文档库 最新最全的文档下载
当前位置:文档库 › DBPSK、QPSK数字调制实验 滤波法及数字锁相环位同步提取实验

DBPSK、QPSK数字调制实验 滤波法及数字锁相环位同步提取实验

DBPSK、QPSK数字调制实验 滤波法及数字锁相环位同步提取实验
DBPSK、QPSK数字调制实验 滤波法及数字锁相环位同步提取实验

实验十二 DBPSK 调制及解调实验

项目一 调制观测

1、以9号模块NRZ-I 为触发,观测I ;以9号模块NRZ-Q 为触发,观测Q 。

2、以9号模块基带为触发,观测输出。

思考:分析以上观察的波形,分析与ASK 有何关系?

观察实验电路可发现,基带信号先经过查分编码得到相对码,左图将相对码的1电平信号与载波相乘,得到”I ”;右图将相对码的0电平与载波的反相相乘,得到”Q “。观察波形发现,1电平的波形和0电平的波形由180°的相位差。

观察左图的波形可以发现,在基带信号从“1”变为“0”的时候,调制输出的波形的相位没有发生跳变。而从右图中可以发现,当基带信号从“0”变为“1”时,调制输出的波形相位发生了180的倒向。满足DBPSK 的调制原理:“1”变“0”不变。

项目二 DBPSK 差分信号观测 1、以基带信号为触发,观测NRZ-I 。

项目三 DBPSK 解调观测 1、以基带信号为触发,观测SIN,

2、恢复载波之后,以基带信号为触发,单击”复位“观测DBPSK 解调输出。

将DBPSK 的调制原理与ASK 的比较发现,两者的调制方式几乎相同,不同的只是基

带信号:ASK 的基带信号是单极性的,DBPSK 的则是双极性的。

调节13号模块的W1可以发现“SIN ”的波形逐渐稳定,这是表明已恢复出了载波信号。恢复的载波信号与载波波形相比有略微的延迟。

通过观察可以发现,绝对吗与相对码的关系为:

1-⊕=k k k b a b

(1)

(2)

(3)

(4)

实验十三 QPSK/OQPSK 数字调制实验

图(1)(2)(3)(4)分别为没有单击“复位”键、单击一次、单击两次、单击三次时的波形图,可以发现四幅图中都没有发生180°的相位模糊的现象,说明使用DBPSK 很好的避免解调过程中”反向工作“的问题,恢复出的1、0信号无倒置。

项目 QPSK/OQPSK 数字调制

1、以基带信号为触发,观测调制输入及输出。

2、选择调制方式为OQPSK ,观测以基带信号为触发观测调制输出。

实验十九 滤波法及数字锁相环位同步提取实验

通过左图可以发现,基带信号为“00”时,调制出的载波信号相位为225°,基带信号为“01”时,调制出的载波信号相位为135°,可以发现载波信号的相位相差90°,观察输出结果发现与编码规则符合。 观察上图波形可以发现,基带信号码元为“100001”,因此调制出的载波信号在边界处分别都有了90°的相位差。观察OQPSK 和QPSK 可以发现,QPSK 体制中,它的相邻码元最大相位差达到180°,由于这样的相位突变在频带受限的系统中会引起信号包络的很大起伏,

所以为了减小相位突变,将基带信号的奇数位和偶数位在时间上错开半个码元,使之不可能同时改变,从而减小了信号振幅的起伏。这就是OQPSK 调制。因此,QPSK 和OQPSK 的唯一区别就在于OPSK 基带信号的奇数位和偶数位的持续时间原则上可以不同,而对于OQPSK 来说,基带信号的奇数位和偶数位的持续时间必须保持相同。

项目二滤波法恢复位同步恢复观测

1、以BPF-OUT为触发,观测门限判决输出

分析什么情况下的门限判决输出不均匀?

2、以BPF-OUT为触发,观测鉴相输入1的波形

3、对比门限输入和鉴相输入的波形,并分析时钟不均匀情况是否有改变。

观察滤波器的输出信号可以发现信号的干扰较多,噪声偏大;且输出的门限判决不均匀。

通过实验的波形图发现,当滤波器输出的信号频率成分较为复杂时,门限判决高低电

频时容易出错,导致了一些地方占空比不足,使得门限判决输出不均匀。

数字时钟经过了四分频之后,通过波形可以看出信号输出不均匀的情况有所改善,占空比已经较为接近50%。

4、对比鉴相输入1和鉴相输入2,记录波形,比较两路波形的幅度和相位。

5、对比观测滤波法位同步输入和BS1,观测恢复的位同步信号。

通过对比可以发现,门限判决出的波形十分的不均匀。而相比之下,鉴相输入的波形则比较均匀。

观察波形,通过了解位同步滤波法的原理知道鉴相器A 的时钟及相位与鉴相器B 的相同,因此鉴相输入1的数字时钟256k 在经过了四份频后变为了64k ,而鉴相输入2的时钟频率为512k ,所以鉴相输入2的占空比应为鉴相输入1的八倍。

观察同步输入以及恢复出的时钟信号发现,恢复出的时钟信号均匀且占空比为1:1,可以看出使用滤波法来恢复位同步的信号的方法十分有效。

全数字锁相环原理及应用

全数字锁相环原理及应用 2011年11月18日 摘要:锁相环是一种相位负反馈系统,它能够有效跟踪输入信号的相位。随着数字集成电路的发展,全数字锁相环也得到了飞速的发展。由于锁相精度和锁定时间这组矛盾的存在使得传统的全数字锁相环很难在保证锁定时间的情况下保证锁定精度。鉴于此,本文对一些新结构的全数字锁相环展开研究,并用VHDL语言编程,利用FPGA仿真。 为解决软件无线电应用扩展到射频,即射频模块软件可配置的问题和CMOS工艺中由于电压裕度低、数字开关噪声大等因素,将射频和数字电路集成在一个系统中设计难度大的问题,本文尝试提出数字射频的新思路。全数字锁相环是数字射频中最重要的模块之一,它不仅是发射机实现软件可配置通用调制器的基础,还是为接收机提供宽调频范围本振信号的基础。本文针对数字射频中的数字锁相环的系统特性以及其各重要模块进行了研究。 关键词:全数字锁相环;锁定时间;锁定精度;PID控制;自动变模控制;数控振荡器;时间数字转换器;数字环路滤波器;FPGA; Principle and Application of all-digital phase-locked loop Abstract: Phase-Locked Loop is a negative feedback system that can effectively track the input signal’s phase. With the development of digital integrated circuits, all-digital phase-locked loop has also been rapidly developed. Because of the contradiction between the existence of phase-locked precision and phase-locked time, it makes the traditional all-digital phase-locked loop difficult to ensure the lock time meanwhile as well as phase-locked precision. So some new structures of all-digital phase-locked loop are analyzed in this paper and programmed in VHDL language with simulation under FPGA. In order to extend the application from radio to RF, which including RF modules software configurable problems and the difficulty to integrate RF and digital circuit in one system due to some factors contain the low voltage and large noise of the digital switches etc. This paper will try to put out a new thought for digital RF. All-digital phase-locked loop is one of the most important modules in digital RF. It is not only the foundation of transmitter which can be realized by software configurable general modulator, but also the foundation of receiver which can be provided wide range of local vibration signal. This paper particularly makes a study of the system character of tall-digital phase-locked loop and its vital modules. Keywords: ADPLL; Locked time; Locked precision; PID control; Auto modulus control; DCO;TDC; Digital Loop Filter; 1. 引言 锁相环路是一种反馈控制电路,锁相环的英文全称是Phase-Locked Loop,简称PLL。目前锁相环在通信、信号处理、调制解调、时钟同步、频率综合和自动化控制等领域应用极为广泛,已经成为各种电子设备中不可缺少的基本部件。随着电子技术向数字化方向发展,需要采用数字方式实现信号的锁相处理。因此,对全数字锁相环的研究和应用得到了越来越多的关注。虽然锁相环(PLL)技术已经有了半个多世纪的发展,但是其应用领域也在不断扩大,随着高新科技的发展,使得它的性能需要不断地改进和提高,因此,锁相环的设计与分析也成立集成电路设计者的热点。设计者们也不断提出了新的锁相环结构[1-3],以适应不同场合的需求。

BPSK调制及解调实验报告

实验五BPSK调制及解调实验 一、实验目的 1、掌握BPSK调制和解调的基本原理; 2、掌握BPSK数据传输过程,熟悉典型电路; 3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念; 4、熟悉BPSK调制载波包络的变化; 5、掌握BPSK载波恢复特点与位定时恢复的基本方法; 二、实验器材 1、主控&信号源、9号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、BPSK调制解调(9号模块)实验原理框 PSK调制及解调实验原理框图 2、BPSK调制解调(9号模块)实验框图说明 基带信号的1电平和0电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。 四、实验步骤 实验项目一 BPSK调制信号观测(9号模块) 概述:BPSK调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。本项目通过对比观测基带信号波形与调制输出波形来验证BPSK调制原理。 1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK数字调制解调】。将9号模块的S1拨为0000,调节信号源模块W3使256 KHz载波信号峰峰值为3V。 3、此时系统初始状态为:PN序列输出频率32KHz。 4、实验操作及波形观测。 (1)以9号模块“NRZ-I”为触发,观测“I”; (2)以9号模块“NRZ-Q”为触发,观测“Q”。 (3)以9号模块“基带信号”为触发,观测“调制输出”。 思考:分析以上观测的波形,分析与ASK有何关系? 实验项目二 BPSK解调观测(9号模块) 概述:本项目通过对比观测基带信号波形与解调输出波形,观察是否有延时现象,并且验证BPSK解调原理。观测解调中间观测点TP8,深入理解BPSK解调原理。 1、保持实验项目一中的连线。将9号模块的S1拨为“0000”。 2、以9号模块测13号模块的“SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复出载波。 3、以9号模块的“基带信号”为触发观测“BPSK解调输出”,多次单击13号模块的“复位”按键。观测“BPSK解调输出”的变化。 4、以信号源的CLK为触发,测9号模块LPF-BPSK,观测眼图。 思考:“BPSK解调输出”是否存在相位模糊的情况?为什么会有相位模糊的情况? 五、实验报告 1、分析实验电路的工作原理,简述其工作过程; 输入的基带信号由转换开关转接后分成两路,一路经过差分编码控制256KHz的载频,另一路经倒相去控制256KHz的载频。???解调采用锁相解调,只要在设计锁相环时,使它锁定在FSK的一个载频上此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。? 2、分析BPSK调制解调原理。 调制原理是:基带信号先经过差分编码得到相对码,再根据相对码进行绝对调相, 即将相对码的1电平和0电平信号分别与256K载波及256K反相载波相乘,叠加后得到DBPSK 调制输出。?

最新图像的平滑滤波---数字图像处理实验报告南昌大学

实验报告三 姓名:胡文松学号:6103413007 班级:生物医学工程131 实验日期:2016/5/11 实验成绩: 实验题目:图像的平滑滤波 一.实验目的 (1)熟练掌握空域平滑滤波的原理、方法及其MATLAB实现。 (2)分析模板大小对空域平滑滤波的影响,线性和非线性方法对空域平滑滤波增强效果的影响,比较不同滤波器的处理效果,分析其优缺点。 二.实验原理 (1)线性空间滤波 函数imfilter来实现线性空间滤波,语法为: g = imfilter(f, w, filtering_mode, boundary_options, size_options) 其中,f是输入图像,w为滤波模板,g为滤波结果,filtering_mode用于指定在滤波过程中是使用相关运算(‘corr’)还是卷积运算(‘conv’),相关就是按模板在图像上逐步移动运算的过程,卷积则是先将模板旋转180度,再在图像上逐步移动的过程。 (2)非线性滤波器 数字图像处理中最著名的统计排序滤波器是中值滤波器,MATLAB工具箱提供了二维中值滤波函数medfilt2,语法为:g = medfilt2(f, [m n], padopt) 矩阵[m n]定义了一个大小为m×n的邻域,中值就在该邻域上计算;而参数padopt指定了三个可能的边界填充选项:’zeros’(默认值,赋零),’symmetric’按照镜像反射方式对称地沿延其边界扩展,’indexed’,若f是double类图像,则以1来填充图像,否则以0来填充图像。 (3)线性空间滤波器 MATLAB工具箱支持一些预定义的二维线性空间滤波器,这些空间滤波器可通过函数fspecial实现。生成滤波模板的函数fspecial的语法为:w = fspecial(‘type’, parameters) ;其中,’type’表示滤波器类型,parameters进一步定义了指定的滤波器。fspecial(‘laplacian’, alpha) 一个大小为3×3的拉普拉斯滤波器,其形状由alpha指定,alpha是范围[0, 1]的数。alpha默认为0.5。 三.实验内容及结果 (1)选择一副图像fig620.jpg,分别选择3×3,7×7,25×25等平均模板进行均值滤波模糊处理,并对不同尺寸的滤波器模板操作后的图像进行比较。 (1)选择一副图像fig620.jpg,分别选择3×3,7×7,25×25等平均模板进行高斯滤波模糊处理,并对不同尺寸的滤波器模板操作后的图像进行比较。 (2)选择一副图像circuit.jpg,对图像加入椒盐噪声,检验两种滤波模板(3×3平均模板和3×3的非线性模板中值滤波器)对噪声的滤波效果。

数字锁相环介绍

数字锁相环介绍

————————————————————————————————作者:————————————————————————————————日期:

数字锁相环试验讲义 一、锁相环的分类 模拟、数字如何定义?何谓数字锁相环。是指对模拟信号进行采样量化之后(数字化)的“数字信号”的处理中应用的锁相环,还是指的对真正的“数字信号”如时钟波形进行锁定的锁相环? 二、数字锁相环的实际应用 欲成其事,先明其义。 现代数字系统设计中,锁相环有什么样的作用。 1)在ASIC设计中的应用。 主要应用领域:窄带跟踪接收;锁相鉴频;载波恢复;频率合成。 例一:为了达到ASIC设计对时钟的要求,许多工程师都在他们的设计中加入了锁相环(PLL)。PLL有很多理想的特性,例如可以倍频、纠正时钟信号的占空比以及消除时钟在分布中产生的延迟等。这些特性使设计者们可以将价格便宜的低频晶振置于芯片外作为时钟源,然后通过在芯片中对该低频时钟源产生的信号进行倍频来得到任意更高频率的内部时钟信号。同时,通过加入PLL,设计者还可以将建立-保持时间窗与芯片时钟源的边沿对齐,并以此来控制建立-保持时间窗和输入时钟源与输出信号之间的延迟。 2)在信号源产生方面的应用 例二:由于无线电通信技术的迅速发展,对振荡信号源的要求也在不断提高。不但要求它的频率稳定度和准确度高,而且要求能方便地改换频率。实现频率合成有多种方法,但基本上可以归纳为直接合成法与间接合成法(锁相环路)两大类。 3)无线通信领域的实际应用 例三:GSM手机的频率系统包括参考频率锁相环,射频本振锁相环、中频本振锁相环。 广义的数字锁相环包括扩频通信中的码跟踪。 三、数字锁相环的基本原理 一般数字锁相环路的组成与模拟锁相环路相同,即也是由相位检波器、环路滤波器和本地振荡器等基本部件构成,但这些部件全部采用数字电路。具体来说数字锁相环由:数字鉴相器、数字环路滤波器、NCO和分频器组成。 四、实际应用中的数字锁相环的实现方法 PLL的结构和功能看起来十分简单,但实际上却非常复杂,因而即使是最好的电路设计者也很难十分顺利地完成PLL的设计。 在实际应用中,针对数字信号或数字时钟的特点,数字锁相环多采用超前滞后型吞吐脉冲的锁相环路来实现。 下面的框图是一个实用的数字锁相环的实现框图。

抽样定理和PCM调制解调实验报告

《通信原理》实验报告 实验一:抽样定理和PAM调制解调实验 系别:信息科学与工程学院 专业班级:通信工程1003班 学生姓名:陈威 同组学生:杨鑫 成绩: 指导教师:惠龙飞 (实验时间:2012 年 12 月 7 日——2012 年 12 月28日) 华中科技大学武昌分校

1、实验目的 1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。 2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。 2、实验器材 1、信号源模块 一块 2、①号模块 一块 3、60M 双踪示波器 一台 4、连接线 若干 3、实验原理 3.1基本原理 1、抽样定理 图3-1 抽样与恢复 2、脉冲振幅调制(PAM ) 所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。 自然抽样 平顶抽样 ) (t m ) (t T

图3-3 自然抽样及平顶抽样波形 PAM方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号m s 化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。 四、实验步骤 1、将信号源模块、模块一固定到主机箱上面。双踪示波器,设置CH1通道为同步源。 2、观测PAM自然抽样波形。 (1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。 (2)将模块一上K1选到“自然”。 (3)关闭电源,连接 表3-1 抽样实验接线表 (5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。在PAMCLK处观察被抽样信号。CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

实验四 用频率取样法设计FIR数字滤波器

实验报告 哈尔滨工程大学教务处制

实验四 用频率取样法设计FIR 数字滤波器 一、实验目的 1、掌握频率取样法设计线性相位FIR 数字滤波器的方法,并用Matlab 工具编程实现。 2、熟悉频率取样理论,熟悉内插函数及其应用。 3、观察过渡带取样点或优化数值对滤波器幅频特性的影响。 二、 实验原理 频率采样法就是根据频域采样理论,由滤波特性指标构造希望逼近的滤波器频响函数H d (e jω),对其在[0,2π]上采样得到。 ()() 20,1,,1j d d k N H k H e k N ωπ ω===-L 然后,就可求出单位脉冲响应h (n ),或是系统函数H (z )。这样,h (n )或是H (z )就是滤波器的设计结果。 ()()()()()1 100,1,,110,1,,1 1N N k k N h n IDFT H k n N H k z H z k N N W z ----===--= =--∑L L ()()() Frequency Sampling 2N 0,1,,1j j d d k H e H k H e k N ωωπ ω= ??????→==-L ()()() j k H k A k e θ= 三、 实验内容 1.用频率取样法设计一个线性相位低通数字滤波器,N=15,[0,π]之间的幅度取样值如下,求出其单位脉冲响应h[k]及幅频和相频特性曲线。尝试增加过渡点,观察并分析过渡点对滤波器性能的影响。 1, k 0,1,2[k]0.5, 30, H k =?? ==??? O t her s /3 1,()/30,d A ωπωπωπ

实验四数字滤波器的设计实验报告

数字信号处理 实验报告 实验四 IIR数字滤波器的设计学生姓名张志翔 班级电子信息工程1203班 学号 指导教师 实验四 IIR数字滤波器的设计 一、实验目的: 1. 掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设 计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的MATLAB编程。 2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。 3.熟悉Butterworth滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。 二、实验原理: 1.脉冲响应不变法 用数字滤波器的单位脉冲响应序列模仿模拟滤波器的冲激响应 ,让正好等于的采样值,即,其中为采样间隔,如果以及分别表示的拉式变换及的Z变换,则 2.双线性变换法 S平面与z平面之间满足以下映射关系:

s平面的虚轴单值地映射于z平面的单位圆上,s平面的左半平面完全映射到z平面的单位圆内。 双线性变换不存在混叠问题。 双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。 三、实验内容及步骤: 实验中有关变量的定义: fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期 (1) =0.3KHz, δ=0.8Db, =0.2KHz, At =20Db,T=1ms; 设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。 MATLAB源程序: wp=2*1000*tan(2*pi*300/(2*1000)); ws=2*1000*tan(2*pi*200/(2*1000)); [N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn [B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动 [num,den]=bilinear(B,A,1000); [h,w]=freqz(num,den); f=w/(2*pi)*1000; plot(f,20*log10(abs(h)));

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

数字图像处理实验报告--平滑滤波

数字图像处理实验报告 实验名称:线性平滑滤波器——领域平均与加权平均 姓名: 班级: 学号: 专业:电子信息工程(2+2) 指导教师:陈华华 实验日期:2012年5月17日

一,图像的平滑 图像的平滑方法是一种实用的图像处理技术,能减弱或消除图像中的高频率分量,但不影响低频率分量。因为高频率分量主要对应图像中的区域边缘等灰度值具有较大较快变化的部分,平滑滤波将这些分量滤去可减少局部灰度起伏,使图像变得比较平滑。实际应用中,平滑滤波还可用于消除噪声,或者在提取较大目标前去除过小的细节或将目标内的小间断连接起来。它的主要目的是消除图像采集过程中的图像噪声,在空间域中主要利用邻域平均法、中值滤波法和选择式掩模平滑法等来减少噪声;在频率域内,由于噪声主要存在于频谱的高频段,因此可以利用各种形式的低通滤波器来减少噪声。 二,领域平均 1.基础理论 最简单的平滑滤波是将原图中一个像素的灰度值和它周围邻近8个像素的灰度值相加,然后将求得的平均值(除以9)作为新图中该像素的灰度值。它采用模板计算的思想,模板操作实现了一种邻域运算,即某个像素点的结果不仅与本像素灰度有关,而且与其邻域点的像素值有关。模板运算在数学中的描述就是卷积运算,邻域平均法也可以用数学公式表达: 设为给定的含有噪声的图像,经过邻域平均处理后的图像为,则 ,M是所取邻域中各邻近像素的坐标,是邻域中包含的邻 近像素的个数。邻域平均法的模板为:,中间的黑点表示以该像素为中心元素,即该像素是要进行处理的像素。在实际应用中,也可以根据不同的需要选择使用不同的模板尺寸,如3×3、5×5、7×7、9×9等。 邻域平均处理方法是以图像模糊为代价来减小噪声的,且模板尺寸越大,噪声减小的效果越显著。如果是噪声点,其邻近像素灰度与之相差很大,采用邻域平均法就是用 邻近像素的平均值来代替它,这样能明显消弱噪声点,使邻域中灰度接近均匀,起到平滑灰度的作用。因此,邻域平均法具有良好的噪声平滑效果,是最简单的一种平滑方法。 Matlab代码: function average_filtering() X=imread('cameraman.tif') noise_x=imnoise(X,'salt & pepper');%加噪声方差为0.02的椒盐声

有限脉冲响应数字滤波器设计实验报告

成绩: 《数字信号处理》作业与上机实验 (第二章) 班级: 学号: 姓名: 任课老师: 完成时间: 信息与通信工程学院 2014—2015学年第1 学期

第7章有限脉冲响应数字滤波器设计 1、教材p238: 19.设信号x(t) = s(t) + v(t),其中v(t)是干扰,s(t)与v(t)的频谱不混叠,其幅度谱如题19图所示。要求设计数字滤波器,将干扰滤除,指标是允许|s(f)|在0≤f≤15 kHz频率范围中幅度失真为±2%(δ1 = 0.02);f > 20 kHz,衰减大于40 dB(δ2=0.01);希望分别设计性价比最高的FIR和IIR两种滤波器进行滤除干扰。请选择合适的滤波器类型和设计方法进行设计,最后比较两种滤波器的幅频特性、相频特性和阶数。 题19图 (1)matlab代码: %基于双线性变换法直接设计IIR数字滤波器 Fs=80000; fp=15000;fs=20000;rs=40; wp=2*pi*fp/Fs;ws=2*pi*fs/Fs; Rp=-20*log10(1-0.02);As=40; [N1,wp1]=ellipord(wp/pi,ws/pi,Rp,As); [B,A]=ellip(N1,Rp,As,wp1); [Hk,wk1]=freqz(B,A,1000); mag=abs(Hk);pah=angle(Hk);

%窗函数法设计FIR 数字滤波器 Bt=ws-wp; alph=0.5842*(rs-21)^0.4+0.07886*(rs-21); N=ceil((rs-8)/2.285/Bt); wc=(wp+ws)/2/pi; hn=fir1(N,wc,kaiser(N+1,alph)); M=1024; Hk=fft(hn,M); k=0:M/2-1; wk=(2*pi/M)*k; %画出各种比较结果图 figure(2); plot(wk/pi,20*log10(abs(Hk(k+1))),':','linewidth',2.5); hold on plot(wk1/pi,20*log10(mag),'linewidth',2); hold off legend('FIR 滤波器','IIR 滤波器'); axis([0,1,-80,5]);xlabel('w/\pi');ylabel('幅度/dB'); title('损耗函数'); figure(3) plot(wk/pi,angle(Hk(k+1))/pi,':','linewidth',2.5); hold on plot(wk1/pi,pah/pi,'linewidth',2); hold off legend('FIR 滤波器','IIR 滤波器'); xlabel('w/\pi');ylabel('相位/\pi'); title('相频特性曲线'); (2)两种数字滤波器的损耗函数和相频特性的比较分别如图1、2所示: 图1 损耗函数比较图 图2 相频特性比较图 0.1 0.2 0.3 0.4 0.50.6 0.7 0.8 0.9 1 -80-70 -60-50-40-30-20-100w/π 幅度/d B 损耗函数 FIR 滤波器IIR 滤波器 0.10.20.30.4 0.50.60.70.80.91 -1-0.8 -0.6-0.4-0.200.20.40.60.81w/π 相位/π 相频特性曲线 FIR 滤波器IIR 滤波器

数字锁相环MATLAB代码

奈奎斯特型全数字锁相环(NR-DPLL) 注:本文截取于通信原理课程综合设计,载波提取部分中的锁相环解调部分中的基础锁相环。MATLAB编程仿真实现,想要simulink实现的同学要失望啦。代码在本文末,抱歉未加注释。理解本文需要的知识:信号与系统,数字信号处理,同步技术。

2.7载波的同步提取 提取载波信息可用锁相环进行跟踪载波或调制信息。本文采用奈奎斯特型全数字锁相环(NR-DPLL )对接收信号进行载波同步提取,并用于相干解调。 2.7.1 NR-DPLL 结构介绍 数字锁相环的基本组成如下 图2-6 数字锁相环的组成 NR-DPLL 是基于奈奎斯特采样鉴相器、数字环路滤波器、数字控制振荡器的一种数字锁相环。下面分别对各部分作简要介绍。 2.7.2 奈奎斯特采样鉴相器 奈奎斯特采样鉴相器的组成框图如图2-7所示。 图2-7 奈奎斯特采样鉴相器的组成框图 为了表述方便,设数字控制振荡器(NCO )输出的本振数字信号为 0002()cos(())k k k u t U t t ωθ=+ (2.7-1) 输入信号 101()sin(())i u t U t t ωθ=+ (2.7-2)

其中 100()(),i i o t t t θωθωωω=?+?=- 输入信号经A/D 采样后,第k 个采样时刻采样量化后的数字信号为 01()sin(())i k i k k u t U t t ωθ=+ (2.7-3) 对输入信号进行A/D 变换的采样速率由带通信号奈奎斯特采样定理确定,但为防止信号频谱混叠并保证信号相位信息的有效抽取,采样速率一般选取前置带通滤波器的两倍带宽以上。 令()(),()()i k i o k o u t u k u t u k ==,即()i u k 和()o u k 相乘后,经低通滤波得到的数字误差信号 ()sin ()d d e u k U k θ= (2.7-4) 式中 12()()()e k k k θθθ=- (2.7-5) 2.7.3 数字环路滤波器 数字环路滤波器与模拟环路中环路滤波器的作用是一样的,都是为了抑制高频分量及噪声,且滤波器的参数直接影响环路的性能。在实际应用中一阶数字环路滤波器的实现形式如图2-8所示。 图2-8 一阶数字环路滤波器的实现形式 其Z 域传递函数: 2 11 ()z ()1c d u k G F G u k z -=+-()= (2.7-6) 按照图2-8中所实现的数字滤波器,其频率特性与理想积分滤波器的频率特性一致;两种滤波器参数之间也有着一定的对应关系。 对理想积分滤波器的传递

平滑滤波器的设计和分析

数字信号处理 实验报告 一、实验目的: 1.掌握用平滑滤波器滤除高频噪声的方法 2. 理解M 值和滤波效果的关系。 3.会使用filter 命令来设计滤波器。 二、实验内容 使用matlab 编写程序,实现平滑滤波器,用平滑滤波器滤掉附加在原始信号上的高频噪声。改变M 的大小,观察滤波的效果。总结M 值对滤波效果影响。认真研究filter 的功能和使用方法。 三、实验原理与方法和手段 1,三点平滑滤波器(FIR )的表达式: [])2()1()(31)(-+-+=n x n x n x n y ,∑-=-=10)(1)(M k k n x M n y 令:)50 47cos()();10cos()(21n n s n n s ππ== )()()(21n s n s n x += 其中:1s 是低频正弦信号,2s 是高频正弦信号 四、程序设计 n = 0:100; s1 = cos(2*pi*0.05*n); %低频信号 s2 = cos(2*pi*0.47*n) % 高频信号 x = s1+s2; % 两信号叠加 M = input('滤波器长度 = '); num = ones(1,M); y = filter(num,1,x)/M; % 显示输入与输出的信号 clf; subplot(2,2,1);

plot(n, s1); axis([0, 100, -2, 2]); xlabel('n'); ylabel('A'); title('信号1图像'); subplot(2,2,2); plot(n, s2); axis([0, 100, -2, 2]); xlabel('n'); ylabel('A'); title('信号2图像'); subplot(2,2,3); plot(n, x); axis([0, 100, -2, 2]); xlabel('n'); ylabel('A'); title('输入信号'); subplot(2,2,4); plot(n, y); axis([0, 100, -2, 2]); xlabel('n'); ylabel('A'); title('输出信号'); axis; 五、结果及分析 平滑滤波器(FIR)允许低于截止频率的信号通过,但高于截止频率的信号被滤波器滤除,具有低通特性。s1、s2、x信号与M值无关,这三信号不受M值的影响。观察输出信号的波形,y信号的幅值随M值的增大而减少,同时噪声也随M值的增大而减少,这是因为M 值的增大使低通滤波器的长度增长了。另外,当M值增大到一定值时(如M为100),输出信号十分微弱,这是因为此时的M值使得滤波器的截止频率降得极低,输入信号几乎完全被滤除。

FIR数字滤波器设计实验_完整版

班级: 姓名: 学号: FIR 数字滤波器设计实验报告 一、实验目的 1.掌握FIR 数字滤波器的设计方法; 2.熟悉MATLAB 信号处理工具箱的使用; 3.熟悉利用MATLAB 软件进行FIR 数字滤波器设计,以及对所设计的滤波器 进行分析; 4.了解FIR 滤波器可实现严格线性相位的条件和特点; 5.熟悉FIR 数字滤波器窗函数设计法的MATLAB 设计,并了解利用窗函数法 设计FIR 滤波器的优缺点; 6.熟悉FIR 数字滤波器频率采样设计法的MATLAB 设计,并了解利用频率采 样法设计FIR 滤波器的优缺点; 7.熟悉FIR 数字滤波器切比雪夫逼近设计法的MATLAB 设计,并了解利用切 比雪夫逼近法设计FIR 滤波器的优缺点。 二、实验设备及环境 1.硬件:PC 机一台; 2.软件:MATLAB (6.0版以上)软件环境。 三、实验内容及要求 1.实验内容:基于窗函数设计法、频率采样设计法和切比雪夫逼近设计法,利用MATLAB 软件设计满足各自设计要求的FIR 数字低通滤波器,并对采用不同设计法设计的低滤波器进行比较。 2.实验要求: (1)要求利用窗函数设计法和频率采样法分别设计FIR 数字低通滤波 器,滤波器参数要求均为:0.3c w π=。其中,窗函数设计法要求分别利用矩形窗、汉宁窗和布莱克曼窗来设计数字低通滤波器,且 21N ≥,同时要求给出滤波器的幅频特性和对数幅频特性; 频率

采样法要求分别利用采样点数21N =和63N =设计数字低通滤波器,同时要求给出滤波器采样前后的幅频特性,以及脉冲响应及对数幅频特性。 (2)要求利用窗函数设计法和切比雪夫逼近法分别设计FIR 数字低通 滤波器,滤波器参数要求均为: 0.2π, 0.25dB, 0.3π, 50dB p p s s ωαωα==== 其中,窗函数设计法要求利用汉明窗来设计数字低通滤波器,且 66N ≥,同时要求给出滤波器理想脉冲响应和实际脉冲响应,汉 名窗和对数幅频特性; 切比雪夫逼近法要求采用切比雪夫Ⅰ型,同时要求给出滤波器的脉冲响应、幅频特性和误差特性。 (3)将要求(1)和(2)中设计的具有相同参数要求,但采用不同设 计方法的滤波器进行比较,并以图的形式直观显示不同设计设计方法得到的数字低通滤波器的幅频特性的区别。 四、实验步骤 1.熟悉MATLAB 运行环境,命令窗口、工作变量窗口、命令历史记录窗口,FIR 常用基本函数; 2.熟悉MATLAB 文件格式,m 文件建立、编辑、调试; 3.根据要求(1)的内容,设计FIR 数字低通滤波器,建立M 文件,编写、调试、运行程序; 4.根据要求(2)的内容,设计FIR 数字低通滤波器,建立M 文件,编写、调试、运行程序; 5.将要求(1)和(2)中设计的具有相同参数要求,但采用不同设计方法的滤波器进行比较分析; 6.记录实验结果; 7.分析实验结果; 8.书写实验报告。 五、实验预习思考题 1.FIR 滤波器有几种常用设计方法?这些方法各有什么特点?

通信原理数字锁相环实验

通信原理实验报告三数字锁相环实验

实验3数字锁相环实验 一、实验原理和电路说明 在电信网中,同步是一个十分重要的概念。同步的种类很多,有时钟同步、比特同步等等,其最终目的使本地终端时钟源锁定在另一个参考时钟源上,如果所有的终端均采用这种方式,则所有终端将以统一步调进行工作。 同步的技术基础是锁相,因而锁相技术是通信中最重要的技术之一。锁相环分为模拟锁相环与数字锁相环,本实验将对数字锁相环进行实验。 图2.2.1 数字锁相环的结构 数字锁相环的结构如图所示,其主要由四大部分组成:参考时钟、多模分频器(一般为三种模式:超前分频、正常分频、滞后分频)、相位比较(双路相位比较)、高倍时钟振荡器(一般为参考时钟的整数倍,此倍数大于20)等。数字锁相环均在FPGA内部实现,其工作过程如图所示。

T1时刻T2时刻T3时刻T4时刻 图2.2.2 数字锁相环的基本锁相过程与数字锁相环的基本特征 在图,采样器1、2构成一个数字鉴相器,时钟信号E、F对D信号进行采样,如果采样值为01,则数字锁相环不进行调整(÷64);如果采样值为00,则下一个分频系数为(1/63);如果采样值为11,则下一分频系数为(÷65)。数字锁相环调整的最终结果使本地分频时钟锁在输入的信道时钟上。 在图中也给出了数字锁相环的基本锁相过程与数字锁相环的基本特征。在锁相环开始工作之前的T1时该,图中D点的时钟与输入参考时钟C没有确定的相关系,鉴相输出为00,则下一时刻分频器为÷63模式,这样使D点信号前沿提前。在T2时刻,鉴相输出为01,则下一时刻分频器为÷64模式。由于振荡器为自由方式,因而在T3时刻,鉴相输出为11,则下一时刻分频器为÷65模式,这样使D点信号前沿滞后。这样,可变分频器不断在三种模式之间进行切换,其最终目的使D点时钟信号的时钟沿在E、F时钟上升沿之间,从而使D 点信号与外部参考信号达到同步。 在该模块中,各测试点定义如下: 1、TPMZ01:本地经数字锁相环之后输出时钟(56KHz) 2、TPMZ02:本地经数字锁相环之后输出时钟(16KHz) 3、TPMZ03:外部输入时钟÷4分频后信号(16KHz) 4、TPMZ04:外部输入时钟÷4分频后延时信号(16KHz) 5、TPMZ05:数字锁相环调整信号

数字图像处理实验二:图像增强与平滑(精)

实验二图像增强与平滑 一、实验类型:验证性实验 二、实验目的 1. 掌握图像增强的基本原理。 2. 掌握常用的图像增强技术。 三、实验设备:安装有MATLAB 软件的计算机 四、实验原理 图像增强技术的目的是对图像进行加工,以得到对具体应用来说视觉 效果更好、更有用的图像。常用的图像增强技术有图像间运算、直接灰度映射、直方图修改技术、线性滤波和非线性滤波等。下面介绍三种图像增强技术:直方图均衡化、邻域平均平滑滤波和中值滤波。 3. 直方图均衡化 直方图均衡化是一种使输出图像直方图近似为均匀分布的变换算法, 是一种直方图修改技术。在MATLAB 中,可以调用函数histeq 自动完成图像的直方图均衡化。下面的例子演示如何用histeq 函数来调整一幅灰度图像。原图像的灰度对比度较低,大部分值位于灰度范围的中间。histeq 函数生成一幅灰度值在整个范围内均匀分布的输出图像。 I=imread(‘pout.tif’; J=histeq(I; imshow(J figure,imhist(J,64 4. 邻域平均平滑滤波

邻域平均平滑滤波也称为均值滤波,是一种线性滤波方法。该方法用 一个像素的平均值作为滤波结果,。下面的例子演示如何在MATLAB 中对 一幅灰度图像进行邻域平均平滑滤波。 I=imread(‘eight.tif’; J=imnoise(I,’salt & pepper’,0.02; figure,imshow(J; h=ones(3,3/9; K=imfilter(J,h; figure,imshow(K; 5. 中值滤波 中值滤波是最常用的非线性滤波算法,该算法的输出像素值是对应像素邻域内的中值。下面的例子演示如何在 MATLAB中对一幅灰度图像进行中值滤波。 I=imread(‘eight.tif’; J=imnoise(I,’salt & pepper’,0.02; figure,imshow(J; K=medfilt2(J,[3 3]; figure,imshow(K; 五、实验内容 1. 选择一幅直方图不均匀的图像,对该图像做直方图均衡化处理,比较处理前后的图像以及它们的灰度直方图。 2. 选择一幅图像,对它增加不同的噪声,然后分别利用邻域平均平滑滤波和中值滤波对该图像进行滤波,比较各滤波器的滤波效果。 六、实验步骤 在百度中找到灰度图,将图片保存在C盘中 1.直方图均衡化

数字锁相环研究

数字锁相环研究 刘飞雪 摘要:全数字锁相环路,所谓全数字化,就是环路部件全部数字化,采用数字鉴相器(DPD)、数字环路滤波器(DLF)和数控振荡器(DCO)构成的锁相环路。同步是通信系统中的一个重要实际问题。在数字通信系统中,位同步(又称码元同步)提取是更为重要的一个环节。因为确定了每一个码元的起始时刻,便可以对数字信息做出正确判决。利用全数字锁相环(DPLL)便可以直接从所接收的数字信号中提取位同步信号。用来实现位时钟同步提取的主要是超前—滞后型数字锁相环(LL-DPLL)。本文通过对全数字锁相环的种类及其相应实现功能的研究,确定了对位同步全数字锁相环路的设计方案,设计位同步全数字锁相环各个模块,本文中设计了3个模块,其中第2块包含2个小模块,第3块又包含3 个小模块,用Verilog HDL硬件描述语言对系统中的每个模块进行描述、仿真,然后将三个模块连接成反馈环路系统,使用仿真工具QuartusⅡ6.0进行编译、仿真,调试输出正确波形,最后分析电路性能。 关键词:全数字锁相环路,位同步数字锁相环路,超前-滞后型数字锁相环,数字鉴相器,数字滤波器,数控振荡器 Abstract All Digital Phase-Locked Loop is called because every module is digital. The loop contains these modules such as Digital Phase Discriminator (DPD), Digital Loop Frequency (DLF), Digital Control Oscillator (DCO). The synchronization is the key part of application in communication systems. In the field of digital communication systems, pick-up bit synchronization (also called code synchronization) is a more important part., because the definition of originate time of every code could make correct judgement. The usage of Digital Phase-Locked Loop (DPLL) could pick-up bit synchronous signal from digital signal directly. We use Lead-Lag Digital Phase-Locked Loop (LL-DPLL) to realize bit synchronous clock. This paper first introduced DPLL kinds and function. Then it designed the theory and every modules of DPLL. This paper designed three modules. In it, the second contained 2 modules and the third contained 3 modules. Using Verilog HDL to describe and simulate every module of the system, then connecting these modules to realize the system and using simulator named QuartusⅡ6.0 to compile and simulate correct wave. Key word: DPLL, bit synchronous DPLL, LL-DPLL,DPD, DLF, DCO 第一章绪论 1.1 全数字锁相环的背景及发展状况 锁相环路已经在模拟和数字通信及无线电电子学的各个领域得到了极为广泛的应用。伴随着大规模、超高速数字集成电路的发展及计算机的普遍应用,在传统的模拟锁相环路(APLL)应用领域中,一部分已经被数字锁相环路(DPLL)所取代。从六十年代起,人们就开始对数字锁相环路研究。起初,只是把模拟锁相环路中的部分部件数字化。比如,引进数控振荡器(DCO)代替模拟锁相环路中的压控振荡器(VCO)。这样做的优点是能在不牺牲压控振荡器频率稳定度的情况下,加大频率牵引的范围。从而提高整个环路的工作稳定性和可靠性。另外,用数字集成电路制作的鉴相器非常广泛的被应用在模拟锁相环路中,使环路性能大大提高。 此后,出现了全数字化锁相环。所谓全数字化,就是环路部件全部数字化,采用数字鉴相器(DPD)、数字环路滤波器(DLF)和数控振荡器(DCO)构成的锁相环路。目前,全数字锁相环路的研究日趋成熟,无论在理论研究还是在硬件实现方面,国内外均有大量的文献报道。并已经制成全数字化锁相环路FSK信号解调器、PSK信号解调器、位时钟提取器以及同步载波提取器等。国外已有单片全数字化锁相环路商品。全数字化锁相环路的共同特点是: 它们都具有一切数字系统所特有的显著优点,即电路完全数字化,使用逻辑门电路和触发器电路。因此,

相关文档
相关文档 最新文档