滚动轴承或托架盖间隙过小;泵轴弯曲或两轴不同心;胶带太紧;缺油或油质不好;叶轮上的平衡孔堵塞,叶轮失去平衡,增大了向一边的推力。排除方法:更换轴承;拆除后盖,在托架与轴承座之间加装垫片;调查泵轴或调整两轴的同心度;适当调松胶带紧度;加注干净的黄油,黄油占轴承内空隙的60%左右;清除平衡孔内的堵塞物。 3、流量不足 这是因为:动力转速不配套或皮带打滑,使转速偏低;轴流泵叶片安装角太小;扬程不足,管路太长或管路有直角弯;吸程偏高;底阀、管路及叶轮局部堵塞或叶轮缺损;出水管漏水严重。排除方法:恢复额定转速,清除皮带油垢,调整好皮带紧度;调好叶片角,降低水泵安装位置,缩短管路或改变管路的弯曲度;密封水泵漏气处,压紧填料;清除堵塞物,更换叶轮;更换减漏环,堵塞漏水处。 4、吸不上水 原因是泵体内有空气或进水管积气,或是底阀关闭不严灌引水不满、真空泵填料严重漏气,闸阀或拍门关闭不严。排除方法:先把水压上来,再将泵体注满水,然后开机。同时检查逆止阀是否严密,管路、接头有无漏气现象,如发现漏气,拆卸后在接头处涂上润滑油或调合漆,并拧紧。检查水泵轴的油封环,如磨损严重应更换新件。管路漏水或漏气。可能安装时螺帽拧得不紧。若渗漏不严重,可在漏气或漏水的地方涂抹水泥,或涂用沥青油拌和的水泥浆。临时性的修理可涂些湿泥或软肥皂。若在接头处漏水,则可用扳手拧紧螺帽,如漏水严重则必须重新拆装,更换有裂纹的管子;降低扬程,将水泵的管口压入水下。 5、剧烈震动

防止水泵汽蚀方法措施

防止水泵汽蚀方法措施 一水泵的类型原理 一、水泵的定义:通常把提升液体、输送液体或使液体增加压力, 即把原动机的机械能变为液体能量从而达到抽送液体目的的机器统称为泵。 二、水泵的工作原理: 1 容积式泵_ 利用工作腔容积周期变化来输送液体。 2 、叶片泵_ 利用叶片和液体相互作用来输送液体。 三、水泵的具体用途:水泵的不同用途、不同的输送液体介质、不同 流量、扬程的范围,泵的结构型式当然也不一样,材料也不同,概括起来,大致可以分为: 1 、城市供水 2 、污水系统 3 、土木、建筑系统 4 、农业水利系统 5 、电站系统 6 、化工系统 7 、石油工业系统 8 、矿山冶金系统 9 、轻工业系统10 、船舶系统 二汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力

上升气泡消失在液体中的现象称为汽蚀溃灭。 水泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 三水泵汽蚀基本关系式 水泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从水泵本身和吸入装置双方来考虑,水泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHrNPSHc——水泵开始汽蚀 NPSHa NPSHa>NPSHrNPSHc——水泵无汽蚀

离心泵产生气蚀现象的原因及防止措施

离心泵因其操作简易、运行平稳、性价比高及便于维修护理而受到多数使用客户的喜爱并广泛应用于工业领域和日常生活。但凡是机械设备,在经过长时间的持续工作状态下,难免会出现设备的损坏和故障问题,离心泵的气蚀现象就是离心泵的常见故障之一。泵一旦发生汽蚀,其流量和扬程性能不仅会下降,还会表现出噪声、振动明显偏高,严重时甚至会使泵中液流中断,不能正常工作。汽蚀还会对泵的过流部件产生破坏,甚至影响管路系统。产生气蚀现象的原因有很多,例如离心泵产品质量有问题,操作人员的使用不当等。产品在出厂前会经过多道程序的质量检测,所以人为因素的影响比例更大。在工作状态下,离心泵的工作环境及操作因素的影响,占到离心泵发生气蚀现象比例的绝大部分。下面深圳恒才具体为大家介绍下气蚀产生的原因。 气蚀原因: 离心泵在工作的时候,离心泵输送的液体压力,会随着泵内液体从入口到叶轮入口下降而下降。当叶片入口附近的液体压力达到最低的时候,叶轮开始对液体做功,液体压力开始上升。当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就会发生汽化的现象。同时溶解在液体内的气体也逸出,它们形成气泡。当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力突然增加。这样,不仅阻碍了离心泵输送的液体正常流动。而且当这些气泡在叶轮壁面附近破裂的时候,则液体就会连续不断地撞击离心泵的内壁表面。长期的撞击之下就会造成离心泵内壁的结构损坏和剥落。如果气泡内掺杂着一些化学气体例如氧气,这些气体就会借助气泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。像这种液体汽化、凝结、冲击、形成高压、高温、高频冲击

离心泵大流量工况汽蚀现象分析及运行优化

离心泵大流量工况汽蚀现象分析及运行优化 发表时间:2018-05-28T09:47:19.547Z 来源:《电力设备》2018年第1期作者:赵英淳毛伟峰刘攀 [导读] 摘要:本文针对大型离心泵大流量工况下出现的汽蚀现象,基于离心泵汽蚀机理,分析了两个典型案例中离心泵发生汽蚀的原因,提出了采用改变离心泵的运行方式、改变泵出口管道阻力特性以及优化泵的再循环调阀的热工控制逻辑等三个方面的措施,解决了工程实际问题,为有效避免和预防大型离心泵大流量工况下汽蚀现象的发生,实现泵的安全稳定运行,提供参考。 (中国能源建设集团西北电力试验研究院有限公司西安 710032) 摘要:本文针对大型离心泵大流量工况下出现的汽蚀现象,基于离心泵汽蚀机理,分析了两个典型案例中离心泵发生汽蚀的原因,提出了采用改变离心泵的运行方式、改变泵出口管道阻力特性以及优化泵的再循环调阀的热工控制逻辑等三个方面的措施,解决了工程实际问题,为有效避免和预防大型离心泵大流量工况下汽蚀现象的发生,实现泵的安全稳定运行,提供参考。 关键词:离心泵;汽蚀;运行方式及控制逻辑优化 1. 概述 大型发电厂的凝结水泵及锅炉给水泵均采用多级离心泵。在电厂启动至带满负荷过程中,凝结水泵和给水泵流量变化范围大,机组通常设计两台甚至多台离心泵并联运行,以满足不同负荷、不同流量的运行要求。当离心泵在大流量工况下运行时,易出现汽蚀现象,损害设备的同时,严重危害机组运行安全,导致机组停炉停机[1]~[3]。 本文在对离心泵大流量工况下汽蚀机理分析基础上,结合两个典型案例,提出了相应工况下的几点运行优化建议。 2. 离心式水泵大流量工况汽蚀机理分析 离心水泵在运转过程中,当其通流部分液体的绝对压力下降到小于或等于当时温度下的汽化压力时,液体就会汽化,大量蒸汽及溶解在液体中的气体逸出,形成气泡。当气泡随液体从低压区移动到高压区时,气泡在高压作用下迅速凝结而破裂,其所占有的空间就会形成具有高真空的空穴,附近的液体在高压差的作用下以极高的速度流向形成的空穴,形成冲击力。由于气泡中的蒸汽和气体来不及在瞬间全部凝结和溶解,因此,在冲击力作用下又分成小气泡,如此反复。当上述过程在叶轮或叶片等流通部件表面发生,将对金属材料产生机械剥蚀。同时,气泡中逸出的氧气等活性气体也会对金属材料产生化学腐蚀。汽蚀过程发生后将会严重影响设备运行状态,缩短泵的使用寿命,甚至由于附带产生的振动等问题引起设备或人身安全问题[4]。 离心泵内最易发生汽蚀的部位为其通流部分的压力最低点,位于叶片进口端偏后的某一界面k处。当k点绝对压强pk小于或等于汽化压强pv时,即发生汽蚀。根据汽蚀基本方程式: (1) 式中:p1和c1分别为流体在泵入口界面处压强和速度;c0为流体在叶片进口边前的绝对速度;m为考虑流体在泵入口截面到临界截面间水力损失和液体绝对速度的不均匀性后引入的压降系数;ω0为流体在叶片进口处的相对速度;λ为流体绕流叶片端部所产生的压降系数。 引入有效汽蚀余量NPSHa和必需汽蚀余量NPSHr两个量。NPSHa表示液体到达泵进口处的能量扣除汽化压头所富裕的能量: (2) 当液体温度、吸入液面压强和泵的安装高度均保持不变情况下,由于吸入管路的流动损失与流量的平方成正比,所以NPSHa随液体流量变化为一条下降的抛物线。 NPSHr表示液体进入泵后压头下降程度: (3) 由于c0和ω0均与流量的增大而增大,所以NPSHr随流量的变化程一条上升的曲线。 NPSHa的曲线和NPSHr的曲线相交于临界流量点Qk,当泵内流量大于Qk时,NPSHa<NPSHr,即有效汽蚀余量提供的富裕能量不足以克服泵体进口液体的压头降时,泵将发生汽蚀[5]。 由离心泵汽蚀机理可知,控制泵入口流量是避免汽蚀的关键,实际工程中可从改变泵的运行曲线或泵出口管路的阻力特性入手,改变泵的工作点,使离心泵工作在小于临界流量Qk的稳定区域,避免和预防汽蚀。 3. 案例分析 3.1 机组锅炉跳闸后凝结水泵汽蚀案例分析及运行优化建议 3.1.1 案例过程 某300MW机组采用的是上海凯士比泵有限公司生产的型号为“NLT350-400x5”的凝结水泵,水泵额定参数:流量为907.3m3/h,扬程250m,转速1480rpm,NPSHr≤3.2m,轴功率756.4kW。 2015年12月20日,锅炉跳闸后的机组恢复过程中,出现了凝结水泵B出力不正常的现象,具体过程如下: 15:45:18,机组在高负荷运行过程中锅炉跳闸,此时凝泵B稳定运行,电流83.2A,泵出口母管压力2.22MPa,凝结水流量859t/h,除氧器上水调阀开度74.3%,凝泵再循环开度11.5%且处于自动控制状态; 15:49:27,由于给水流量迅速下降,除氧器上水调阀快速关至18.4%,凝泵B电流降至48.9A,泵出口母管压力升至2.84MPa,凝结水流量降至121t/h,凝泵再循环调阀超弛开至98.1%,该调阀切至手动控制; 15:50:32,手动打开除氧器上水调门至81.0%,凝泵B电流81.1A,出口母管压力1.29MPa,凝结水流量855t/h,再循环调阀开度98.1%; 15:51:22,除氧器上水调阀再度关小至4.1%,凝泵B电流74.9A,出口母管压力2.48MPa,凝结水流量677t/h,再循环调阀开度98.2%;该工况运行约7min,15:56:07,除氧器上水调阀再度关小至2.2%,凝泵B电流85.3A,出口母管压力2.17MPa,凝结水流量

水泵的汽蚀

第五章水泵的汽蚀 主要内容 (一)水泵汽蚀的产生和危害 (二)水泵安装与产生汽蚀的关系 (三)水泵的汽蚀余量 (四)相似原理在汽蚀性能研究中的应用 (五)水泵抗汽蚀性能的改进 (一)水泵汽蚀的产生和危害 1、水泵汽蚀的产生过程 当水泵流道中的液体流动到某处的压力等于或低于相应的汽化压力P v时,液体会发生汽化产生大量汽泡,当汽泡流动到高压区,在高压作用下迅速凝结而破裂,对流道表面材料形成极大的、反复的冲击,造成疲劳侵蚀或剥蚀,即为水泵汽蚀的产生过程。 2水泵汽蚀的危害 ①噪声和振动 水泵发生汽蚀过程中,从水泵吸入口(低压区域)到出水口(高压区域),大量的汽泡将不断地产生、发展、凝结、破裂所带来的反复不断高速的冲击和极大的脉动力,会伴随着会引起严重的噪声和剧烈的振动。 ②对水泵材料产生破坏 由于大量汽泡不断地产生、破裂带来高速冲击,形成极大脉动冲击力,反复不断作用在水泵流道表面,所谓“滴水穿石”,金属材料常常由于经受不起这种严峻考验而产生破坏或失效(P94图4-2)③水力性能大幅下降(P94图4-3) 水泵发生汽蚀时由于大量汽泡堵塞流道的过流截面而使流量下降(流道越小越严重),同时改变了水流速度和方向,降低了流体从叶轮叶片所获能量,大大减小了水泵的扬程 (二) 水泵安装与产生汽蚀的关系 水泵是否产生汽蚀与水泵安装高度直接相关,如图中所示H g越大,泵入口S-S截面上的压力就会越低,则越容易发生汽蚀。显然,H g不可能任意增大,一般应有个限定值,但作为用户又应该如何来确定H g呢? 首先,以水面为基准列水面e–e至泵的进口s–s的“伯方”: e ≈0,得: 上式称为几何安装高度理论计算式,当右端第一项P e为大气压时,用户可知一般应Hg <10m,但还必须确定出其他变量,才能具体求解Hg,其中: V s──水泵进口流速,可由运行工况点的流量确定。 h w──吸入管道的流动损失,由用户管路设计所确定。 P s──水泵进口压力,与不同流量工况下的水泵自身的特性相关,用户难以确定。因此, h H V p V p w g s s e e g g g g + + + = + 2 2 2 2 ρ ρ

离心泵汽蚀原因及预防措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.离心泵汽蚀原因及预防措 施正式版

离心泵汽蚀原因及预防措施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 汽蚀主要危害 (1)造成材料破坏。汽蚀发生时,由于机械剥蚀于化学腐蚀的共同作用,使材料受到破坏。由于汽蚀现象的复杂性,所以其形成机理直到现在仍在研究探讨中。一般认为水力冲击引起的机械剥蚀,首先使材料破坏,而且是造成材料破坏的主要因素。 (2)产生噪声和振动。汽蚀发生时汽泡的破裂和高速冲击会引起严重的噪声。另外,汽蚀过程本身是一种反复凝结、冲击的过程,伴随很大的脉动力。如果这些

脉动力的频率与设备的自然频率接近,就会引起强烈的振动。如果汽蚀造成泵转动部件材料破坏,必然影响转子的静平衡及动平衡,导致严重的机械振动。 (3)使离心泵的性能下降。泵汽蚀时,会使其性能下降。泵内气泡较少时,泵的性能曲线并无明显的变化,这是汽蚀的初生阶段。 气泡大量产生时,流道被“堵塞”,这时汽蚀已到了发达阶段。表现在泵的性能曲线上,出现明显的变化,性能曲线发生显著下降,出现了“断裂”工况。但是不同的比转速泵,其汽蚀性能曲线下降的情况是不同的。 防止离心泵汽蚀的9 大措施

离心泵的汽蚀现象介绍

离心泵的汽蚀现象介绍 (一)、离心泵的汽蚀现象 离心泵的汽蚀现象是指被输送液体由于在输送温度下饱和蒸汽压等于或低于泵入口处(实际为叶片入口处的)的压力而部分汽化,引起泵产生噪音和震动,严重时,泵的流量、压头及效率的显著下降,显然,汽蚀现象是离心泵正常操作所不允许发生的。避免汽蚀现象发生的关键是泵的安装高度要正确,尤其是当输送温度较高的易挥发性液体时,更要注意。 (二)、离心泵的安装高度Hg 1允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度 而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。 (1) 输送清水,但操作条件与实验条件不同,可依下式换算 Hs1=Hs+(Ha-10.33) - (Hυ-0.24) (2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H?s 2 汽蚀余量Δh 对于油泵,计算安装高度时用汽蚀余量Δh来计算,即 用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。若输送其它液体,亦需进行校正,详查有关书籍。 从安全角度考虑,泵的实际安装高度值应小于计算值。又,当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。 例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。试计算: (1) 输送20℃清水时泵的安装; (2) 改为输送80℃水时泵的安装高度。

泵的汽蚀现象分析及防止汽蚀措施

泵的汽蚀现象分析及防止汽蚀措施 一、汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)——泵开始汽蚀 NPSHa NPSHa>NPSHr(NPSHc)——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; [NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg 四、防止发生汽蚀的措施 欲防止发生汽蚀必须提高NPSHa,使NPSHa>NPSHr可防止发生汽蚀的措施如下: 1.减小几何吸上高度hg(或增加几何倒灌高度); 2.减小吸入损失hc,为此可以设法增加管径,尽量减小管路长度,弯头和附件等; 3.防止长时间在大流量下运行; 4.在同样转速和流量下,采用双吸泵,因减小进口流速、泵不易发生汽蚀; 5.泵发生汽蚀时,应把流量调小或降速运行; 6.泵吸水池的情况对泵汽蚀有重要影响; 7.对于在苛刻条件下运行的泵,为避免汽蚀破坏,可使用耐汽蚀材料

水泵七大常见故障及解决方法

水泵七大常见故障及解决方法 /Detail_289475_102102_%E4%BA%94%E9%87%91%E5%B8%B8%E8%AF%86.shtml 水泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。 教您如何解决水泵故障。 1、无法启动 首先应检查电源供电情况:接头连接是否牢靠;开关接触是否紧密;保险丝是否熔断;三相供电的是否缺相等。如有断路、接触不良、保险丝熔断、缺相,应查明原因并及时进行修复。其次检查是否是水泵自身的机械故障,常见的原因有:填料太紧或叶轮与泵体之间被杂物卡住而堵塞;泵轴、轴承、减漏环锈住;泵轴严重弯曲等。排除方法:放松填料,疏通引水槽;拆开泵体清除杂物、除锈;拆下泵轴校正或更换新的泵轴。 2、水泵发热 原因:轴承损坏;滚动轴承或托架盖间隙过小;泵轴弯曲或两轴不同心;胶带太紧;缺油或油质不好;叶轮上的平衡孔堵塞,叶轮失去平衡,增大了向一边的推力。排除方法:更换轴承;拆除后盖,在托架与轴承座之间加装垫片;调查泵轴或调整两轴的同心度;适当调松胶带紧度;加注干净的黄油,黄油占轴承内空隙的60%左右;清除平衡孔内的堵塞物。 3、流量不足 这是因为:动力转速不配套或皮带打滑,使转速偏低;轴流泵叶片安装角太小;扬程不足,管路太长或管路有直角弯;吸程偏高;底阀、管路及叶轮局部堵塞或叶轮缺损;出水管漏水严重。排除方法:恢复额定转速,清除皮带油垢,调整好皮带紧度;调好叶片角,降低水泵安装位置,缩短管路或改变管路的弯曲度;密封水泵漏气处,压紧填料;清除堵塞物,更换叶轮;更换减漏环,堵塞漏水处。 4、吸不上水 原因是泵体内有空气或进水管积气,或是底阀关闭不严灌引水不满、真空泵填料严重漏气,闸阀或拍门关闭不严。排除方法:先把水压上来,再将泵体注满水,然后开机。同时检查逆止阀是否严密,管路、接头有无漏气现象,如发现漏气,拆卸后在接头处涂上润滑油或调合漆,并拧紧螺丝。检查水泵轴的油封环,如磨损严重应更换新件。管路漏水或漏气。可能安装时螺帽拧得不紧。若渗漏不严重,可在漏气或漏水的地方涂抹水泥,或涂用沥青油拌和的水泥浆。临时性的修理可涂些湿泥或软肥皂。若在接头处漏水,则可用扳手拧紧螺帽,如漏水严重则必须重新拆装,更换有裂纹的管子;降低扬程,将水泵的管口压入水下0.5m。 5、剧烈震动 主要有以下几个原因:电动转子不平衡;联轴器结合不良;轴承磨损弯曲;转动部分的

水泵汽蚀与安装高程确定

第四章 水泵的汽蚀与安装高程确定 本章重点:通过本章的学习,要求学员熟练掌握汽蚀的定义和分类及防治措施、用允许吸上真空高度和允许汽蚀余量计算水泵的安装高度等。掌握汽蚀的作用方式及危害等。了解汽蚀性能参数、汽蚀基本方程和汽蚀相似率及汽蚀比转数等。 第一节 水泵的汽蚀及其防治措施 有关叶片泵性能的阐述,都以吸水条件符合要求为前提,吸水性能是确定水泵安装高程和进水建筑物设计的依据,而汽蚀是影响水泵安装高程的重要因素。 叶片泵安装高程的确定,是泵站设计中的一个重要内容。水泵的安装高程是确定泵房各部位高程的基准高程。水泵安装得过低会增大泵房土建投资和施工的难度;过高又会引起水泵工作流量和效率的大幅度降低,甚至不能工作。如何结合水泵汽蚀问题,合理地处理水源水位变幅和水泵吸水性能之间的关系是泵站设计中的重要课题。在泵站运行中,也有很多问题出自于水泵的吸水性能。因此,对于叶片泵吸水性能,必须予以高度重视。 一、定义 由于某种原因,使水力机械低压侧的局部压强降低到水流在该温度下的汽化压强(饱和蒸汽压强)以下,引起汽泡(汽穴)的发生、发展及其溃灭,造成过流部件损坏的全过程,就叫做汽蚀。 二、作用方式 (一)机械剥蚀 在产生汽蚀过程中,由于水流中含有大量汽泡,破坏了水流的正常流动规律,改变了水泵内的过流面积和流动方向,因而叶轮与水流之间能量交换的稳定性遭到破坏,能量损失增加,从而引起水泵的流量和效率的迅速下降,甚至达到断流状态。这种工作性能的变化,对于不同比 转数的水泵有着不同的影响。低比转数离心泵叶槽狭长,宽度较小,当汽蚀开始后,汽泡区从叶槽进口部位迅速扩展到叶槽的整个宽度,引起水流断裂,水泵性能曲线呈急剧下降的形状,如图4—1—1 (c )所示。对于中、高比转数的离心泵和混流泵,由于叶轮槽道较宽,当脱流产生时,先在叶槽的某一部分,而不是叶槽的全部截面,只有在脱流区继续发展时,才会布满全部叶槽,在出现断裂状况之前,其性能曲线首先比较缓慢地下降,最后才迅速直线下降,如图4—1—1 (b )所示。对高比转数轴流泵,由于叶片之间相当宽阔,故汽蚀开始后汽蚀区不易扩展到整个叶槽,因此性能曲线下降缓慢,以至无明显的断裂点,如图4—1—1 (c )所示。 当离析出的汽泡被水流带到高压区后,由于汽泡周围的水流压强增高,故汽泡四周的水流质点高速地向汽泡中心冲击,水流质点互相撞击,产生强烈的冲击。根据观察资料表明,其产生的冲击频率(3000~4000Z H ) ,并集中作用在微小的金属表面上,瞬时局部压强急剧增加 图4—1—1 叶片泵受汽蚀影响性能曲线下降的形式图 (a )离心泵 (b )混流泵 (c )轴流泵

如何防止泵发生汽蚀现象

如何防止泵发生汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)——泵开始汽蚀 NPSHaNPSHa>NPSHr(NPSHc)——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好; NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; [NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg 四、防止发生汽蚀的措施

离心泵气蚀的主要原因分析

离心泵气蚀的主要原因分析 影响离心泵气蚀的因素是设计与使用离心泵所必须考虑的问题,近年来国内外对其进行了大量的研究。但由于研究的侧重点不同,且大多都是针对影响离心泵气蚀的某一参数进行的研究,造成研究成果较为分散,且部分观点之间相互矛盾。本文综合国内外大量文献,对离心泵气蚀影响因素的相关研究结果进行比较、分析,得出目前较为全面的影响离心泵气蚀的主要因素。 1.流体物理特性方面的影响 流体物理特性对离心泵气蚀的影响主要包括:所输送流体的纯净度、pH值和电解质浓度、溶解气体量、温度、运动黏度、汽化压力及热力学性质。 (1)纯净度(所含固体颗粒物浓度)的影响流体中所含固体杂质越多,将导致气蚀核子的数量增多。从而加速气蚀的发生与发展。 (2)pH值和电解质浓度的影响输送极性介质的离心泵(如一般的水泵)与输送非极性介质的离心泵(输送苯、烷烃等有机物的泵),其气蚀机理是不同的。输送极性介质的离心泵的气蚀损伤可能包括机械作用、化学腐蚀(与流体PH值有关)、电化学腐蚀(与流体电解质浓度有关);而输送非极性介质的离心泵的气蚀损伤可能只有机械作用。 (3)气体溶解度的影响国外研究表明流体内溶解的气体含量对气蚀核子的产生与发展起到促进作用。 (4)气化压力的影响研究表明随着气化压力的增高,气蚀损伤先升高后降低。因为随着气化压力的升高,流体内形成的不稳定气泡核的数量也不断升高,从而引起气泡破裂数量的增多,冲击波强度增大,气蚀率上升。但如果气化压力继续增大,使气泡数增加到一定限度,气泡群形成一种“层间隔”的作用,阻止了冲击波行进,削弱其强度,气蚀的破坏程度反而会逐渐降低。 (5)温度的影响在流体中温度的改变将导致气化压力、气体溶解度、表面张力等其他影响气蚀的物理性质出现较大改变。由此可见,温度对气蚀的影响机制较为复杂,需结合实际情况进行判断。 (6)表面张力的影响当其他因素保持不变,降低流体表面张力可以减少气蚀损伤。因为随着流体表面张力的减小,气泡溃灭所产生冲击波的强度减弱,气蚀速率降低。 (7)液体黏度的影响流体黏度越大,流速越低,达到高压区的气泡数越少,气泡破灭所产生冲击波的强度就减小。同时,流体黏度越大,对冲击波削弱也越大。因此,流体的黏度越低,气蚀损伤越严重。 (8)液体的可压缩性和密度的影响随着流体密度的增加,可压缩性降低,气蚀损失增加。 2.过流部件材质特性方面的影响 由于泵的气蚀损伤主要体现为对过流部件材质的损坏。因此,过流部件的材料性能也将在一定程度上对离心泵的气蚀产生影响,采用抗气蚀性能良好的材料制造

离心泵汽蚀概念和泵内汽蚀的过程

离心泵汽蚀概念和泵内汽蚀的过程 离心泵在设计中就有汽蚀这一说,在运行中也无所避免的会产生汽蚀,我只能做到尽量的降低汽蚀,下面简述一下汽蚀的概念和泵内汽蚀的过程:1893年,人们首次发现汽蚀现象之后,对水泵、水轮机等水力机械的汽蚀问题进行了大量研究。随着机器越来越向高速运转方向发展,汽蚀一直是水力机械中很重要的问题。 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生气泡。把这种产生气泡的现象称为汽蚀。泵在运转中,若过流部分的局部区域(通常是叶轮叶片进口稍后的某处),因为某种原因,抽送液体的绝对压力下降到当时温度下的汽化压力时,液体便在该处开始汽化,产生蒸汽、形成气泡。 气泡向前流动,在某高压处破裂、凝结的同时,液体质点填充空穴并发生互相撞击而形成水击,使过流部件固壁受到腐蚀破坏。此过程便称为泵内的汽蚀过程。汽蚀时产生的气泡,流动到高压处时,其体积减小以至破灭,这种由于压力上升气泡消失在液体中的现象叫汽蚀的溃灭。 常识:100℃下水的汽化压力为1.033kgf/cm2(10.33m水头);20℃下水的汽化压力为0.024 kgf/cm2(0.24m水头)。 泵内汽蚀的过程 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处),因为某种原因,抽送液体的绝对压力下降到当时温度下的汽化压力时,液体便在该处开始汽化,形成气泡。温度越高,产生的汽蚀也就是越大,因为热水会蒸发为水汽,进而产生气泡。

这些气泡随液体向前流动,至某高压处时,气泡周围的高压液体致使气泡急骤地缩小以至破裂。在气泡破裂的同时,液体质点将以高速填充空穴,发生互相撞击而形成水击。这种现象发生在固体壁上将使过流部件受到汽蚀破坏。

如何解决水泵的气蚀现象

毕业论文 课程名称如何解决水泵的气蚀现象 学生姓名X X X 年级X X 专业X X X X 指导教师X X X

如何解决水泵的气蚀现象 摘要:离心泵以其转速高,体积小,重量轻,效率高,流量大,结构简单,性能平稳,容易操作和维修等优点,使其在输油生产中得到了广泛的应用,汽蚀现象也是离心泵在输油生产中常见的故障。 关键词:离心泵;汽蚀;汽蚀余量 一、气蚀现象含义 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡,把这种产生气泡的现象称为汽蚀。离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的液体压力达到最低,此后由于叶轮对液体做功,液体压力很快上升。当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就汽化。同时,使原来溶解在液体内的气体也逸出,它们形成气泡。当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些气泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高,于是金属表面因冲击疲劳而剥裂。如若气泡内夹杂某种活性气体(如氧气等),它们借助气泡凝结时放出的热量,产生电

解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。像这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为离心泵的汽蚀现象。 二、水泵运行中产生气蚀现象的原因 液体的汽化程度与压力的大小、温度高低有关。当液体内部压力下降,低于液体在该温度下的饱和蒸汽压时,便产生汽蚀故障。吸入压力降低;吸入高度过高;吸入管阻力增大;输送液体粘度增大;抽吸液体温度过高等影响液体饱和蒸气压增加的现象都会影响汽蚀的发生,通常的因素有: (1)泵进口的结构参数,叶轮吸入口的形状、叶片入口边宽度及叶片进口边的位置和前盖板形状等。 (2)泵的操作条件,泵的流量、扬程及转速等。 (3)泵的安装位置,泵的吸入管路水力损失及安装高度。 (4)环境因素,泵安装地点的大气压力以及输送液体的温度等。 三、水泵气蚀现象所产生的危害 水泵汽蚀是水泵损坏的重要原因,水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。运行中使水泵抽水的效率降低,显著减少了水泵的扬程和流量,也减少了水泵的使用寿命。汽蚀时传递到叶轮及泵壳的冲击波,加上液体中微量溶解的氧对金属化学腐蚀的共同作用,在一定时间后,可使其表面出现斑痕及裂缝,甚至呈海面状逐步脱落;发生汽蚀时,还会发出噪声,进而使泵体震动;

泵的汽蚀现象以及其产生原因

泵的汽蚀现象以及其产生原因 1、汽蚀 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。苏华泵业 2、汽蚀溃灭 汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。苏华泵业 3、产生汽蚀的原因及危害 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。苏华泵业 4、汽蚀过程 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。苏华泵业 什么是泵的特性曲线? 通常把表示主要性能参数之间关系的曲线称为离心泵的性能曲线或特性曲线,实质上,离心泵性能曲线是液体在泵内运动规律的外部表现形式,通过实测求得。特性曲线包括:流量-扬程曲线(Q-H),流量-效率曲线(Q-η),流量、功率曲线(Q-N),流量-汽蚀余量曲线(Q-(NPSH)r),性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程,功率,效率和汽蚀余量值,这一组参数称为工作状态,简称工况或工况点,离心泵最高效率点的工况称为最佳工况点,最佳工况点一般为设计工况点。一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近。在实践选效率区间运行,即节能,又能保证泵正常工作,因此了解泵的性能参数相当重要。苏华泵业

泵的汽蚀现象分析及防止汽蚀措施标准版本

文件编号:RHD-QB-K8890 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 泵的汽蚀现象分析及防止汽蚀措施标准版本

泵的汽蚀现象分析及防止汽蚀措施 标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 一、汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当

含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)--泵开始汽蚀

离心泵汽蚀

离心泵汽蚀的研究现状 1.1. 汽蚀发生机理 国内外学者对汽蚀发生的机理进行了很多研究,提出了诸多观点和论述,其中最具代表性的是由柯乃普提出的“气核理论”。该理论认为经过特殊处理的“纯水”可以承受拉力,自然界中的水却只能承受很大的压力,其原因是水中存在很多含有气体或蒸汽的微小的气泡(称为核子),这些核子使液体的抗拉强度降低。当液体的压强低于汽化压强时,这些核子将迅速膨胀形成气泡,从而导致汽蚀发生。但是尺寸很小的气核,内部压强是很大的,核子内部的气体会受压而被周围的水体所吸收。所以小的核子将处于不稳定状态。由此可见,核子不可能长期存留在水中。这就得出一个很奇怪的结论:一方面,要产生汽蚀现象,就必须有核子的存在;而另一方面,核子又不可能在水中长期存在。对于这个矛盾,目前还无法正确解释,现有的汽蚀核子理论在很大程度上还带有臆想性,由核子发展成为汽蚀的过程还只是推测。但是,如果不假设气体核子的存在,就不能设想水体中在某种低的临界压强下会出现汽蚀。因此不得不假定气核具有一系列的附加特性,以保证它们能够存在于水中并处于稳定动态平衡。为此许多研究者便进行了一系列的设想。 这些设想的模式中,比较有名的是Fox和Herzfel模式和E.N.Hervery[7]模式。Fox等人提出,微小气核之所以不会溶解,是因为气核被有机薄膜所包围。这种有机薄膜是在水一气界面上自然形成的,它改变了液体的有效表面张力,推迟了蒸发,阻碍了扩散,使微小气核可以持久地悬浮,但有机薄膜是否存在,还有待物理上的证明。 E.N.Hervery于1947年提出,气体核子是水中固体颗粒或绕流物体表面缝隙中未被溶解的一些气体,而这些固体表面是疏水性的,使得在缝隙中的气体形成一个凹面的自由表面。在这样的情况下,表面张力将阻止液面进入缝隙,因而气体并不能被强迫溶解,而仍可能保持气相。Hervey模式可以解释观察到的所有汽蚀现象,也无须再假设一些不可能有的水的性质,并有很多试验数据予以证实。但是这一模式至今仍缺乏数学描述,这是因为缝隙的尺寸和形状的不确定性,以及固体表面疏水性的不同给数学分析造成了难以克服的困难。

针对热水泵汽蚀现象的分析和解决方法

针对热水泵汽蚀现象的分析和解决方法 摘要:在如今的很多化工生产过程中,对于管路输送需要伴热要求,在100℃以下的情况下,大多数会选择简单经济的热水循环系统。在温度要求比较高的时候,比如说高于95℃,热水循环泵经常会出现异常情况,表现在噪音和振动,以及输出流量和压力上。针对这种热水循环系统的异常现象,本文通过理论计算判断是泵出现了汽蚀现象。汽蚀轻则会造成系统压力不稳流量减少,重则会降低泵的使用寿命甚至造成泵的损坏。因此使用过程中我们需要想方设法避免汽蚀的出现。本文通过理论推算,将泵的吸入高度提高了3.5米。然后再通过现场整改后的观察验证了之前的分析,泵的运转回归了正常,从而保证了热水循环系统的稳定运行,进而满足了工厂生产条件,为公司和客户消除了一个生产隐患。 关键词:热水泵汽蚀;热水循环系统;热水泵故障分析 作者公司乳化产品工艺生产线的输送管路部分对介质的温度有较高的要求,因此输送管路要求伴热温度在95±3℃,伴热系统选择的是热水循环系统,整个系统由热水箱(采用蒸汽加热),管路、泵和阀门组成,目前这套系统已在十多条生产线上得到推广应用。但在实际生产使用过程中,我发现很多工厂在热水的温度超过95℃时,热水循环泵的运行状态出现不稳定,具体表现为振动和噪音加大,输出流量出现异常波动,输出压力降低等,根据这种现象初步判断为泵出现了明显汽蚀。根据掌握的知识,作者大致分析了汽蚀的发生过程:水汽化时的压力称为汽化压力(饱和蒸汽压力),它汽化压力的大小和温度有关,温度越高,由于分子运动更剧烈,其汽化压力越大。20℃清水的汽化压力为233.8Pa,而100℃水的汽化压力为101296Pa(一个大气压)。可见,一定温度下的压力是促成液体汽化的外界因素。液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生气泡。这种气泡会降低泵吸入端的压强,当泵吸入压强降到水的饱和蒸汽压以下时,液体又会产生气泡。气泡聚集在一起,会在泵腔内在泵壳内形成一个充满蒸汽的空间,随着泵旋转,气泡进入高压区。由于压差的作用,气泡受压破裂而重新凝结,在凝结的一瞬间,质点互相撞击,产生了很高的局部压力,如果这些气泡在金属表面附近破裂而凝结,则液体质点就象无数小弹头一样,连续击打在金属表面,使金属表面产生疲劳和裂纹,甚至局部产生剥落现象,使叶轮表面呈蜂窝状,同时气泡中的某些活泼气体如氧气等进入到金属表面的裂纹中,借助气泡凝结时放出的热量,使金属受到化学腐蚀作用,上述现象即为汽蚀。汽蚀现象产生时,泵将产生噪音和振动,使泵的扬程、流量、效率的性能急剧下降,同时加速了材料的损坏,缩短了机件的使用寿命,因此需要极力避免和消除汽蚀现象。为了验证分析是否正确,我们通过以下计算来进行理论分析。 作者公司一直选用的热水泵型号为上海中耐制泵有限公司生产的IRG型单级单吸立式热水循环离心泵,适用于能源、冶金、化工、纺织、造纸,以及宾馆饭店等锅炉高温热水增压循环输送及城市采暖系统循环用泵,使用介质温度不超过120℃。1、吸入压力≤1.0MPa,或泵系统最高工作压力≤1.6MPa,即泵吸入口压力+泵扬程≤1.6MPa,泵静压试验压力为2.5MPa,整体采用铸铁结构,密封处为机械密封。

相关文档
相关文档 最新文档