文档库 最新最全的文档下载
当前位置:文档库 › 第十章习题 重积分(2015)

第十章习题 重积分(2015)

第十章习题 重积分(2015)
第十章习题 重积分(2015)

第十章 重积分

一、填空题: 1.D 由3,2,0=+=

=y x x

y x 围成,将二重积分??D

d y x f σ),(化成先对y 再对x 的二次积分_______________________________________________。 2.交换积分次序:

=?

?

x

e

dy y x f dx ln 0

1

),( 。

3.将极坐标系下的二次积分

?

?

θ

π

ρρθρθρθcos 0

20

)sin ,cos (d f d 化成直角坐标系下先对

y

再对x 二次积分的_______________________________________。

4.设1:2222≤+b y a x D ,则=--??σd b y a x D

22

221 。

5.设10,10,10:≤≤≤≤≤≤Ωz y x ,已知27)()()(=???Ω

dxdydz z f y f x f ,则=?1

)(dt t f 。

二、选择题: 1.比较??+=

D

d y x I σ2

1)

(与??+=D

d y x I σ32)(的大小,其中1)2()1(:22≤-+-y x D ,

则有 ( )

(A )21I I >; (B )21I I <; (C )21I I =; (D )无法比较。

2.设),(y x f 是有界闭区域2

22:a y x D ≤+上的连续函数,则极限

??→D

a dxdy y x f a ),(1lim

2

0π=( )

(A ))1,1(f ; (B ))1,0(f ; (C ))0,0(f ; (D )不存在。 3.设),(y x f 连续,且??+

=D

dxdy y x f xy y x f ),(),(,其中D 是由直线1,0==x y 及抛

物线2

x y =所围成的区域,则=),(y x f )(

(A )xy ; (B ) xy 2 ; (C ) 8

1

+

xy ; (D ) 1+xy 。 4.设0,:2222≥≤++Ωz R z y x ,则下列式子中不为0的是( )

(A )

???Ω

xdv ; (B )???Ω

ydv ; (C )???Ω

xyzdv ; (D )???Ω

zdv 。

5.设z z y x 2:222≤++Ω,22y x z +≤确定,则其体积可表示为( ) (A )???

ρρρρθ201

12

2

dz d d ; (B )???--πρρ

ρρθ20

1

112

2

dz d d ; (C )?

??

--π

ρρρρθ20

1

112

2

dz d d ; (D )???-+πρρ

ρρθ20

1

112

2

dz d d 。

三、计算题: 1.计算二重积分

??D

d x x

σsin ,其中D 是以由直线2,2,===x x y x y 所围成的区域。 2.交换积分次序,并计算积分的值。 (1)

??

1

12

1

x

xy dy ye dx ;

(2)??

-1

1

2

x

y dy e dx ;

(3)

dx x dy y

?

?

2

/0

2

/2sin ππ。

3.设平面薄片所占的闭区域是由直线 0,2==x y 与曲线2

x y =所围成在第一象限的部

分,它的面密度xy y x =),(ρ,求该平面薄片的质量。 4.计算二重积分dxdy y x D

??-+1 ,其中D 由直线1,0==x x 和2,0==y y 所围的区域。

5.将

?

?

-+220

2220

)(x x dy y x dx 化为极坐标形式的二次积分,并计算积分值。

6.计算三重积分???Ω

xdxdydz ,其中Ω是由三个坐标平面与平面1=++z y x 所围成的闭区

域。

7.设Ω为区域,10≤≤x ,20≤≤y 10≤≤z ,求积分???Ω

+dv z xy )(2

。 8.计算

???Ω

dv e z

,其中Ω为单位上半球区域。

9.计算三重积分???

Ω

zdxdydz ,其中Ω是由曲面2

2y x z +=与222y x z --=所围成的闭区域。

10.计算???Ω

++dxdydz z y x )(2

2

,其中Ω是由曲线???==022x z

y 绕z 轴旋转一周而成的曲面与

平面2=z 所围成的立体。

11.计算三重积分

???

Ω

++dxdydz z y x )(2

22,其中Ω是由曲面22y x z +=与222y x z --=所围成的闭区域。

12.求上半锥面)0(,2

222

2

≥=+z z h

a y x 位于圆柱面)0(,22>=+a ax y x 内部的那部分曲面

的面积。

13.*求位于两球面4)2(222=-++z y x ,1)1(222=-++z y x 之间的均匀物体的质心。

14.*计算二重积分??++++++D

d y x x x y y σ2

221)1ln(1,其中{}

0,1),(2

2≥≤+=y y x y x D 。 15.*计算

?

?

π

ρθρθρρθcos 0

2220

cos cos d d 。

16.*求由2

x y =和1=y 所围均匀平面薄片(面密度为μ)对于直线1-=y 的转动惯量。

第十章 重积分练习题(答案)

1.填空: (1)设D 是由x 轴,y 轴及直线1=+y x 所围成的三角形闭区域,则比较二重积分的值的大小,有2()D x y d σ+??≥3 ()D x y d σ+??. (2)设??++=D d y x I σ)94(22,其中(){} 4,22≤+=y x y x D ,则估计二重积分的值,有 36π≤≤I 100π. (3)交换积分次序:=??-2210),(y y dx y x f dy ????-+222021 010),(),(x x dy y x f dx dy y x f dx . (4)设D 是由直线y x 2=及抛物线2y x =所围成的闭区域,化二重积分σd y x f D ),(??为两个不同次序的二次积分是????x x y y dy y x f dx dx y x f dy 24022 0),(),(2,. (5)在极坐标系中,面积元素为d d ρρθ。 2.选择: (1)设平面区域(){}(){} 0,0,1,,1,22122≥≥≤+=≤+=y x y x y x D y x y x D ,则下列等式一定成立的是( C ). (A)????=1),(4),(D D dxdy y x f dxdy y x f . (B)????=1 4D D xydxdy xydxdy . (C)14D D =. (D)????=1 4D D xdxdy xdxdy . (2)设平面区域(){}(){}a y x a x y x D a y x a x a y x D ≤≤≤≤=≤≤≤≤-=,0,,,,1,则=+??D dxdy y x xy )sin cos (( A ). (A)??1sin cos 2 D ydxdy x . (B)??12D xydxdy . (C)??+1 )sin cos (4D dxdy y x xy . (D)0. (3)设?? ????+=+=+=σσσd y x I d y x I d y x I D 2223222221)cos(,)cos(cos ,,其中 (){} 1,22≤+=y x y x D ,则( A ). (A)123I I I >>. (B)321I I I >>.

高等数学 习题册解答_10.重积分(青岛理工大学)

第十章 重积分 § 1 二重积分的概念与性质 1、由二重积分的几何意义求二重积分的值 dxdy y x I D ??+=22 其中D 为:422≤+y x ( dxdy y x I D ??+=22=πππ3 16 2.4..312.4.= -) 2、设D 为圆域,0,222>≤+a a y x 若积分 dxdy y x a D ?? --2 2 2 =12π,求a 的值。 解: dxdy y x a D ?? --2 2 2 =3 .34.21a π 81 =a 3、设D 由圆,2)1()2(22围成=-+-y x 求??D dxdy 3 解:由于D 的面积为π2, 故??D dxdy 3=π6 4、设D :}10,53|),{(≤≤≤≤y x y x , ????+=+=D D dxdy y x I dxdy y x I 221)][ln(,)ln(,比较1I , 与2I 的大小关系 解:在D 上,)ln(y x +≤ 2)][ln(y x +,故1I ≤2I 5、 设f(t)连续,则由平面 z=0,柱面 ,122=+y x 和曲面2)]([xy f z =所围的 立体的体积,可用二重积分表示为??≤+=1 :222)]([y x D dxdy xy f V 6、根据二重积分的性质估计下列积分的值 ??D ydxdy x 22sin sin ππ≤≤≤≤y x D 0,0: (≤ 0??D ydxdy x 22sin sin 2π≤) 7、设f(x,y)为有界闭区域D :222a y x ≤+上的连续函数,求 ??→D a dxdy y x f a ),(1 lim 2 0π 解:利用积分中值定理及连续性有)0,0(),(lim ),(1lim 8 2 0f f dxdy y x f a a D a ==→→??ηξπ

重积分部分练习题

(2分)[1] (3分)[2]二重积分D xydxdy ?? (其中D :0≤y ≤x 2 ,0≤x ≤1)的值为 (A )16 (B ) 112 (C )12 (D )14 答 ( ) (3分)[3]若区域D 为0≤y ≤x 2,|x |≤2,则2D xy dxdy =??= (A )0; (B ) 323 (C )64 3 (D )256 答 ( ) (3分)[4]设D 1是由ox 轴,oy 轴及直线x +y =1所圈成的有界闭域,f 是区域D :|x |+|y |≤1上的连续函数,则二重积分 22(,)D f x y dxdy =?? __________1 22(,)D f x y dxdy ?? (A )2 (B )4 (C )8 (D )1 2 答 ( ) (3分)[5]设f (x ,y )是连续函数,则二次积分 (A)11 2 011 1 (,)(,)y dy f x y dx dy f x y dx ---+?? ? (B)1 1 01(,)y dy f x y dx --?? (C)1 101 1 1 (,)(,)y dy f x y dx f x y dx ---+?? ? (D)201 (,)dy f x y dx -?? 答 ( ) (3分)[6] 设函数f (x ,y )在区域D :y 2≤-x ,y ≥x 2上连续,则二重积分(,)D f x y dxdy ??可化累次积分为 (A)20 1(,)x dx f x y dy -? (B)2 1(,)x dx f x y dy -?? (C)2 1 (,)y dy f x y dx -?? (D)210 (,)y dy f x y dx ? 答 ( )

第十章重积分自测题(答案)

第十章《重积分》自测题 一、单项选择题 1.设1D 是正方形域,2D 是1D 的内切圆,3D 是1D 的外接圆,1D 的中心点在(1,1)-,记 22 1 221y x y x D I e dxdy ---= ??,22 2 222y x y x D I e dxdy ---= ??,22 2233 y x y x D I e dxdy ---= ??则123,,I I I 大小 顺序为( B )。 (A )123I I I ≤≤;(B) 213I I I ≤≤;(C )321I I I ≤≤;(D )312I I I ≤≤。 2.D=}2 1 ,1),{(22-≥≤+x y x y x 则σd y x D )(2 2??+=( A ) (A)? - 1 2 1dx dy y x x x )(2 2 112 2? ---+ (B) dy x x ? ---2 2 11? - +12 12 2)(dx y x (C) ? - 12 1dx dy y x x )(2 12 12 2? -- + (D) ? - 12 1dx dy y x )(1 2 12 2? - + 3.改变12 2 2 111 2 (,)(,)y y dy f x y dx dy f x y dx + ??? ?的积分次序,则下列结果正确的是(A ) (A )??21 1),(x x dy y x f dx (B )??2 1 1 ),(x x dy y x f dx (C )??31 1),(x x dy y x f dx (D )??1 3 11 ),(x x dy y x f dx 4.已知D 是正方形域:11,02x y -≤≤≤≤,则2 D I y x dxdy = -?? 的值为( D ) (A ) 23 ; (B ) 43 ; (C ) 2115 ; (D ) 4615 5.设D :2222 ,,(0)x y ax x y ay a +≤+≤>,则(,)D f x y dxdy ??可化为( D )。 (A )cos 20sin (cos ,sin )a a d f r r rdr π θθθ θθ?? ; (B )sin 402(cos ,sin )a a d f r r rdr π θθ θθ?? ; (C )sin 400 (cos ,sin )a d f r r rdr π θ θ θθ?? +sin 2 cos 4 (cos ,sin )a a d f r r rdr π θπθ θ θθ?? ; (D ) sin 40 (cos ,sin )a d f r r rdr π θθ θθ? ? + cos 2 4 (cos ,sin )a d f r r rdr π θπ θ θθ?? 6.Ω由不等式2 2 y x z +≥,222 (1)1x y z ++-≤确定,则???Ω dv z y x f ),,(=(D )

高数教案第十章重积分

高等数学教案

第十章重积分 §10-1 二重积分的概念与性质 一、二重积分的概念 (一)引例 1. 曲顶柱体的体积 设有一空间立体 ,它的底是xoy面上的有界区域D,它的侧面是以D的边界曲线为准

线,而母线平行于z轴的柱面,它的顶是曲面(.) z f x y =。 当(,) x y D ∈时,(,) f x y在D上连续且(,)0 f x y≥,以后称这种立体为曲顶柱体。 曲顶柱体的体积V可以这样来计算: (1) 用任意一组曲线网将区域D分成n个小区域1σ ?, 2 σ ?,, n σ ?,以这些小区域的边界曲线为准线,作母线平行于z轴的柱面,这些柱面将原来的曲顶柱体Ω分划成n个小曲 顶柱体 1 ?Ω, 2 ?Ω,, n ?Ω。 (假设 i σ ?所对应的小曲顶柱体为 i ?Ω,这里 i σ ?既代表第i个小区域,又表示它的面积值, i ?Ω既代表第i个小曲顶柱体,又代表它的体积值。) 图10-1-1 从而 1 n i i V = =?Ω ∑ (将Ω化整为零) (2) 由于(,) f x y连续,对于同一个小区域来说,函数值的变化不大。因此,可以将小曲顶柱体近似地看作小平顶柱体,于是 ?Ω?? i i i i i i i f ≈?∈ ()() () ξησξησ (以不变之高代替变高, 求 i ?Ω的近似值) (3) 整个曲顶柱体的体积近似值为 V f i i i i n ≈ = ∑() ξησ ? 1 (4) 为得到V的精确值,只需让这n个小区域越来越小,即让每个小区域向某点收缩。为此,我

们引入区域直径的概念: 一个闭区域的直径是指区域上任意两点距离的最大者。 所谓让区域向一点收缩性地变小,意指让区域的直径趋向于零。 设n个小区域直径中的最大者为λ, 则 V f n i i i i = →= ∑ lim() , λ ξησ 01 ? 2.平面薄片的质量 设有一平面薄片占有xoy面上的区域D, 它在() ,x y处的面密度为() ,x y ρ,这里(),0 x y ρ≥,而且(),x y ρ在D上连续,现计算该平面薄片的质量M。 图10-1-2 将D分成n个小区域1σ ?, 2 σ ?,, n σ ?,用 i λ记 i σ ?的直径, i σ ?既代表第i个小区域又代表它的面积。 当{} 1 max i i n λλ ≤≤ =很小时, 由于(),x y ρ连续, 每小片区域的质量可近似地看作是均匀的, 那么第i小块区域的近似质量可取为 ρξησξησ (,)(,) i i i i i i ?? ?∈ 于是∑ = ? ≈ n i i i i M 1 ) , (σ η ξ ρ M i i i i n = →= ∑ lim(,) λ ρξησ 01 ? 两种实际意义完全不同的问题, 最终都归结同一形式的极限问题。因此,有必要撇开这类极限问题的实际背景, 给出一个更广泛、更抽象的数学概念,即二重积分。 (二)二重积分的定义

重积分部分练习题

重积分部分练习题 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

题目部分,(卷面共有100题,分,各大题标有题量和总分) 一、选择 (16小题,共分) (2分)[1] (3分)[2]二重积分D xydxdy ?? (其中D :0≤y ≤x 2,0≤x ≤1)的值为 (A )16 (B )112 (C )12 (D )1 4 答 ( ) (3分)[3]若区域D 为0≤y ≤x 2,|x |≤2,则2D xy dxdy =??= (A )0; (B ) 323 (C )64 3 (D )256 答 ( ) (3分)[4]设D 1是由ox 轴,oy 轴及直线x +y =1所圈成的有界闭域,f 是区域D :|x |+|y |≤1上的连续函数,则二重积分 22(,)D f x y dxdy =??__________1 22 (,)D f x y dxdy ?? (A )2 (B )4 (C )8 (D )1 2 答 ( ) (3分)[5]设f (x ,y )是连续函数,则二次积分 (A)1 1 2 011 1 (,)(,)y dy f x y dx dy f x y dx ---+?? ? (B)1 1 1 (,)y dy f x y dx --?? (C)11 01 1 1 (,)(,)y dy f x y dx f x y dx ---+?? ? (D)20 1 (,)dy f x y dx -?? 答 ( )

(3分)[6] 设函数f (x ,y )在区域D :y 2≤-x ,y ≥x 2上连续,则二重积分(,)D f x y dxdy ??可 化累次积分为 (A)20 1(,)x dx f x y dy -? (B)2 1(,)x dx f x y dy -?? (C)2 1 (,)y dy f x y dx -?? (D)21 (,)y dy f x y dx ? 答 ( ) (3分)[7]设f (x ,y ) 为连续函数,则二次积分2 1 1 02 (,)y dy f x y dx ??可交换积分次序为 (A)10010(,)(,)dx f x y dy f x y dy +? (B)11 210 2 (,)(,)(,)dx f x y dy f x y dy f x y dy ++??? (C)1 0(,)dx f x y dy ? (D)222cos 0 sin (cos ,sin )d f r r rdr π θθ θθθ?? 答 ( ) (3分)[8]设f (x ,y )为连续函数,则积分 可交换积分次序为 (A)1 2 20 1 (,)(,)y y dy f x y dx dy f x y dx -+???? (B)2 1 2200 1 (,)(,)x x dy f x y dx dy f x y dx -+?? ?? (C)120 (,)y dy f x y dx -? (D)2120 (,)x x dy f x y dx -?? 答 ( ) (4分)[9]若区域D 为(x -1)2+y 2≤1,则二重积分(,)D f x y dxdy ??化成累次积分为 (A)2cos 0 (,)d F r dr πθ θθ?? (B)2cos 0 (,)d F r dr πθ π θθ-??

重积分_期末复习题_高等数学下册_(上海电机学院)

第九章 重积分 一、选择题 1.I=222222(),:1x y z dv x y z Ω ++Ω++=???球面部, 则I= [ C ] A. ???Ω Ω=dv 的体积 B.???1 42020sin dr r d d θ?θππ C. ???104 020sin dr r d d ??θππ D. ???104 020sin dr r d d θ?θππ 2. Ω是x=0, y=0, z=0, x+2y+z=1所围闭区域, 则???Ω =xdxdydz [ B ] A. ???---y x x dz x dy dx 210 21010 B. ???---y x x dz x dy dx 210 21010 C. ???-1 021021 0dz x dx dy y D. ???---y x y dz x dx dy 210 21010 3. 设区域D 由直线,y x y x ==-和1x =所围闭区域,1D 是D 位于第一象限的部分,则[B ] (A )()()1 cos d d 2d d D D xy x xy x y xy x y +=???? (B )()()()1 cos d d 2cos d d D D xy x xy x y x xy x y +=???? (C )()()1 cos d d 2(cos())d d D D xy x xy x y xy x xy x y +=+???? (D )()()cos d d 0D xy x xy x y +=?? 4. Ω:12 22≤++z y x , 则??? Ω =++++++dxdydz z y x z y x z 1 )1ln(2 2 2 222 [ C ] A. 1 B. π C. 0 D. 3 4π 5.222{(,),0}D x y x y a y =+≤≥,其中0a >,则D xy d σ=?? D A.2 20 sin cos a d r dr π θθθ?? B. 30 sin cos a d r dr π θθθ? ?

二重积分练习题

二重积分自测题 (一)选择题 1.设D 是由直线0=x ,0=y ,3=+y x ,5=+y x 所围成的闭区域, 记:??σ+= D d y x I )ln(1,??σ+=D d y x I )(ln 22 ,则( ) A .21I I < B .21I I > C .122I I = D .无法比较 2.设D 是由x 轴和∈=x x y (sin [0,π])所围成,则积分??=σD yd ( ) A . 6π B .4π C .3π D .2 π 3.设积分区域D 由2 x y =和2+=x y 围成,则=σ??D d y x f ),(( ) A .? ?-+2 122),(x x dy y x f dx B .??-212 ),(dy y x f dx C . ? ?-+1 2 22),(x x dy y x f dx D .??+1 2 2),(x x dy y x f dx 4.设),(y x f 是连续函数,则累次积分? ? =4 2),(x x dy y x f dx ( ) A . ?? 40 412),(y y dx y x f dy B .?? -4 412),(y y dx y x f dy C . ? ?4 4 1),(y dx y x f dy D .??40 2 1 2 ),(y y dx y x f dy 5.累次积分? ?=-2 2 2 x y dy e dx ( ) A . )1(212--e B .)1(314--e C .)1(214--e D .)1(3 1 2--e 6.设D 由14122≤+≤y x 确定,若??σ+=D d y x I 2211,??σ+=D d y x I )(2 22, ??σ+=D d y x I )ln(223,则1I ,2I ,3I 之间的大小顺序为( ) A .321I I I << B .231I I I << C .132I I I << D .123I I I << 7.设D 由1||≤x ,1||≤y 确定,则 =??D xy xydxdy xe sin cos ( ) A .0 B .e C .2 D .2-e 8.若积分区域D 由1≤+y x ,0≥x ,0≥y 确定,且 ? ?=1 1 )()(x dx x xf dx x f , 则 ??=D dxdy x f )(( )

高等数学 习题册解答_10.重积分(青岛理工大学).

第十章重积分 § 1 二重积分的概念与性质 1、由二重积分的几何意义求二重积分的值dxdy y x I D ??+=22 其中D 为:422≤+y x ( dxdy y x I D ??+=22=πππ3 16 2. 4. . 312. 4. = - 2、设D 为圆域, 0, 222>≤+a a y x 若积分 dxdy y x a D ?? --2 2 2 =12π,求a 的值。 解: dxdy y x a D ?? --2

2 2 =3 . 34. 21a π 81 =a 3、设D 由圆, 2 1( 2(22围成=-+-y x 求??D dxdy 3 解:由于D 的面积为π2, 故??D dxdy 3=π6 4、设D :}10, 53| , {(≤≤≤≤y x y x , ????+=+=D D dxdy y x I dxdy y x I 221][ln(, ln(,比较1I , 与2I 的大小关系 解:在D 上,ln(y x +≤ 2][ln(y x +, 故1I ≤2I 5、设f(t连续,则由平面 z=0,柱面 , 122=+y x 和曲面2]([xy f z =所围的立体的体积,可用二重积分表示为??≤+=1 :222]([y x D dxdy xy f V 6、根据二重积分的性质估计下列积分的值 ??D

ydxdy x 22sin sin ππ≤≤≤≤y x D 0, 0: (≤ 0??D ydxdy x 22sin sin 2π≤ 7、设f(x,y为有界闭区域D :222a y x ≤+上的连续函数,求??→D a dxdy y x f a , (1 lim 2 0π 解:利用积分中值定理及连续性有 0, 0( , (lim , (1lim 8 2 0f f dxdy y x f a a D a ==→→??ηξπ § 2 二重积分的计算法 1、设?? +=D dxdy y x I 1,其中D 是由抛物线12+=x y 与直线y=2x,x=0所围成的区域,则I=() A : 2

习题册重积分答案

第十章 总积分习题解答 第12次课 二重积分的概念及性质 1、 略 2、根据这三点可知区域: 2 120ln()10[ln()]ln() x y x y x y x y ≤+≤?<+

第13次课 二重积分的计算法 1、 (1)根据积分区域: 11,11x y -≤≤-≤≤ 1 1 22221 1 8 ()()3 D x y d dy x y dy σ--+=+=???? 或者:根据对称性质: 2222882()233D D D y d x y d x d σσσ==+==?????? (2)根据积分区域: 0000 cos()(sin 2sin )11(cos 2cos 2cos cos ) 22() 232 x xdx x y dy x x x dx x x xdx x x xdx π π π π π π π π ππ+=-=---+=-+=? ???? (3)根据积分区域 3 2 22 2 22 0235222 22 2 00 2(4)311264 (4)(4)(4)335 15 D xy d xdx y dy x x dy x d x x σ==-=- --=--= ??? ?? (4)根据对称性: 1:0,0,1D x y x y ≥≥+≤ 1 110 1 12200()4()4()14 4((1)(1))2(1)23 y D D x y dxdy x y dxdy dy x y dx y y y dy y dy -+=+=+=-+-=-= ?????? ?? P45

(高起专)第十章二重积分习题解答-6页文档资料

(高起专)第十章二重积分习题解答 (一) 选择题(在每小题给出的四个选项中,只有一项符合题目要求,选出正确的选项) 1 .1 220 I dy x y dx = ? ,则交换积分次序后得 C 。 (A )1 220 I dy x y dy =? ; (B )1 220 3I x y dy =?; (C )2 11220 3x I dx x y dx -= ?? ; (D )2 1 1220 3x I dx x y dy += ? ? 。 2.设积分域为{(,)|11,11}D x y x y =-≤≤-≤≤,则 x y D e dxdy +=?? D. . (A) 2)1(-e , (B)21)(2--e e , (C) 42)1(-e , (D) 21)(--e e ; 3. 设积分域D 由直线,2,2y x x y x =+==围成,则 (,)D f x y dxdy =?? C (A) 1 20 (,)x x dx f x y dy -?? , (B) 21 (,)y y dy f x y dx -?? , (C) 2 1 2(,)x x dx f x y dy -??, (D) 1 (,)x dx f x y dy ??.; 4.2 2 x y D I e dxdy --= ??,D :221x y +≤,化为极坐标形式是 D 。 (A )2 21 []r I e dr d π θ-= ? ?; (B )2 1 2 04[]r I e dr d π θ-=? ?; (C )2 1 20 2[]r I e rdr d π θ-=? ?; (D )2 21 []r I e rdr d π θ-= ??。 5. 2 D I xy d σ= ?? , 其中22:1D x y +≤的第一象限部分,则 C 。 (A )1 20 I dy xy dy =? ; (B )1 1 20 I dx xy dy =? ?; (C )1 2 I dx dy =? ; (D )1 232 cos sin I d r dr π θθθ= ? ?。 填空题 1. 交换二次积分次序,1 (,)x I f x y dy =?= 。故 2 1 1 (,)(,)y x y I dx f x y dy dy f x y dx ==??? 2.设积分域D 由11,22,x y -≤≤-≤≤围成,则 3 (2)D x y dxdy +=?? 0 3.设积分域为2 2 {(,)|14,}D x y x y y x =≤+≤≥,则积分 22()D f x y dxdy +=?? 在极坐标下的二次积分 为 。解 52 4 22 21 4 ()()D f x y d x d y d r f r d r ππ θ+=?? ??。 4.积分 224 ()x y x y dxdy +≤+?? 在极坐标下的二次积分为 。 2222 2 4 ()(cos sin )x y x y dxdy d r dr πθθθ+≤+= +?? ??

(完整版)重积分习题及答案

第九章 重积分 (A) 1.填空题 (1) 设()y x y x P 2,=,()23,y x y x Q =,定义于:D 10<

高数教案第十章重积分

高数教案第十章重积分 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高等数学教案

第十章 重积分 §10-1 二重积分的概念与性质 一、二重积分的概念 (一)引例 1. 曲顶柱体的体积 设有一空间立体Ω,它的底是xoy 面上的有界区域D ,它的侧面是以D 的边界曲线为准线,而母线平行于z 轴的柱面,它的顶是曲面(.)z f x y =。 当(,)x y D ∈时,(,)f x y 在D 上连续且(,)0f x y ≥,以后称这种立体为曲顶柱体。 曲顶柱体的体积V 可以这样来计算: (1) 用任意一组曲线网将区域D 分成n 个小区域1σ?,2σ?, ,n σ?,以这 些小区域的边界曲线为准线,作母线平行于z 轴的柱面,这些柱面将原来的曲顶柱体Ω分划成n 个小曲顶柱体1?Ω,2?Ω, ,n ?Ω。 (假设i σ?所对应的小曲顶柱体为i ?Ω,这里i σ?既代表第i 个小区域,又表示它的面积值, i ?Ω既代表第i 个小曲顶柱体,又代表它的体积值。)

图10-1-1 从而 1n i i V ==?Ω∑ (将Ω化整为零) (2) 由于(,)f x y 连续,对于同一个小区域来说,函数值的变化不大。因此,可以将小曲顶柱体近似地看作小平顶柱体,于是 ?Ω??i i i i i i i f ≈?∈()()( )ξησξησ (以不变之高代替变高, 求i ?Ω的近似值) (3) 整个曲顶柱体的体积近似值为 V f i i i i n ≈=∑()ξησ?1 (4) 为得到V 的精确值,只需让这n 个小区域越来越小,即让每个小区域向某点收缩。为此,我们引入区域直径的概念: 一个闭区域的直径是指区域上任意两点距离的最大者。 所谓让区域向一点收缩性地变小,意指让区域的直径趋向于零。 设n 个小区域直径中的最大者为λ, 则 V f n i i i i =→=∑lim (),λξησ01 ? 2.平面薄片的质量 设有一平面薄片占有xoy 面上的区域D , 它在(),x y 处的面密度为(),x y ρ,这里(),0x y ρ≥,而且(),x y ρ在D 上连续,现计算该平面薄片的质量M 。

二重积分练习题,DOC

二重积分自测题(一)选择题 1.设D 是由直线0=x ,0=y ,3=+y x ,5=+y x 所围成的闭区域, 记:??σ+=D d y x I )ln(1,??σ+=D d y x I )(ln 22,则() A .21I I < B .21I I > C .122I I = D .无法比较 2.设D 是由x 轴和∈=x x y (sin [0,π])所围成,则积分??=σD yd () A .6π B .4π C .3π D .2 π 3.设积分区域D 由2x y =和2+=x y 围成,则=σ??D d y x f ),(() A .??-+212 2 ),(x x dy y x f dx B .??-212 0),(dy y x f dx C .??-+1 22 2 ),(x x dy y x f dx D .??+1 02 2 ),(x x dy y x f dx 4.设),(y x f 是连续函数,则累次积分??=4 02),(x x dy y x f dx () A .??404 12 ),(y y dx y x f dy B .?? -4 0412),(y y dx y x f dy C .??4041),(y dx y x f dy D .??402 12 ),(y y dx y x f dy 5.累次积分??=-202 2 x y dy e dx () A .)1(212--e B .)1(314--e C .)1(214--e D .)1(3 12--e 6.设D 由 141 22≤+≤y x 确定,若??σ+=D d y x I 2 2 11,??σ+=D d y x I )(222, ??σ+=D d y x I )ln(223,则1I ,2I ,3I 之间的大小顺序为()

二重积分习题答案

二重积分习题答案 This model paper was revised by the Standardization Office on December 10, 2020

第八章二重积分习题答 案 练习题 1.设D :0y ≤,0x a ≤≤,由二重积分的几何意义 计算d D x y 解:d D x y =200 d π θ?? =222 01()2r d a r π θ=--?? 2. 设二重积分的积分区域为2214x y ≤+≤,则2dxdy =?? 解:2dxdy =??22 1 26d rdr π θπ=? ? 练习题 1.2d D x σ??其中D 是两个圆,y x 122=+与,y x 422=+围成的环型区域. 解:2d D x σ??=22 222301 001515 cos [cos2]84 d r dr d d πππθθθθθπ= +=???? 2计算二重积分σd y x D )3 41(-- ??,其中D 是由直线2,,2=-=x x ;1,1=-=y y 围成的矩形。 解:σd y x D )341(--??= 221211212(1)[(1)]4346x y x y dx dy y dx ------=--??? =222(1)84 x dx --=?

3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积. 解: 2 2 2 42 20 2320(42) 28(2)|33 x x x D A dxdy dx dy x x x x -===-=- =????? 4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积 解: 22 222 2 (4)(4)48D V x y d d r rdr d ππ σθθπ=--=-==????? 习 题 八 一.判断题 1.d D σ??等于平面区域D 的面积.(√) 2.二重积分 100f(x,y)d y dy x ??交换积分次序后为1 1 f(x,y)d x dx x ? ? (×) 二.填空题 1.二重积分的积分区域为2214x y ≤+≤,则4dxdy = ?? 12π12π. 2.二重积分d d D xy x y ??的值为 1 12 ,其中2:0D y x ≤≤,01x ≤≤. 112 3.二重积分10 (,)y dy f x y dx ??交换积分次序后为 11 (,)x dx f x y dy ?? . 11 (,)x dx f x y dy ?? 4.设区域D 为1x ≤,1y ≤,则??(sin x x -)d d x y = 0.0 5.交换积分次序

高等数学(同济五版)第九章重积分理解练习知识题册

第九章 重 积 分 第 一 节 作 业 一、填空题: . )1(,)1,0(),0,1(),0,0(.4. ),,(,.3. ,4.2. 1),,(),(),,(.122222212121????= --=≤+=+<==D D d y x D y x D xoy d e y x D y x g g g g y x g z y x g z σρρσ可知 由二重积分的几何意义为顶点的三角形区域是以设为 质量可用二重积分表示则此薄板的其面密度为连续函数面内占有有界闭区域设一薄板在的值等于 则是设区域重积分可表示为所围成立体的体积用二与柱面且适合在全平面上连续曲面二、选择题(单选): {}{}: ,20,10:),(,)(, 22,11:),(,)(13 22 2132212 1 则其中其中设≤≤≤≤=+=≤≤-≤≤-=+=????y x y x D d y x I y x y x D d y x I D D σσ (A )I 1=2I 2; (B )I 1〈I 2; (C )I 1=I 2; (D )I 1=4I 2。 答:( ) 三、估计下列积分的值: ??≤+++=D y x D d y x I .4:,)94(2222为闭区域其中σ

第 二 节 作 业 一、填空题: 1. 设??=≤≤-≤≤D yd x y x D ..11,10:2σ则

?? ??-+-+=≤+a y ay D y x dx y x f dy d e y x D 20 20 22) (222 22 )(.3. ,1:.2分是 为极坐标系下的二次积化则设σ 二、选择题(单选): ? ? ? ? ?????? +----=1 10 221 102 2 101 02210 102210 10 2222 . 3) (; 3) (; 3)(;3)(: ,3.1x x y x y dy y x dx D dy y x dx C dy y x dx B dy y x dx A I dx y x dy I 等于则交换积分次序后设 答:( ) ). (2)();()(); (2)(); ()(: ),0(,.22 22 2 2 22222a b a b a b a b D y x e e D e e C e e B e e A I b a b y x a D d e I ----<<≤+≤=??+ππππσ等于是则为其中设 答:( ) 三、试解下列各题: ????-≥-≤>==+==+D D dxdy y x f x y x y D y x f a a y a y a x y x y D dxdy y x . ),(,1,1:),(.2. )0(3,,,,)(.12222化为二次积分试将上连续在设平行四边形区域所围成的 由直线其中求

第十章____重积分(高等数学教案)

重积分 【教学目标与要求】 1.理解二重积分、三重积分的概念,了解重积分的性质,知道二重积分的中值定理。 2.掌握二重积分的(直角坐标、极坐标)计算方法。 3.掌握计算三重积分的(直角坐标、柱面坐标、球面坐标)计算方法。 4.会用重积分求一些几何量与物理量(平面图形的面积、体积、重心、转动惯量、引力等)。【教学重点】 1.二重积分的计算(直角坐标、极坐标); 2.三重积分的(直角坐标、柱面坐标、球面坐标)计算。 3.二、三重积分的几何应用及物理应用。 【教学难点】 1.利用极坐标计算二重积分; 2.利用球坐标计算三重积分; 3.物理应用中的引力问题。 【教学课时分配】 (10学时) 第1 次课§1第2 次课§2 第3 次课§3 第4 次课§4 第5次课习题课 【参考书】 [1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社. [2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社. [3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社

§10. 1 二重积分的概念与性质 【回顾】定积分 设函数y =f (x )在区间[a , b ]上非负、连续. 求直线x =a 、x =b 、y =0 及曲线y =f (x )所围成的曲边梯形的面积. (1)分割:用分点a =x 0

重积分习题参考答案Word版

重积分习题参考答案 习题11-1 1.(,)D Q x y d μσ=??. 3.(1)0; (2)0; (3)124I =I 4.(1)12I ≥I ; (2) 12I ≤I ; (3)12I ≥I ; (4) 12I ≤I . 5.(1)02≤I ≤; (2)20π≤I ≤; (3)28≤I ≤; (4)36100ππ≤I ≤. 习题11-2(A) 1.(1)4 0(,)x dx f x y dy ??或240 4 (,)y y dy f x y dx ??; (2)122 2012 2 (,)(,)x x x x dx f x y dy dx f x y dy +????或2 122 012 2 (,)(,)y y y y dy f x y dx dy f x y dx +????; (3)1 01(,)x dx f x y dy -?或1 1(,)y dy f x y dx -?; (4)2 2 4 (,)x x f x y dy -?或240 2 (,)(,)dy f x y dx dy f x y dx +??. 2.(1)4 02 (,)x dx f x y dy ??; (2) 10 1(,)y dy f x y dx ?? ; (3)1 102(,)y dy f x y dx -??; (4) 1 (,)y e e dy f x y dx ? ?. 3.(1) 203; (2)32π-; (3)655; (4)64 15; (5)1e e -- 4.(1)92; (2)21122e e -+. 5.335 . 6.(1)20(cos ,sin )b a d f r r rdr πθθθ??; (2)2cos 20 2(cos ,sin )d f r r rdr π θ πθθθ- -??; (3)1 (cos sin )20 (cos ,sin )d f r r rdr π θθθθθ-+??;

相关文档
相关文档 最新文档