文档库 最新最全的文档下载
当前位置:文档库 › 钢骨混凝土柱徐变应力重分布计算

钢骨混凝土柱徐变应力重分布计算

钢骨混凝土柱徐变应力重分布计算
钢骨混凝土柱徐变应力重分布计算

万方数据

万方数据

万方数据

大体积混凝土应力计算

大体积混凝土应力计算 在混凝土浇筑时,除按上述公式计算混凝土的各种温度外,还应对混凝土裂缝进行计算。在浇筑前、浇筑中、浇筑后均应及时进行计算,控制混凝土裂缝的出现。混凝土裂缝计算采用中国建筑设计研究院研制的PKPM 计算软件。 a. 混凝土浇筑前裂缝控制计算 ⑴计算原理(依据《建筑施工计算手册》): 大体积混凝土贯穿性或深进的裂缝,主要是由于平均降温差和收缩差引起过大的温度收缩应力而造成的。混凝土因外约束引起的温度(包括收缩) 应力(二维时),一般用约束系数法来计算约束应力,按以下简化公式计算: △卄(2/3)? T(c+T7(t)-Th 式中:旷混凝土的温度(包括收缩)应力(N/mm2); E(t)--混凝土从浇筑后至计算时的弹性模量(N/mn2),—般取平均 a--混凝土的线膨胀系数,取1.0 X 105; △T--混凝土的最大综合温差(C)绝对值,如为降温取负值;当大体积混凝土基础长期裸露在室外,且未回填土时,△T值按混凝土水化热 最高温升值(包括浇筑入模温度)与当月平均最低温度之差进行计算;计算结果为负值,则表示降温; T o--混凝土的浇筑入模温度(C ); T(t)--浇筑完一段时间t,混凝土的绝热温升值(C); T y(t)--混凝土收缩当量温差(C); T h--混凝土浇筑完后达到的稳定时的温度,一般根据历年气象资料取当年平均气温「C); S t)--考虑徐变影响的松弛系数,一般取0.3?0.5 ; R--混凝土的外约束系数,当为岩石地基时,R=1;当为可滑动垫 层时,R=0, —般土地基取0.25?0.50 ; v--混凝土的泊松比

⑵计算: 取S t ) =0.19 , R= 0.50 , Y =0.15; ① 混凝土 3d 的弹性模量由式: 计算得:E ⑶二0.60 X 104 ② 最大综合温差 △ T=11.66 C ③ 基础混凝土最大降温收缩应力,由式: 计算得: ④ 不同龄期的抗拉强度由式 X(i) = 0^(18 ⑤ 抗裂缝安全度: K=0.94/0.08=11.75>1.15 故满足抗裂条件。 b. 混凝土浇筑后裂缝控制计算 ⑴计算原理(依据《建筑施工计算手册》): 弹性地基基础上大体积混凝土基础或结构各降温阶段综合最大温度收 缩拉应力,按下式 计算: 降温时,混凝土的抗裂安全度应满足下式要求: 式中:6)--各龄期混凝土基础所承受的温度应力(N/mm ); a --混凝土线膨 胀系数,取1.0 X 105; v -混凝土泊松比,当为双向受力时,取0.15 ; 计算得: t (3)=0.94N/mm 1-他 er =0.08N/mm ---------- 1工E 闵工 谢%

大体积混凝土温度应力计算

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h +=(3-1) )1(**)mt c t h e c Q m T --=ρ ((3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取0.97kJ/(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取2.718; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 表3-1 不同品种、强度等级水泥的水化热

表3-2 系数m 根据公式(3-2),配合比取硅酸盐水泥360kg 计算: T h (3)=33.21 T h (7)=51.02 T h (28)=57.99 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T +=(3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃); ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; 表3-3 降温系数ξ

根据公式(3-3),T j 取25℃,ξ(t )取浇筑层厚1.5m 龄期3天6天27天计算, T 1(3)=41.32 T 1(7)=48.47 T 1(28)=27.90 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ=(3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃);

型钢埋入式柱脚(刚性固定)

软件主要针对型钢混凝土埋入式刚性柱脚节点,计算主要遵循《钢结构连接节点设计手册》(第二版)及《钢骨混凝土结构设计规程》(YB 9082-2006)中的相关条文及规定。 《钢结构连接节点设计手册》(第二版)中埋入式柱脚相关技术内容,主要针对钢柱做埋入式柱脚节点。设计注意事项 刚性固定埋入式柱脚时直接将钢柱埋入钢筋混凝土基础或基础梁的柱脚。其埋入办法:一是预先将钢柱脚按要求组装固定在设计标高上,然后浇灌基础或基础梁的混凝土;另一种是预先按要求浇灌基础或基础梁的混凝土,在浇灌混凝土时,按要求留出安装钢柱脚用的插入杯口,待安装好钢柱脚后,再用混凝土强度等级比基础高一级的混凝土灌实。通常情况下,前一种方法对提高和确保钢柱脚和钢筋混凝土基础或基础梁的组合效应或整体刚度有利,所以在工程实际中多被采用。 在埋入式柱脚中,钢柱的埋入深度是影响柱脚的固定度、承载力和变形能力的重要因素,而且有时对于中柱、边柱和角柱,其埋入深度也不尽相同,这就需要选择易于进行钢筋混凝土补强的埋入深度来处理。 为防止钢柱的局部压屈和局部变形,在钢柱向钢筋混凝土基础或基础梁传递水平力处压应力最大值的附近,设置水平加劲肋是一个有效的补强措施;对箱型截面柱和圆管形截面柱处设置水平加劲肋的环形横隔板外,在箱内和管内浇灌混凝土也将获得良好的效果。 为防止基础或基础梁中混凝土早期的压坏和剪坏,应配置补强钢筋,合理地确定钢柱周边的钢筋混凝土保护层厚度及其配筋是很重要的。 在中柱、边柱和角柱中,其钢筋混凝土保护层厚度有时是不尽一致,特别在边柱和角柱的柱脚中,对没有设置基础梁的一侧,钢柱翼缘面处的钢筋混凝土保护层厚度;中柱不得小于180mm;边柱、角柱的外侧不宜小于250mm。 配置在钢柱埋入部分中的钢筋,出基础或基础梁应有的配筋外,尚应在钢柱周边增设补强垂直纵向主筋、架立筋、箍筋、顶部加强箍筋、基础梁主筋在钢柱埋入部分水平方向弯折处的加强箍筋。

大体积混凝土外约束拉应力计算书

混凝土外约束拉应力计算书 计算依据: 1、《大体积混凝土施工规范》GB50496-2009 2、《建筑施工计算手册》江正荣编著 一、混凝土外约束拉应力 第1层保温层厚度δ1(m) 0.04 第1层保温材料导热系数λ1[W/(m·K)] 0.05 实测日期t1(d) 3 实测温度T1(°C) 50 松弛系数H1(t1) 0.186 实测日期t2(d) 6 实测温度T2(°C) 45 松弛系数H2(t2) 0.215 实测日期t3(d) 9 实测温度T3(°C) 35 35.7 松弛系数H3(t3) 0.383 固体在空气中的放热系数 βu[W/(m2·K)] 混凝土的导热系数λ0[W/(m·K)] 0.45 混凝土浇筑体的长度L(mm) 45.5 80 混凝土浇筑体的实际厚度h(m) 2.1 外约束介质水平变形刚度 C X(10-2N/mm3) 水泥品种修正系数M1 1.1 水泥细度修正系数M2 1.13 水胶比修正系数M3 1.21 胶浆量修正系数M4 1.45 养护时间修正系数M5 1.11 环境相对湿度修正系数M6 1.1 水力半径的倒数修正系数M70.76 E S F S/E C F C修正系数M80.85 减水剂修正系数M9 1.3 粉煤灰掺量修正系数M100.86 0.99 矿粉掺量修正系数M11 1.01 粉煤灰掺量对弹性模量调整修正系数 β1 1.03 系数φ0.09 矿渣粉掺量对弹性模量调整修正系数 β2 1、各龄期混凝土弹性模量 E i(3)=βE0(1-e-φt)=β1β2E0(1-e-φt)=0.99×1.03×3.25×104×(1-2.718-0.09×3)=7844N/mm2

大体积混凝土计算

西工大创新科技大楼 大体积混凝土计算书 编制人: 编制时间:2014年2月20日 计算说明:本计算书按草席上下各铺设一层塑料膜养护计算(因未找到黑心棉相关数据)。

目录 第一章工程概况----------------------------------------3页1.1项目概况------------------------------------------3页1.2计算说明------------------------------------------3页 第二章温度计算---------------------------------------4页2.1绝热温升------------------------------------------4页2.2砼中心温度----------------------------------------4页2.3砼表面温度----------------------------------------5页2.3.1保温材料的厚度----------------------------------5页2.3.2砼保温层传热系数--------------------------------6页2.3.3混凝土的虚厚度----------------------------------6页2.3.4混凝土的计算厚度--------------------------------6页2.3.5砼表面温度--------------------------------------7页2.4砼内的平均温度------------------------------------7页2.5温度计算结论--------------------------------------8页 第三章混凝土应力计算---------------------------------9页3.1砼的干缩率----------------------------------------9页3.2砼收缩当量温差------------------------------------10页3.3砼的结构计算温差----------------------------------10页3.4各区段拉应力计算----------------------------------11页3.4.1计算 E平均弹性模量------------------------------11页 i E瞬时弹性模量--------------------11页3.4.1.1大体积混凝土t 3.4.1.2 E平均弹性模量-------------------------------12页 i 3.4.2 S平均应力松弛系数-----------------------------12页 i β平均地基约束系数。---------------------------12页3.4.3 i β地基约束系数-----------------------13页3.4.3.1各龄期的t Cx桩的阻力系数---------------------------13页3.4.3.1.1 2 3.4.3.1.1.1 Q桩产生单位位移所需水平力---------------13页 Cx桩的阻力系数-------------------------14页3.4.3.1.1.2 2 β各龄期的地基约束系数----------------------14页3.4.3.2 t β平均地基约束系数。------------------------14页3.4.3.3 i 3.4.4 计算ch双曲余弦函数值-------------------------15页 δ各区段拉应力计算----------------------------15页3.4.5 i δ最大拉应力---------------------15页3.5到指定龄期砼内max 第四章安全验算--------------------------------------16页

钢骨柱柱脚的预埋方案

钢骨柱柱脚螺栓的预埋施工方案 一、钢骨柱柱脚螺栓的预埋 1、螺栓的加工 (1)项目施工部门根据图纸和施工进度安排进场时间。 (2)项目质量部门对预埋件的加工精度进行验收,根据钢构要求,螺丝丝扣加长50mm。 2、预埋件的测量定位控制线应单独设置,每个埋件的控制线都应从结构控制轴线单独引测,在已浇筑的混凝土或已固定的钢筋表面做好控制标记。 3、预埋件在安装前做好中心定位标记,便于安装时的测量校正。 4、预埋件锚筋与结构主筋位置发生冲突时,可以适当调整锚筋位置,保证埋件安装位置。当预埋螺杆与主筋位置发生冲突时,尽量调整主筋位置,保证螺杆按设计位置就位。 5、柱脚预埋螺栓固定 (1)根据场地坐标控制点在单体周围设置控制桩位。 (2)从单体控制桩拉麻线进行初定位,钢筋工程施工的同时安放预埋螺栓。预埋螺栓采用3mm厚定位钢板进行定位,3mm定位钢板和预埋钢板尺寸相同,钻相同的螺孔直径d=35mm,定位钢板底面及侧面隔离剂,标高教所浇砼顶板高5mm,四周和板筋焊接牢固,螺栓根部加设L50×5角钢与底板钢筋电焊固定,调整好水平和垂直度后与钢筋进行点焊连接。 (3)在钢筋工程结束后,对模板进行初步加固,然后将梁钢筋固定,具体方法为纵横轴方向互相焊接固定,确保不位移。 (4)采用经纬仪对螺栓位置进行精确坐标定位。 (5)采用水准仪对螺栓位置进行精确水准定位,水准控制点来自场内水准控制点。 (6)螺栓和模板加固后,对螺栓进行校核。 (7)对螺栓进行复核,发现不合格的重复上述校核和加固工作。 (8)螺栓定位控制精度2mm。 (9)在浇捣砼时同分包方、监理办理验收手续,防止单面下料、单面振捣,合理安排砼的浇捣流程,使其对钢筋的影响减少到最少。同时,必须对锚栓顶部螺

钢筋混凝土管价格

钢筋混凝土管是用于输送水、油、气等流体,可分为素混凝土管、普通钢筋混凝土管、自应力钢筋混凝土管和预应力混凝土管四种。下面由钢筋混凝土管厂家蚌埠市中海阀门管道有限公司为您介绍下它的相关知识,希望能给您带来帮助。 钢筋混凝土管的成型方法:有离心法、振动法、滚压法、真空作业法以及滚压、离心和振动联合作用的方法。为了提高混凝土管的使用性能,中国和其他许多国家较多地发展预应力混凝土压力管。这种管子配有纵向和环向预应力钢筋,因此具有较高的抗裂和抗渗能力。 80年代,中国和其他一些国家发展了自应力钢筋混凝土管,其主要特点是利用自应力水泥(见特种水泥)在硬化过程中的膨胀作用产生预应力,简化了制造工艺。混凝土管与钢管比较,可以大量节约

钢材,延长使用寿命,且建厂投资少,铺设安装方便,已在工厂、矿山、油田、港口、城市建设和农田水利工程中得到广泛的应用。 预制混凝土排水管是钢筋混凝土管的一种类型,它的规格有:按混凝土管内径的不同,可分为小直径管(内径400毫米以下)、中直径管(400~1400毫米)和大直径管(1400毫米以上)。按管子承受水压能力的不同,可分为低压管和压力管,压力管的工作压力一般有0.4、0.6、0.8、1.0、1.2兆帕等。混凝土管与钢管比较,按管子接头型式的不同,又可分为平口式管、承插式管和企口式管。其接口形式有水泥砂浆抹带接口、钢丝网水泥砂浆抹带接口、水泥砂浆承插和橡胶圈承插等。

蚌埠市中海阀门管道有限公司是中海集团的创始公司,业务范围包括:钢材加工及销售、钢材物流储备及配送、金融担保、机床制造、PCCP钢筒混凝土管、钢筋混凝土管、机械产品设计及加工等,客户群体遍及全国和全球部分地区。在“至精至诚为客户服务”的中海精神指引下,中海集团公司先后获得省市级重合同守信用单位,服务诚信先进单,企业合法权益重点保护单位,企业形象优秀单位等称号。新的时代带来新的机遇和挑战,新时期的中海公司继续坚持和发扬全心全意为客户服务的企业精神,为全国各地客户把好质量关,严控价格关,增强服务关。详情请点击咨询蚌埠市中海阀门管道有限公司。

混凝土外约束拉应力计算书

混凝土外约束拉应力计算书计算依据: 1、《大体积混凝土施工标准》GB50496-2018 2、《建筑施工计算手册》江正荣编著 一、混凝土外约束拉应力 第1层保温层厚度δ1(m) 0.5 第1层保温材料导热系数λ1[W/(m·K)] 0.06 第2层保温层厚度δ2(m) 0.7 第2层保温材料导热系数λ2[W/(m·K)] 0.09 实测日期t1(d) 3 实测温度T1(°C) 50 松弛系数H1(t1) 0.186 实测日期t2(d) 6 实测温度T2(°C) 45 松弛系数H2(t2) 0.215 实测日期t3(d) 9 实测温度T3(°C) 35 35.7 松弛系数H3(t3) 0.383 固体在空气中的放热系数 βu[W/(m2·K)] 混凝土的导热系数λ0[W/(m·K)] 0.45 混凝土浇筑体的长度L(mm) 4 4 混凝土浇筑体的实际厚度h(m) 1 外约束介质水平变形刚度 C X(10-2N/mm3) 水泥品种修正系数M1 1.1 水泥细度修正系数M2 1.13 水胶比修正系数M3 1.21 胶浆量修正系数M4 1.45 养护时间修正系数M5 1.11 环境相对湿度修正系数M6 1.1 水力半径的倒数修正系数M70.76 E S F S/E C F C修正系数M80.85 减水剂修正系数M9 1.3 粉煤灰掺量修正系数M100.9 0.99 矿粉掺量修正系数M11 1.03 粉煤灰掺量对弹性模量调整修正系数 β1 1.03 系数φ0.09 矿渣粉掺量对弹性模量调整修正系数 β2 1、各龄期混凝土弹性模量

E i(3)=βE0(1-e-φt)=β1β2E0(1-e-φt)=0.99×1.03×3×104×(1-2.718-0.09×3)=7241N/mm2 同理:E i(6)=12768N/mm2,E i(9)=16987N/mm2 2、各龄期混凝土浇筑体综合降温差的增量 εy(3)=εy0(1-e-0.01t)·M1·M2·M3…M11=4×10-4×(1-2.718-0.01×3)×1.1×1.13×1.21×1.45×1.11×1.1×0.76×0.85×1.3×0.9×1.03=2.451×10-5 3天的混凝土的收缩当量温度: T y(3)=εy(t)/α=2.451×10-5/1.0×10-5=2.45°C 同理: εy(6)=4.829×10-5,T y(6)=4.83°C, εy(9)=7.137×10-5,T y(9)=7.14°C ΔT2i(6)=(T2-T1)+(Ty(6)-Ty(3))=(50-45)+(4.829-2.451)=7.378°C 同理:ΔT2i(9)=12.308°C 3、各龄期外约束系数 保温层总热阻: R S=Σ(δi/λi)+1/βu=(0.5/0.06+0.7/0.09)+1/35.7=16.139(m2·K)/W 保温层总放热系数: βS=1/R S =1/16.139=0.062W/(m2·K) 保温层相当于混凝土的虚拟厚度: h'=λ0/βS=0.45/0.062=7.263m R i(6)=1-1/cosh[(C X/HE(6))0.5×L/2]=1-1/cosh[(4×10-2/((7.263+1)×103×12768))0.5×4×103/ 2]=0.00076 同理:R i(9)=0.00057 4、各龄期外约束拉应力 σx(6)=αΔT2i(6)×E i(6)×H i(6)×R i(6)/(1-μ)=1×10-5×7.378×12768×0.186×0.00076/(1-0.15)= 0.000156MPa 同理:σx(9)=0.000301MPa

型钢混凝土构造要求1

11.3型钢混凝土构件的构造要求 11.3.1型钢混凝土梁应满足下列构造要求: 1混凝土强度等级不宜低于C30,混凝土粗骨料最大直径不宜大于25mm;型钢宜采用Q235及Q345级钢材; 2梁纵向钢筋配筋率不宜小于0.30%; 3梁中型钢的保护层厚度不宜小于100mm,梁纵筋与型钢骨架的最小净距不应小于30mm,且不小于梁纵筋直径的1.5倍; 4梁纵向受力钢筋不宜超过二排,且第二排只宜在最外侧设置; 5梁中纵向受力钢筋宜采用机械连接。如纵向钢筋需贯穿型钢柱腹板并以90°弯折固定在柱截面内时,抗震设计的弯折前直段长度不应小于0.4倍钢筋抗震锚固长度laE,弯折直段长度不应小于15倍纵向钢筋直径;非抗震设计的弯折前直段长度不应小于0.4倍钢筋锚固长度la,弯折直段长度不应小于12倍纵向钢筋直径; 6梁上开洞不宜大于梁截面高度的0.4倍,且不宜大于内含型钢高度的0.7倍,并应位于梁高及型钢高度的中间区域;

7型钢混凝土悬臂梁自由端的纵向受力钢筋应设置专门的锚固件,型钢梁的自由端上 宜设置栓钉。 11.3.2型钢混凝土梁沿梁全长箍筋的配置应满足下列要求: 1箍筋的最小面积配筋率应符合本规程第6.3.4条第1款和第6.3.5条第4款的规定,且不应小于0.15%; 2梁箍筋的直径和间距应符合表11.3.2的要求,且箍筋间\距不应大于梁截面高度的1/2。抗震设计时,梁端箍筋应加密,箍筋加密区范围,一级时取梁截面高度的2.0倍,二、三级时取梁截面高度的1.5倍;当梁净跨小于梁截面高度的4倍时,梁全跨箍筋应加密设置。 11.3.3当考虑地震作用组合时,钢/混凝土混合结构中型钢混凝土柱的轴压比不宜大于表11.3.3的限值。 11.3.4型钢混凝土柱的轴压比可按下式计算: μN=N/(fcA+faAa)(11.3.4) 式中

自应力钢管混凝土简介

自应力钢管混凝土 1、自应力混凝土概述 膨胀混凝土由法国的H.Lossier于1936年发明并获得专利,经过30多年的起起落落,直到上世纪60年代才有了较大的发展。1955年左右前苏联研究者创造了硅酸盐自应力水泥,并开始应用于地下工程、机场、公路、大跨度薄壳等结构;美国的A.Klein研制了硫铝酸盐膨胀水泥并在工程中得到大量的工程应用;日本也在上世纪60-70年代发展膨胀水泥。中国最早是中国建材研究院于1957年研制成功硅酸盐自应力水泥,其后一直停滞,直到改革开放才取得较快的发展。 膨胀混凝土具有体积膨胀性,有膨胀就必定有外部约束作用。在不同形式的约束下膨胀混凝土就会呈现不同宏观性能,内部结构就会不同程度的发生变化。混凝土膨胀时会对其约束体施加拉应力,根据作用力与反作用力的原理,约束体对其产生相应的压应力,由于此压应力是利用混凝土自身的化学能(膨胀能)张拉钢筋或其他约束体产生的,有别于外部施加的机械预应力,所以称之为自应力。 按自应力大小不同可将膨胀混凝土划分为补偿收缩混凝土和自应力混凝土两大类。补偿收缩混凝土的自应力较小,主要用于补偿混凝土收缩和填充灌注,自应力一般为O.2~1 MPa,这时由于自应力很小,所以在结构设计中一般不考虑自应力的影响。自应力混凝土的自应力较大,在结构设计中需要考虑自应力的影响。目前,自应力混凝土的适用范围较狭窄,在结构中作为部分预应力或发挥减少收缩的辅助作用。自应力混凝土的膨胀能大,在约束条件下能产生自应力,提高混凝土的抗裂能力,因此作为自应力混凝土压力管中的材料,代替金属管材应用于市政输水、工业用排灰排气管、输气管线工程、农业用输水管中。经过长期的应用,积累了丰富的实践经验,形成了一套成熟的自应力混凝土管设计、制造、施工体系。 中国建筑材料科学研究院是我国膨胀混凝土的发源地,从1965年起,开展了硅酸盐自应力水泥(M型)的研究,混凝土自应力值为2~3MPa。1974起,该院陆续研制成功自应力铝酸盐水泥(ASC)和自应力硫铝酸盐水泥(SAEC),混凝土自应力值为

混凝土自约束应力计算书

混凝土自约束应力计算书 计算依据: 1、《大体积混凝土施工规范》GB50496-2009 2、《建筑施工计算手册》江正荣编著 一、混凝土的弹性模量 E(t)=βE 0(1-e -υt )=1.02×3.25×104×(1-2.718-0.09×3)=7844N/mm 2 二、混凝土最大自约束应力 混凝土浇注体内的表面温度T b (°C) 20 混凝土浇注体内的最高温度T m (°C) 25.1 水泥3天的水化热Q 3(kJ/kg) 314 水泥7天的水化热Q 7(kJ/kg) 354 粉煤灰掺量对水化热调整系数k 1 0.95 矿渣粉掺量对水化热调整系数k 2 1 每m 3混凝土胶凝材料用量W(kg/m 3 ) 448 混凝土比热C[kJ/(kg·°C)] 0.97 混凝土重力密度ρ(kg/m 3 ) 2450 系数m(d-1) 0.4 混凝土入模温度T 0(°C) 24 混凝土结构的实际厚度h(m) 1.4 在龄期为τ时,第i 计算区段产生的约束应力延续至t 时的松弛系数Hi(t, τ) 1 水泥水化热总量: Q 0=4/(7/Q 7-3/Q 3)=4/(7/354-3/314)=391.394kJ/kg 胶凝材料水化热总量: Q=kQ 0=(k 1+k 2-1)Q 0=(0.95+1-1)×391.394=371.825kJ/kg 混凝土的绝热温升: T(t)=WQ(1-e -mt )/(Cρ)=448×371.825×(1-2.718-0.4×3)/(0.97×2450)=49°C T m =T 0+ T(t )·ξ=24+48.982×0.46=46.5°C 在施工准备阶段,最大自约束应力: σzmax =α×E(t) ×ΔT lmax ×H i (t, τ)/2=1.0×10-5×7844×(46.532-20)×1/2=1.041MPa

给水工程管网题库(1) (1)

1、工业企业生产用水系统的选择,应从全局出发,考虑水资源的节约利用和水体的保护,并应采用( )系统。 A.复用或循环B.直流或循环C.复用或直流D.直流 2、城镇未预见用水量及管网漏失水量可按最高日用水量的( )合并计算。 A.15%~25%B.10%~20%C.15%~20%D.10%~25% 3、确定岸边式取水泵房进口地坪设计标高时,下列情况不正确的是( )。 A.当泵房在渠道边时,为设计最高水位加0.5m B.当泵房在江河边时,为设计最高水位加浪高再加0.5m,必要时尚应增设防止浪爬高的措施。 C.当泵房在湖泊、水库或海边时,为设计最高水位加浪高再加0.5m,并应设防止浪爬高的措施。 D.当泵房在水库边时,可以不设防止浪爬高的措施。 4、井群用虹吸管集水时,水平管段沿水流方向的向上坡度不宜小于( )。 A.0.01 B.0.001 C.0.005 D.0.02 5、大口井井底两相邻反滤层的粒径比,宜为( )。 A.1~2 B.2~5 C.2~3 D.2~4 6、渗渠直线段检查井间距,视其长度和断面尺寸定,一般可采用( )m。 A.60 B.50 C.80 D.40 7、取水构筑物淹没进水孔上缘在设计最低水位下的深度,当采用侧面进水时,不得小于( )m。 A.1.5 B.1.0 C.0.5 D.0.3 8、岸边式取水构筑物,进水孔的过栅流速有冰絮时为( )m/s;无冰絮时为( )m/s; A.0.2~0.5;0.4~1.0 B.0.2~0.6;0.4~1.0 C.0.2~0.6;0.4~0.8 D.0.2~0.5;0.4~0.8 9、从水源至城镇水厂或工业企业自备水厂的输水管渠的设计流量,应按( )确定。 A.最高日子均时供水量B.最高日最大时供水量 C.平均日平均时供水量加自用水量D.最高日平均时供水量加自用水量 10、负有消防给水任务管道的最小直径,不应小于( )mm;室外消火栓的间距不应大于( )m。 A.100;100 B.100;120 C.150;100 D.150;120 11、承插式铸铁管一般宜采用( )接口。 A.橡胶圈、膨胀性水泥、青铅B.橡胶圈、青铅、石棉水泥 C.橡胶圈、膨胀性水泥、石棉水泥D.膨胀性水泥、石棉水泥 12、在输水管道和配水管网低洼点应装设( )。 A.支墩B.泄压阀C.减压阀D.泄水阀 13、城镇给水管道与电力电缆的水平距离一般不得小于( )m。 A.1.5 B.1 C.0.5 D.0.3 14、给水管道相互交叉时,其垂直净距不应小于( )m。 A.0.15 B.0.2 C.0.25 D.0.3 15、集中给水站设置地点,应考虑取水方便,其服务半径一般不大于( )m。 A.50 B.100 C.150 D.200 16、工业企业生产用水量、水质和水压,应根据( )要求确定。 A.生产工艺B.生产设备C.生产原料D.产量 17、用地表水作为城市供水水源时,其设计枯水流量的保证率,应根据城市规模和工业大用户的重要性选定,一般可采用( )。 A.85%~90%B.90%~97%C.97%D.90% 18、大口井井底反滤层宜做成( )形。 A.凹弧B.凸弧C.平底D.任意 19、渗渠中管渠的水流速度为( )m/s。 A.0.4~0.8 B.0.5~0.8 C.0.5~0.7 D.0.6~0.8 20、下列关于取水构筑物型式的选择地层条件,不正确的是( )。 A.管井适用于含水层厚度大于5m,其底板埋藏深度大于15m B.大口井适用于含水层厚度在5m左右,其底板埋藏深度小于15m C.渗渠仅适用于含水层厚度小于6m,渠底埋藏深度小于5m D.泉室适用于有泉水露头,且覆盖层厚度小于5m 21、取水构筑物淹没进水孔上缘在设计最低水位下的深度,当采用顶面进水时,不得小于( )m。

烟囱大体积混凝土计算

烟囱大体积混凝土计算书 烟囱底板混凝土为宽5.9m,高2 m的圆环体,属大体积混凝土,需进行大体积混凝土计算。底板混凝土采用标号C30混凝土,中热硅酸盐水泥。 一、大体积混凝土计算公式 1.混凝土最大绝热温升 Th=m c*Q/(c*ρ*(1-e-mt)) 式中Th----------最大绝热温升(℃); m c---------混凝土中水泥(包括膨胀剂)用量(Kg/m3),取m c=350 Kg/m3; Q---------水泥28d水化热(KJ/(mg*K)),取Q=375 KJ/(mg*K); C---------混凝土比热,取C=0.97 KJ/(mg*K); ρ-----混凝土密度(Kg/m3),取ρ=2400 Kg/m3; e------为常数,取e=2.718; t------混凝土龄期(d); m------系数,随混凝土浇筑温度改变; 计算求得:Th=350×375×103/(0.97×103×2400×(1- e-0.362×28))=56.38℃ 2.混凝土中心温度计算 T1(t)=T j+Th*ξ(t) 式中T1(t)------t龄期混凝土中心温度(℃);

T j-----------混凝土浇筑温度(℃) ξ(t)---------------t龄期混凝土降温系数; T1(3)=52.14℃ T1(18)=32.40℃ T1(6)=49.32℃ T1(21)=29.87℃ T1(9)=46.78℃ T1(24)=27.61℃ T1(12)=41.71℃ T1(27)=25.92℃ T1(15)=36.63℃ T1(30)=25.36℃ 3.混凝土表面(表面下50~100mm处)温度 (1)保温材料厚度 δ=0.5h*λx*(T2- T q)*K b/(λ*(Tmax- T2)) 式中δ---------保温材料厚度(m); λx--------所选保温材料导热系数(W/(m*K)),草袋取 λx=0.14 ; h---------混凝土实际厚度(m),h=2 m; T2--------混凝土表面温度(℃); T q--------施工期大气平均温度(℃); λ-------混凝土导热系数(W/(m*K)),取λ=2.33 W/(m*K); Tmax-----计算得最高温度(℃) 计算时可取:T2- T q=18℃,Tmax- T2=20℃; K b--------传热系数修正值,取K b=2.0; 计算所得:δ=0.5×2×0.14×18×2/(2.33×20)=0.108m

型钢柱脚定位方案

SRC型钢砼埋入式柱脚埋设增加工作面方案 我公司承建的冉家坝广场三号楼工程的基础施工中,有14根SRC型钢砼柱,柱断面主要为1950×1400、1300×1300,型钢制作断面为900×900,设计要求型钢柱嵌入桩内2700,型钢柱脚与桩内预埋的八根M24锚杆进行螺栓连接,型钢柱脚的定位是否符合要求,直接影响到主体钢结构的安装,柱内除型钢骨架外并设计有较为密集的竖向主筋和箍筋;这给施工带来极大的困难(桩四周密布竖向钢筋使工人在桩内没有任何操作空间),我们拟对有型钢柱的挖孔桩周边向外扩600的工作面(靠筏板一侧桩扩三方工作面),如下图: 在此600的工作面上用C20砼找平,把轴线、标高引测到工作面上,作为控制柱脚、柱筋的定位的依据,然后进行型钢柱脚的定位、安装以及柱筋的绑扎,工作面空间采用同柱标号砼原槽浇筑,为了防止扩大部分砼对基础岩石的承压力,在钢柱脚和柱钢筋绑扎成型后,在工作面上铺200厚挤塑板(见剖面图)。 为了防止在浇筑砼时型钢柱脚不产生位移和上浮,现场在钢构柱

脚下方纵横各两根钢管与挖孔桩护壁用顶撑顶死,柱脚钢板与钢管焊牢(详见SRC型钢安装专项方案)。 对地脚螺栓的螺纹,现场的保护措施为:先在螺纹上涂一层黄油,再用塑料薄膜在螺纹上包三~四层并且扎牢,同时在螺杆上戴一螺帽,严格保证螺杆不被砼污染和螺纹不被损伤。 由于本工程所有型钢柱脚的柱均与轻轨相近,根据设计要求,轻轨基础持力层以下2m桩身要与岩石隔离,相当于在桩顶2700下全部要隔离,本工程采取隔离措施为:先对桩身四周用1:2水泥砂浆找平,在找平层上铺油毡防水卷材一层。 为了确保砼浇筑的密度性,在预埋钢板中心钻孔,便于砼排气和观察砼的密度(详见专项方案)。 重庆建工集团冉家坝工程项目部 2010年11月22日

钢筋混凝土管重量表

钢筋混凝土管重量表 钢筋混凝土管材规格及重量:1、无缝钢管理论重量表:2、镀锌钢管理论重要表:3、不锈钢管理论重量表:4、焊接钢管理论重量表:5、螺旋钢管理论重量表:6、矩形方钢管理论重量表: 混凝土管混凝土管:英文名concrete pipe。是批用混凝土或钢筋混凝土制作的管子,用于输送水、油、气等流体。可分为素混凝土管、普通钢筋混凝土管、自应力钢筋混凝土管和预应力混凝土管四种。 1、一般的框架结构中的混凝土用量可以按“建筑面积*0.22”得出,即一个标准层的折算厚度在22cm左右; 2、框架结构的含钢量暂按每m2含钢量60kg计(暂时不考虑影响各建筑物含钢量的因素)。 3、综合上面的数据:每立方混凝土的含钢量=1/0.22*60=273kg 12墙一个平方需要64块标准砖 18墙一个平方需要96块标准砖 24墙一个平方需要128块标准砖 37墙一个平方需为192块标准砖 49墙一个平方需为256块标准砖 计算公式: 单位立方米240墙砖用量1/(0.24*0.12*0.6) 单位立方米370墙砖用量1/(0.37*0.12*0.6) 空心24墙一个平方需要80多块标准砖 一个土建工程师应掌握的数据

一、普通住宅建筑混凝土用量和用钢量: 1、多层砌体住宅: 钢筋30KG/m2 砼0.3—0.33m3/m2 2、多层框架 钢筋38—42KG/m2 砼0.33—0.35m3/m2 3、小高层11—12层 钢筋50—52KG/m2 砼0.35m3/m2 4、高层17—18层 钢筋54—60KG/m2 砼0.36m3/m2 5、高层30层H=94米 钢筋65—75KG/m2 砼0.42—0.47m3/m2 6、高层酒店式公寓28层H=90米 钢筋65—70KG/m2 砼0.38—0.42m3/m2 7、别墅混凝土用量和用钢量介于多层砌体住宅和高层11—12层之间 以上数据按抗震7度区规则结构设计 二、普通多层住宅楼施工预算经济指标 1、室外门窗(不包括单元门、防盗门)面积占建筑面积0.20—0.24 2、模版面积占建筑面积2.2左右 3、室外抹灰面积占建筑面积0.4左右 4、室内抹灰面积占建筑面积3.8 三、施工功效

大体积混凝土温度应力计算

大体积混凝土温度应力计 算 Last revision on 21 December 2020

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h += (3-1) )1(**)mt c t h e c Q m T --=ρ ( (3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 T h (3)= T h (7)= T h (28)= 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T += (3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃);

ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; j (t )T 1(3)= T 1(7)= T 1(28)= 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ= (3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃); λ——混凝土导热系数,取(m ·K); T max ——计算的混凝土最高温度(℃); 计算时可取T 2-T q =15~20℃,T max -T 2=20~25℃; K b ——传热系数修正值,取~,查表3-5。

混凝土桥梁徐变计算的有限元分析

收稿日期:2008208204 作者简介:赵品(1981)),女,硕士研究生,研究方向为大型结构健康诊断与控制 zh aop81@https://www.wendangku.net/doc/c714365273.html, 混凝土桥梁徐变计算的有限元分析 赵 品, 王新敏 (石家庄铁道学院土木工程分院,河北石家庄050043) 摘 要:基于按龄期调整的有效模量法结合有限单元逐步分析法,对ANSYS 程序进行了计算混凝土桥梁徐变的二次开发。详细介绍了按龄期调整的有效模量法的具体计算步骤,并将计算结果与理论值进行比较,结果吻合的很好,且符合有砟轨道预应力混凝土箱梁的设计要求;验证了程序的正确性同时得出一些有益的结论:徐变对混凝土桥梁的影响不容忽视,必须予以重视。关键词:混凝土;桥梁;徐变 中图分类号:U441;U448.35 文献标识码:A 文章编号:167223953(2008)0620036204 一般混凝土的徐变变形大于其弹性变形,在不变的长期荷载下,混凝土结构的徐变变形值可达到瞬时变形值的1~6倍[1] 。对于静定结构,徐变会导致很大的变形,从而引起结构内部裂缝的形成和扩展,甚至使结构遭受破坏;对于超静定结构,徐变不但会引起变形,还会产生徐变次内力;在钢筋混凝土或预应力混凝土中,随时间变化的徐变,由于受到内部钢筋的约束会导致内力的重分配并引起预应力损失;分阶段施工的混凝土结构由于徐变的不同而导致内力的变化;连续梁、刚架、斜拉桥、拱桥等在施工过程中发生结构体系转换时,前期继承下来的应力状态所产生的应力增量受到后期结构的约束,而导致支座反力和结构内力变化:总之,徐变对混凝土结构的影响是非常大的。因此,对预应力混凝土桥梁在不同荷载工况下的徐变研究具有重要的现实意义。 1徐变计算所用的系数公式 按5铁路桥涵钢筋混凝土和预应力混凝土结构设 计规范6[2]中关于徐变系数的规定,其表达式如下:U (t,S )=B a (S )+0.4B d (t -S )+U f [B f (t)-B f (S )] (1) 为了便于计算机分析计算,对徐变系数进行拟合,得: U (t,S )=B a (S )+ E 4 i=1 C i (S )[1-e - q i (t-S ) ]+0.4B d (0) (2) 式中,B a (S )=0.8[1- 11.276(S 4.2+0.85S )3/2 ];C 1(S )=0.4A;C 2(S )=0.4B;C 3(S )=C #U f # e -q 3(S -3);C 4(S )=D #U f #e -q 4(S -3);B d (0)=0.27;A =0.43;B =0.30;q 1=0.0036;q 2=0.046。具体参数取值见表1。 表1 徐变系数计算中的参数取值理论厚度h /mm C D q 3q 4@10-3 U f 2<500.500.390.033 1.5 2.01000.470.420.0335 1.3 1.702000.410.480.034 1.1 1.554000.330.540.0350.85 1.406000.290.600.0380.65 1.33>1600 0.20 0.69 0.05 0.53 1.12 理论厚度h =K 2A h L ,K =1.5,A h 为构件截面面 积,L 为构件与大气接触的周边长度及箱梁内的长度。 2 逐步计算的方法[3] 2.1 结构单元和计算时间的划分 (1)时段划分。将计算时间从施工开始到竣工 后徐变完成,划分为若干阶段。对于一次现浇的简支梁桥而言,通常划分为浇筑混凝土、初张拉、终张拉、施加二期恒载四个阶段,根据每个施工状态,将计算时间划分成几个时间小段,也就是按施工工况进行划分。把施工阶段、加载时刻,作为各阶段与时间间隔的分界点,由初瞬时t =t 1起,以后各计算时刻依次为t 2,,t i ,,t n +1,相应时段则为:v t 1=t 2-t 1,,,v t i =t i+1-t i ,,,v t n =t n +1-t n 。 研究Research and De sign 与设计

室外混凝土和钢筋混凝土给水管道的安装

室外混凝土和钢筋混凝土给水管道的安装 管道接口 钢筋混凝土压力管的接口形式多采用承插式橡胶圈接口,其胶圈面多为圆形,能承受较高的内压力及一定量的沉陷、错口和弯折;震性能良好,在地震烈度十度左右接口无破坏现象;埋置地下的胶耐老化性能好,使用期可长达数十年。一 4.1.2管道安装 (1)外观检查与胶圈选择 ①外观检查认真反复的进行钢筋混凝土压力管外观检查是管铺设前应把握好的质量 关键,否则会导致不良后果。外观检查的主内容如下。 a·管内壁应当平整。局部凸凹幅度不大于壁厚的1/5的情况允修补;小于4mm者可不修补;凸凹幅度大于壁厚的1/5,但不露,且累计面积不大于0. 8rri2的情况可修补;穿洞者不能使用。 b.承插口工作面应光滑平整。如有局部缺陷,其凸凹幅度不得于2mm,超出者应予修补。如发现气孔、麻面、瘤状物等应修平。c·插口如发生错位,管外表面不得高于挡台。当高出挡台10mm 内者,应凿平磨光,其纵向长度不小于30mm;插口挡台掉落者应补平顺后方可使用。 d.保护层不得有空鼓、脱落与裂纹现象。如有局部空鼓,其面不大于管外表面1/15,可用C40混凝土或环氧砂浆修补;大于15者不能使用。管内外有裂纹者不能使用。 e.管外表面不得有露筋现象,管两端部多出的纵向筋应烧掉,舌遗留的凹坑用水泥砂浆填补或用沥青涂刷。管两端头露出的多余向筋应剪去,再修平。 f.合浆露浆长度累计在管长的1/3以内时,允许修补,超过1/3 得使用。 g.管两端碰伤,但未损伤工作面,允许修补,否则不能使用。 h.承口外斜面如有高低不平的“狼牙刺”应凿平磨光。 ②橡胶圈的选择钢筋混凝土压力管的接口均用橡胶圈密封。为使其达到密封不漏水,胶圈务须安在工作台的正确位置,且具一定压缩率,并在管内水压作用下不被挤出, 因此要选择好胶圈直径。见 {。 管子在出厂时均盖有所配胶圈直径的字样,但因批量生产,往往有漏检部位,在施工现场应复查检。插口工作台因制作管模由插口钢圈控制,其误差大多在允许公差范围以内,可忽略不计;但承口工作面误差较大,则应当复检。 (2)管道安装预应力和自应力钢筋混凝土管安装一般采用顶推与拉入的方法,可根据 施工条件、管径和顶力大小以及机具设备情况确定。通常用的安装方法有:撬杠顶入法、千斤顶拉杆法、吊链拉入法等。 ①撬杠顶入法将撬杠插入已对口待连接管承口端工作坑的土层中,在撬杠与承口

相关文档
相关文档 最新文档