文档库 最新最全的文档下载
当前位置:文档库 › 航天器再入轨迹与控制进展

航天器再入轨迹与控制进展

航天器再入轨迹与控制进展
航天器再入轨迹与控制进展

姿态动力学大作业

反作用飞轮控制 一、(1)建立航天器姿态动力学方程和飞轮控制规律 如图1-1中, 图1-1 反作用飞轮系统 设三飞轮的质心重合与星体质心O 。三飞轮的轴向转动惯量分别为z y x J J J ,,。其横向转动惯量设已包含在星体惯量章量c I 内。星体角速度ω,飞轮相对于星体的角 速度记为: [ ] T z y x ΩΩΩ=Ω 星体与飞轮的总动量矩h 为: () ωωωωωωh h I I I I h b c +=Ω+?=Ω+?+?= (1-1) 式中, Ω ?=?=+=???? ? ?????=????? ?????=ωωωωωI h I h I I I J J J I I I I I b c z y x z y x 00 000 0000 易知,I 即星体与飞轮对点O 的总惯量章量,b h 即飞轮无转动时总动量矩,ωh 即飞轮转动时的相对动量矩。由动量矩定理得 e b b L h h h h h =?++?+=? ? ? ωωωω

? ? ??? ? Ω?Ω?Ω?-=-=+=?+?+? ? ? ? ? z z y y x x c e c b b J J J h L L L h h h ωωωω (1-2) 式中,e L 为外力矩,c L 为飞轮转轴上电机的控制力矩。式(1-2)就是装有反作用飞轮的刚性航天器动力学方程的矢量形式。 如定义星体轨道坐标系如图1-2所示, 图1-2 轨道坐标系 r r r z y ox 的角速度 r ω为 j n r -=ω 即轨道角速度。当为圆轨道时,则有 3 2R n μ = 式中μ为地球引力常数,R 为地球半径。如记ψθ?,,分别为星体滚转角、俯仰角与偏航角、且设ψθ?,,和? ? ? ψθ?,,均为小量。 当航天器相对于轨道坐标系按321旋转时角度旋转矩阵为: ???? ? ????? -++--=?θ? ψ?θψ? ψ?θψ?θ?ψ?θψ? ψ?θψθθ ψθψcos cos sin cos cos sin sin sin sin cos sin cos sin cos cos cos sin sin sin cos sin sin sin cos sin cos sin cos cos B 按321旋转时产生的角速度为:

航天器制导及控制课后题答案(西电)

1.3 航天器的基本系统组成及各部分作用? 航天器基本系统一般分为有效载荷和保障系统两大类。有效载荷:用于直接完成特定的航天飞行任务的部件、仪器或分系统。保障系统:用于保障航天器从火箭起飞到工作寿命终止, 星上所有分系统的正常工作。 1.4 航天器轨道和姿态控制的概念、内容和相互关系各是什么? 概念:轨道控制:对航天器的质心施以外力, 以有目的地改变其运动轨迹的技术; 姿态控制:对航天器绕质心施加力矩, 以保持或按需要改变其在空间的定向的技术。内容:轨道控制包括轨道确定和轨道控制两方面的内容。轨道确定的任务是研究如何确定航天器的位置和速度, 有时也称为空间导航, 简称导航; 轨道控制是根据航天器现有位置、速度、飞行的最终目标, 对质心施以控制力, 以改变其运动轨迹的技术, 有时也称为制导。姿态控制包括姿态确定和姿态控制两方面内容。姿态确定是研究航天器相对于某个基准的确定姿态方法。姿态控制是航天器在规定或预先确定的方向( 可称为参考方向)上定向的过程, 它包括姿态稳定和姿态机动。姿态稳定是指使姿态保持在指定方向, 而姿态机动是指航天器从一个姿态过渡到另一个姿态的再定向过程。关系:轨道控制与姿态控制密切相关。为实现轨道控制, 航天器姿态必须符合要求。也就是说, 当需要对航天器进行轨道控制时, 同时也要求进行姿态控制。在某些具体情况或某些飞行过程中, 可以把姿态控制和轨道控制分开来考虑。某些应用任务对航天器的轨道没有严格要求, 而对航天器的姿态却有要求。 1.5 阐述姿态稳定的各种方式, 比较其异同。 姿态稳定是保持已有姿态的控制, 航天器姿态稳定方式按航天器姿态运动的形式可大致分为两类。自旋稳定:卫星等航天器绕其一轴(自旋轴) 旋转, 依靠旋转动量矩保持自旋轴在惯性空间的指向。自旋稳定常辅以主动姿态控制, 来修正自旋轴指向误差。三轴稳定: 依靠主动姿态控制或利用环境力矩, 保持航天器本体三条正交轴线在某一参考空间的方向。 1.6主动控制与被动控制的主要区别是什么? 画出星—地大回路控制的结构图。 主动控制与被动控制的主要区别是航天器的控制力和力矩的来源不同。被动控制:其控制力或力矩由空间环境和航天器动力学特性提供, 不需要消耗星上能源。例如利用气动力或力矩、太阳辐射压力、重力梯度力矩,磁力矩等实现轨道或姿态的被动控制, 而不消耗工质或电能。主动控制:包括测量航天器的姿态和轨道, 处理测量数据, 按照一定的控制规律产生控制指令, 并执行指令产生对航天器的控制力或力矩。需要消耗电能或工质等星上能源, 由星载或地面设备组成闭环系统来实现。

航天器机构技术课程大作业

数字化设计技术在航天器机构技术中的作用 数字化设计技术是指将计算机技术应用于产品设计领域,属于计算机设计技术的一种辅助。它最开始是以计算机辅助设计,即CAD的形式显现出来的,在科技水平不断提升的带动下,数字化设计技术越来越成熟,它在越来越多的行业受到人们的欢迎,在机械设计方面的优势更为明显。以前设计师在进行机械相关的设计工作时都离不开实物模型的帮助,但是在数字化设计技术出现之后,它可以利用计算机技术建立数字化的模型,从而降低实物模型的使用频率,提高了工作效率。 数字化设计技术最为重要的特征就是产品的定义模型较为统一。任何一个产品都有生命周期,如开发期、成长期、成熟期、衰退期等等,数字化设计技术对于产品的每个生命周期都有相关的设计,都是统一运行的。这种统一的设计模式大大降低了产品设计的繁琐程度,使得产品设计流程更为简单化。因为传统的设计模式会针对处于不同生命周期的产品采取不同的设计方法,使得产品设计变得复杂,而且也容易丢失数据。 另外,数字化设计技术可以实现并行设计。传统的产品设计讲究的是设计的切合性,产品的生产制造程序与包装维修程序需要达到高度的一致性,因此同一产品的设计基本上都是由同一设计团队完成。因此,传统的设计方法对于设计师的依赖性较强,一旦设计团队出现分

裂问题,则产品的设计链条很容易受到影响,从而产品的质量也难以保证。但是数字化的设计技术可以实现并行设计,简单而言,就是多个设计团队可以在同一时间内,在不同的地方,共同设计某一产品。这样一来,不仅仅是提高了机械的生产效率,另一方面也能够大大的缩短相关产品的生产周期,降低了运行成本。 数字化设计技术在航天器机构技术中的作用主要体现在以下几个 方面:一是借助实体模型检测设计的规范性。对于一个资历高深的设计师而言,以三维软件为依托设计相关产品是极为简易的事情,阐述各类三维模型之间的关系上传统二维思维模式并不适应。在CAD技术 的协助下,在制造一些单件产品过程中,设计师将更多的精力投入进产品规格规范性与结构合理性检测方面上,从而确保产品安装程序运行的顺畅性。CAD技术的具体应用可以做出如下概述:借助CAD技术参照平面图形注释的规格,借用立体图形将它们呈现出来,与此同时借用CAD的渲染功能,修整三维模型的材质或者对其内容进行填补,同 时对特殊方位安设色彩与光源,继而把绘制好的不同零部件三维图,在CAD三维软件上进行“配置与组装”,然后选择润色这一命令制造 工序结束以后的样品相貌就可以在计算机荧屏上显现出来。在利用CAD软件对设计机械进行构造设计、结构部件调整、尺寸标注以方便 机械设备的生产加工和日常维修,成为现代机械尤其是一些结构复杂、设计精密、部件繁多的航天机械设计一种流行趋势,对现代机械设计的发展起着至关重要的作用。例如在借用C A D三维软件上进行“配 置与组装”过程中,在CAD技术的协助下,产品链接、结构等方面存

航天器飞行力学考题

一、名字解释 1、自转公转转移进动章动732 2、真太阳日、平太阳、平太阳日A 3、重力 4、比冲A 5、过载A 6、三个宇宙速度 7、二体问题A 8、升交点、降交点、交点线 9、星下点、星下点轨迹A 10、可见覆盖区 11、通信波束服务区 12、卫星图像732 13、发射窗口734 14、太阳同步轨道A 15、临界轨道A 16、冻结轨道 17、回归轨道 18、静止轨道(地球同步轨道) 19、顺行轨道、逆行轨道(西进、东进)A 20、轨道机动A 21、保持与校正

22、轨道转移、空间交汇A 23、脉冲式机动 24、连续式机动734 25、(非)共面轨道转移736 26、总攻角、总升力、总攻角平面A 27、弹道再入(零攻角、零升力)A 28、杀伤区 29、再入走廊A 30、配平攻角A 31、轨道摄动A 32、摄动函数 33、太阳光压 34、偏心率摄动图736 二、简述(5*4) 1、直接反作用原理(P15) 2、刚化原理(关于变质量物体质心运动方程和绕质心转动方 程的描述,P19) 3、顺势平衡假设 4、开普勒三大定律 三、简答题(8*5) 1、变质量系统在运动时受到哪些力和力矩作用,写出各自的 计算公式A

2、火箭有哪些类型732 3、火箭姿态控制系统的功能、组成?并画出控制系统原理框 图,写出控制方程A 4、火箭产生的控制力和控制力矩的防守有哪些?写出各自的 计算公式A 5、地面发射坐标系的一般空间弹道方程是如何推出的,由几 类组成?各有几个 6、在什么条件下,一般空间导弹方程可以分解成纵向运动方 程和侧向运动方程A 7、研究自由段飞行时,常做哪些基本假设A 8、自由飞行段的运动有哪些基本特征,轨迹是什么形状,特 征参数有哪些,特征参数与主动段重点参数有什么关系A 9、成为一人造卫星和导弹的条件是什么 10、根据二体问题,写出如何确定轨道要素的详细过程 11、轨道要素有哪些常量,有哪些基本特征A 12、写出利用开普勒方程求卫星轨道运动的基本步骤 13、二体问题有哪些常量有哪些基本特征 14、已知轨道要素,写出确定位置和速度的表达式 15、写出活力公式732 16、星下点轨道如何计算734 17、可见覆盖区如何计算 18、通讯波束服务区如何计算

航天器总体设计答案总结(新)

航天器总体设计 (无平时成绩,考试试卷满分制,内容为21题中抽选13题) 1、航天器研制及应用阶段的划分。 主要划分为工程论证、工程研制、发射、在轨测试与应用四个阶段。 1)工程论证阶段:开展任务分析、方案可行性论证工作。 2)工程研制阶段:包括方案设计阶段、初样设计与研制阶段、正样设计与研制阶段。 3)发射阶段:发射场测试及发射。 4)在轨测试与应用阶段:在轨测试阶段、在轨应用阶段。 2、航天工程系统的组成及各自的任务。 组成:航天工程系统是由航天器、航天运输系统、航天发射场、航天测控网、应用系统组成的完成特定航天任务的工程系统。 任务: 1)航天器:指在地球大气层以外的宇宙空间执行探索、开发和利用太空以及地球以外天体的特定任务飞行器,又称空间飞行器。 2)航天运输系统:指在地球和太空之间或在太空中运送航天器、人员或物资的飞行器系统,包括运载器、运输器、轨道机动飞行器和轨道转移飞行器等。 3)航天发射场:系指发射航天器的基地,包括测试区、发射区、发射指挥控制中心、综合测量设施、勤务保障设施等。 4)航天测控网:系指对航天运输系统、航天器进行跟踪、测量、监视、指挥和控制的综合系统,包括发射指挥控制中心、测控中心、航天指挥控制中心、测控站和多种传输线路及设备。 5)应用系统:系指航天器的用户系统,一般是地面应用系统,如各类应用卫星的地面应用系统、载人航天器的地面应用系统、空间探测器的地面应用系统。 3、航天器总体设计概念及主要阶段划分。 概念:航天器总体设计是指为完成航天任务规定的目标所开展的以航天器为对象的一系列设计活动。 主要阶段划分:主要分为任务分析、总体方案可行性论证、总体方案设计、总体详细设计四个阶段。总体详细设计又分为总体初样设计和总体正样设计。 4、航天器总体设计的基本原则。 满足用户需求的原则、系统整体性原则、系统层次性原则、研制的阶段性原则、创新性和继承性原则、效益性原则。 5、航天器技术从成熟程度上可分为哪四类技术,各自的含义。 1)成熟技术:已经过在轨飞行考验,沿用原有的分系统方案、部件、电路和结构。 2)成熟技术基础上的延伸技术:在成熟技术基础上需要进行少量修改设计的分系统方案、部件、电路和结构。 3)不成熟技术(关键技术):必须经过研究、生产和试验(攻关)后才能在卫星上应用的技术。 4)新技术(关键技术):尚未在卫星上使用过的技术。 6、航天器总体方案设计阶段的主要工作。 1)用户使用要求及技术指标要求的确定。 2)总体方案的确定。 3)总体技术指标的分析、分配及预算。 4)分系统方案及技术指标的确定。

电磁航天器编队飞行系统概述.

电磁航天器编队飞行系统 1、引言 随着各国航天技术的不断发展,航天任务日趋多样化、复杂化,对航天器提出了更高的要求。传统的大卫星研制周期长、耗资多、风险大,而小卫星具有体积小、重量轻、成本低、研制周期短、能利用多种发射方式快速灵活发射等特点,使得小卫星成为大卫星的必要补充。但单颗小卫星由于功能单一,在应用方面受到一定的限制,通常将多颗小卫星进行编队,以实现单一大卫星的功能或对单一大卫星功能进行扩展,完成单颗卫星不能完成的任务。 卫星编队飞行是指一群相距很近、分布在特定轨道构型上、物理上不相连的成员卫星协同工作,共同完成特定任务。通常编队卫星以某一点(主航天器)为基准,构成一个特定几何形状,各颗卫星之间通过星间通信相互联系、协同工作,共同承担空间信号的采集与处理以及承载有效载荷等任务,整个星群构成一个满足任务需要的、规模较大的虚拟传感器或探测器。相对于传统的大卫星,卫星编队飞行具有巨大的观测口径或测量基线,在电子侦察、立体成像、精确定位、气象测量等应用领域具有无法比拟的突出优势,同时多颗卫星组成的分布式传感器系统能够有更好的灵活性和冗余度,可以降低飞行风险和成本。自二十世纪九十年代后期开始,航天器的编队飞行技术越来越引起世界航天领域的极大兴趣和广泛关注。包括美国航空航天局(NASA)、喷气推进实验室(JPL)、美国空军实验室(AirForce)以及欧空局(ESA)在内的多家著名的航天技术研究单位都看好编队飞行技术的广阔前景。图1为美国NASA的轨道列车计划(A-Train),利用六颗卫星编队飞行监测地球环境变化。 图 1 NASA的轨道列车计划 卫星编队飞行过程中要受到地球扁率、大气阻力和太阳光压等各种摄动因素的影响,此外为满足空间观测任务的要求,需要编队系统具有构型重构的机动能力,这就使得卫星要借助地球引力之外的力在非开普勒轨道上进行飞行,传统上一般采用火箭发动机喷气产生的推力来控制编队系统中成员卫星的相对位置,但这种推进方式存在以下几个方面的缺点:(1)火箭发动机喷射产生的羽流会污染临近卫星的光学器件,对空间光学观测任务产生比较大的影响,另外由于推进过程中产生红外线,会影响卫星在轨飞行的隐身效果。 (2)由于喷气推进是一种需要工质的推进方式,在不考虑卫星损毁情况下其工作寿命严格受到卫星所携带推进剂的影响,会影响卫星在轨飞行的寿命;

航天器制导与控制课后题答案(西电)

航天器制导与控制课后题答案(西电) 1.3 航天器的基本系统组成及各部分作用? 航天器基本系统一般分为有效载荷和保障系统两大类。有效载荷:用于直接完成特定的航天飞行任务的部件、仪器或分系统。保障系统:用于保障航天器从火箭起飞到工作寿命终止, 星上所有分系统的正 常工作。 1.4 航天器轨道和姿态控制的概念、内容和相互关系各是什么? 概念:轨道控制:对航天器的质心施以外力, 以有目的地改变其运动轨迹的技术; 姿态控制:对航天器绕质心施加力矩, 以保持或按需要改变其在空间的定向的技术。内容:轨道控制包括轨道确定和轨道控制两方面的内容。轨道确定的任务是研究如何确定航天器的位置和速度, 有时也称为空间导航, 简称导航; 轨道控制是根据航天器现有位置、速度、飞行的最终目标, 对质心施以控制力, 以改变其运动轨迹的技术, 有时也称为制导。姿态控制包括姿态确定和姿态控制两方面内容。姿态确定是研究航天器相对于某个基准的确定姿态方法。姿态控制是航天器在规定或预先确定的方向( 可称为参考方向)上定向的过程, 它包括姿态稳定和姿态机动。姿态稳定是指使姿态保持在指定方向, 而姿态机动是指航天器从一个姿态过渡到另一个姿态的 再定向过程。关系:轨道控制与姿态控制密切相关。为实现轨道控制, 航天器姿态必须符合要求。也就是说, 当需要对航天器进行轨道控制时, 同时也要求进行姿态控制。在某些具体情况或某些飞行过程中,

可以把姿态控制和轨道控制分开来考虑。某些应用任务对航天器的轨道没有严格要求, 而对航天器的姿态却有要求。 1.5 阐述姿态稳定的各种方式, 比较其异同。 姿态稳定是保持已有姿态的控制, 航天器姿态稳定方式按航天 器姿态运动的形式可大致分为两类。自旋稳定:卫星等航天器绕其一轴(自旋轴) 旋转, 依靠旋转动量矩保持自旋轴在惯性空间的指向。自旋稳定常辅以主动姿态控制, 来修正自旋轴指向误差。三轴稳定: 依靠主动姿态控制或利用环境力矩, 保持航天器本体三条正交轴线在 某一参考空间的方向。 1.6主动控制与被动控制的主要区别是什么? 画出星—地大回路控制的结构图。 主动控制与被动控制的主要区别是航天器的控制力和力矩的来 源不同。被动控制: 其控制力或力矩由空间环境和航天器动力学特性提供, 不需要消耗星上能源。例如利用气动力或力矩、太阳辐射压力、重力梯度力矩,磁力矩等实现轨道或姿态的被动控制, 而不消耗工质或电能。主动控制: 包括测量航天器的姿态和轨道, 处理测量数据, 按照一定的控制规律产生控制指令, 并执行指令产生对航天器的控 制力或力矩。需要消耗电能或工质等星上能源, 由星载或地面设备组成闭环系统来实现。 2.1 利用牛顿万有引力定律推导、分析航天器受N 体引力时的运动方程, 并阐述简化为二体相对运动的合理性。 (1)解:牛顿万有引力定律:??r Fg??GMm

最新航天器控制原理自测试题三

航天器控制原理自测试题三 一、名词解释(15%) 1、本体坐标系 2、偏置动量轮 3、主动控制系统 4、大圆弧轨迹机动 5、惯性导航 二、简答题(60%) 1、阐述航天器基本系统组成及各部分作用。 2、引力参数u是如何定义的? 3、叙述质点的动量矩定理及其守恒条件。 4、叙述双轴模拟式太阳敏感器的工作原理,并绘出原理结构图。 5、为了确保稳定性,对惯量比有什么要求? 6、画出喷气三轴姿态稳定控制系统的原理框图。简述喷气推力姿态稳定的基本原理。 7、自旋稳定卫星喷气姿态机动的原理是什么?喷气角的选择为什么不能过小? 8、GPS有哪几部分组成,各有什么功用。 9、举例说明载人飞船的主要构造。 10、航天飞机基本结构组成是什么?哪些可以重复使用,那些不可以? 三、推导题(15%) 1、证明在仅有二体引力的作用下,航天起的机械能守恒。 2、推导欧拉力矩方程式。 四、计算题(10%) 已知一自旋卫星动量矩H=3500Kg·m2/s,自旋角速度为ω=60r/min,喷气力矩Mc=40N·m,喷气角为γ=40。,要求自旋进动θc=80。问喷气一次自旋进动多少?总共需要多少次和多长时间才能完成进动?

航天器控制原理自测试题三答案 一、名词解释15% 1、本体坐标系 答:又称为星体坐标系。在此坐标系中,原点0在航天器质心,Ox ,Oy ,Oz 三轴固定在航天器本体上。若Ox ,Oy ,Oz 三轴为航天器的惯量主轴,则该坐标系称为主轴坐标系。 2、偏置动量轮 答:如果飞轮的平均动量矩是一个不为零的常值——偏置值,也就是说飞轮储存了一个较大的动量矩,飞轮的转速可以相对于偏置值有一定的变化,从而产生控制力矩。具有这种特点的飞轮称为动量轮或偏置动量轮。 3、主动控制系统 答:航天器主动式姿态控制系统的控制力矩来自于航天器上的能源,它属于闭环控制系统。 4、大圆弧轨迹机动 答:若要求自旋轴在天球上描绘的轨迹是大圆弧 ,那么自旋轴必须在同一平面内从初始方向机动到目标方向,所以每次喷气产生的横向控制力矩必须在此平面内,即推力器喷气的相位相对于空间惯性坐标系是固定的。此为大圆弧轨迹机动. 5、惯性导航 答:它主要由惯性测量装置、计算机和稳定平台(捷联式没有稳定平台)组成。通过陀螺和加速度计测量航天器相对于惯性空间的角速度和线加速度,并由计算机推算出航天器的位置、速度和姿态等信息。因此惯性导航系统也是航天器的自备式航位推算系统。 二、简答题 0F AA A 0OA F OA

航空概论大作业

航空概论大作业

班级:113072 学号:111307219 姓名:王志敏 2012年11月15日 我国航空工业的发展历程及对未来发展的设想 中国是世界文明古国,中国的风筝和火箭是世界公认的最古老的飞行器。灿烂的中国古代文化与其他国家文明一起,共同孕育了现代航空航天技术的萌芽。在近代中国的屈辱历史中,我国的工业化水平远落后于西方国家。新中国成立后,我国的航空航天工业开始快速发展。经过半个多世纪的努力,基本建成了我国的航空航天工业体系。航空航天工业在国防和经济建设中发挥着越来越重要的作用。“飞豹”战斗轰炸机和“神舟”号系列载人试验飞船的成功,标志着我国航空航天工业进入了一个新的发展时期 我国航空工业真正起步于清政府(即1910年)。从1910年到1949年中国一直处于动乱和战争时期,这时期所有的原材料,机载成品和设备几乎全部依赖外国进口,更没有与之相关的科研人员和技术师,维修人员也很缺乏。根本没有独立的航空工业,更谈不上航空科研体系。 新中国成立之后,1949年到1951年中国只有少量设备相当简陋的航空工厂,修理、装配和制造过少量飞机。1951年国家将航空工业体系建立纳入国家议程,中央军委和政务院颁发了《关于航空工业建设的决定》,对新中国航空工业建设的任务方针、组织领导等做出了明确规定。经过50余年的建设,我国航空工业从修理到制造,从仿制到自行研制,已经形成了具有相当规模和基础,配套齐全的航空科研设计,制造和试验的工业体系。

50多年来,我国先后建立了飞机发动机航空电子军械设备,仪表等专业设计研究机构,建立了空气动力,强度,自动控制,材料,工艺,试飞和计算技术等专业研究试验机构。我国航空工业科研的技术手段不断更新,试验设备日臻完善,已建成一批技术先进的风洞试验设施,飞机全机静力试验室,发动机高空试车台,飞行试验实数据采集和处理系统等设备。 由于航空工业体系的发展和日臻完善,我国在军用飞机,民用飞机,直升机等各种类型的机种都迅猛向世界各类先进机种靠近。 军用机从最初的仿制苏联的雅克-18飞机生产初级教练机,到自行设计并研制成功的第一架飞机歼教1。它的研制成功对培养我国第一代飞机设计人员积累自行研制飞机的经验具有重要的意义。此后我国第一架喷气式战斗机歼5诞生,这是一种高亚声速歼灭机,使我国的航空工业和空军进入喷气时代。歼6飞机是我国第一代超音速战斗机,歼7和歼8等在其基础上不断更新改进和提高。歼10战斗机是我国自行研制的具有完全自主知识产权的第三代战斗机。轰5、轰6、水轰5、飞豹等轰炸机,枭龙FC-1型轻型多用途战斗机,使我国飞机不仅在数量上有所增加,在种类上也不断增多,这也说明我国航空工业不但在技术上不段更新和创新,在研制飞机种类上也不放松,两者齐头并进 民用飞机运5飞机是新中国制造的第一架小型运输机,之后“北京”一号、运7、运8等不断更新。直升机如直5、直8、直9、直11、“延安”2号、“701”型等种类多样。可以看出我国航空工业生产的飞机不仅能够保家卫国,固守我国疆域,而且越来越多的可以进入民用,为人民服务。在运输,邮递,救护,搜索,抗震救灾,护林播种等方面也发挥着越来越重用的作用,甚至是不可替代的。我国航空工业从最开始的标志性研制和研发,到现在在经济上发挥作用,促进经济发展,已经体现出了其巨大的经济价值和潜力。 随着我国航空工业体系的完善,越来越多的航空人才培养诞生。我国在先进战斗机发展方面,也可以与美国,俄国,欧洲等国家相互竞争。随着科技发展越来越先进,各国之间的竞争与合作越来越紧密,航空工业的发展也越来越重要。未来航空工业的发展实际就是科技的发展。空气动力学的研究,推进技术的创新,材料和结构的研制,航空电子与控制等的发展与进步是航空工业进步的基础。 展望未来,如何提高未来飞机的性能,空气动力学一直是航空器设计的考虑的关键。计算流体力学(CFD)仍是研究重点,欧拉和N-S方程的数值求解与网络生成技术备受关注,低雷诺数空气动力学,仿生空气动力学等流动现象的研究将仍是未来的前沿课题。 推进技术方面,提高热机和推进效率,降低燃油消耗,提高推力级,降低噪声,增加可靠性,减少排放。今后一段时间仍是发展的目标。组合发动机,超燃冲压发动机,脉冲爆震发动机以及其他新概念或非常规发动机的原理研究也是这一领域的重点。 材料和结构方面,金属材料仍然是今后飞机机体的主要用材,因而在不降低现有材料寿命的条件下提高材料的比刚度,韧性和抗腐蚀能力,同时也要开展比强度更高的新材料研制与开发。研究和发展实用的复合材料结构的设计,分析,制造,检验和修理方法;研究和发展复合材料的损伤容限机理和实用的无侦探伤技术;研究和开发耐高温树脂材料,陶瓷基复合材料,智能结构材料等。 航空电子与控制方面,利用各种来源的导航信息,实施航迹的跟踪与管理。为实现全天候起降,要建立可靠的防撞系统。研制新的风切变探测装置及其回避系统。在座舱显示系统方面要增加显示信息和数据,增加实景画面,利用语音控制来提高飞行员的操作正确性。 我国未来的航空工业发展是以人才为基础进行创新和革新,在高端新科技上我们有自己的技术和研究方法,在经济上能作出巨大贡献,生产更多民用飞机走进千家万户。 同时在中国面临的严峻的战略形势下,航空工业的发展显得与为重要。 航空器与航天器的分类

航天器再入轨迹设计实验

实验二 航天器再入轨迹设计实验 姓名: 学号: 班级: 学院: 日期:

目录 一、实验目的(5分) (1) 二、实验原理(10分) (1) 2.1基本原理 (1) 2.2坐标系定义 (1) 2.3受力分析 (1) 2.4六自由度空间运动方程模型 (4) 2.4.1再入段动力学方程 (6) 2.4.2地面发射坐标系中再入段空间运动方程 (7) 三、实验系统(10分) (9) 3.1计算机系统 (9) 3.2实验对象 (9) 四、实验方法(40分) (9) 4.1简化的三自由度弹道仿真模型 (9) 4.2再入点选取 (11) 4.2程序设计 (12) 4.2.1 符号定义 (12) 4.2.2 函数表 (12) 4.2.3 程序框图 (13) 4.2.4 程序代码 (13) 五、实验过程(30分) (16) 5.1实验步骤 (16) 5.2实验结果及分析 (17) 六、总结(5分) (19) 6.1 实验中的缺陷 (19) 6.2 心得体会 (19)

实验二航天器再入轨迹设计实验 一、实验目的(5分) 建立远程火箭载荷(弹头)空间运动与再入方程和完成计算机仿真,掌握远程火箭被动段受力分析、飞行动力学建模分析、飞行特性分析和数值求解方法。 二、实验原理(10分) 2.1基本原理 二体问题:绕地球运行的航天器的自然轨迹遵循行星绕太阳运行的规律,即开普勒三大规律描述的行星运行规律,对应的轨道称为开普勒轨道。 开普勒轨道理论建立在如下假设基础上: 1)地球是均质圆球,对航天器的引力指向地球中心; 2)除地球外,其他天体对航天器的作用力忽略不计; 3)地球环境作用力(气动力,磁力,光压力等)忽略不计; 4)无人为施加的控制力作用于航天器。 在上述假设下,航天器在地球中心引力场中运动,唯一受到的力就是地球引力,对应的轨道称为二体轨道。 2.2坐标系定义 地心坐标系O E X E Y E Z E:该坐标系的原点在地心O E处。O E X E轴在赤道平面内指向某时刻t0的起始子午线(通常取格林尼治天文台所在子午线),O E Z E轴垂直于赤道平面指向北极。O E X E Y E Z E组成右手直角坐标系。由于坐标轴O E X E与所指向的子午线随地球一起转动,因此这个坐标系为一动参考系。 发射坐标系oxyz:坐标原点与发射点o固连,ox轴在发射点水平面内,指向发射瞄准方向,oy轴垂直于发射点水平面指向上方。 oz轴与xoy平面相垂直并构成右手坐标系。由于发射点o随地球一起旋转,所以发射坐标系为一动坐标系。 再入点直角坐标系exyz:exy平面为再入点地心矢r e与速度矢V e所决定的平面,ey轴沿r e的方向,ex轴垂直于ey轴,指向运动方向为正,ez轴由右手规则确定。exy所在平面即为再入段的运动平面。 2.3受力分析 ? 2.3.1推力P 推力P在弹体坐标系内描述形式最简单,即 P=[?m u e+S e(p e?p H) ]=[ P ] 已知弹体坐标系到地面坐标系的方向余弦G B可得推力P在地面发射坐标系的

飞行器结构动力学-期末考试(大作业)题目及要求

《飞行器结构动力学》 2019年-2020年第二学年度 大作业要求 一、题目: 1.题目一:请围绕一具体动力学结构,给出其完整的动力学研究报告, 具体要求: (1)作业最终上交形式为一个研究报告。 (2)所研究结构应为实际科学发展或生产生活中的真实结构,可对其进行一定程度的简化,但不应过分简化,不可以为单自由度 系统,若为多自由度系统,其自由度应不少于5。 (3)所研究内容应当围绕本学期所讲授的《飞行器结构动力学》课程内容展开,可以包含但不限于:不同研究方法的对比,对结 构动力学响应的参数影响研究,针对结构动力学响应的结构优 化设计,动力学研究方法的改进,结构动力特性影响机理分析 等。 (4)研究报告应至少包含8部分内容:摘要,关键词,引言,问题描述,分析方法,研究结果,结论,参考文献等,正文字号为 小四,1.5倍行距,篇幅不短于3页,字数不少于1500字。 2.题目二:请拟出一份《飞行器结构动力学试卷》并给出正确答案和评 分标准,具体要求: (1)作业最终上交形式为一份考试卷答案及评分标准,具体形式及格式参考附件。 (2)题目应当围绕本学期所讲授的《飞行器结构动力学》课程内容展开,且明确合理无歧义。 (3)卷面总分100分。其中,考察单自由度系统知识点题目应占总分值的30%~40%;考察多自由度系统知识点题目应占总分值的 15%~30%;考察连续弹性体系统知识点题目应占总分值的 15%~30%。考察结构动力学的有限元方法及数值解法占

15%~30%。 (4)试卷可以包含的题目类型为:单选题,填空题,简答题和计算题四类,题目类型应不少于2种,不多于这4种。其中计算题 为必含题目,且分值应不少于40%。 (5)每道题均应给出分值、标准答案和评分标准。 分值的安排应当合理并清晰,需针对每道具体题目给出。 标准答案应当正确无误,且清晰明确,包含整个分析或计算的流程步骤。针对概念或问答等类型题目,应当给出该问题及 答案的来源,并附图以证实。针对计算类型题目,应给出至少 两种不同计算方法及其相应的计算步骤和结果,以证实该结果 的正确性。 评分标准应当合理并清晰地给出标准答案和分值的对应关系,例如:填空题应给出每一空格的分值;简答题应细化给出 题目内所有的关键内容,并给出所有关键内容各自所对应的评 判标准及分值;计算题应依据计算步骤给出每一关键步骤对应 的评判标准及分值。 二、要求 1.大作业题目有两道,请自选其一完成。 2.大作业上交截止时间为2020年6月2日晚12点,逾期则认定为缺考 无成绩。 3.大作业评定分为5个等级,分别为:优(90~100分),良(80~90分), 中等(70~80分),及格(60~70分)和不及格(60分以下)。其中由于 题目难易关系,若无抄袭情况出现,选择题目一的学生可以寻求任课 老师指导,且等级至少为良。 4.抄袭判定:上交作业若出现重复率超过30%情况则判定为抄袭,有7 天时间可以修改,修改后若仍旧为抄袭,则涉及学生均按照不及格处 理。 5.大作业相关参考资料见附件。

航天器控制工具箱

航天器控制工具箱 Spacecraft Control Toolbox 基于Matlab软件的航天器控制工具箱Spacecraft Control Toolbox 是Princeton Satellite System公司(简称PSS)最早和应用最广的产品之一,有20多年的历史,被广泛用来设计控制系统、进行姿态估计、分析位置保持精度、制定燃料预算以及分析航天器动力学特性等工作。Spacecraft Control Toolbox 工具箱经过多次飞行验证,证明是行之有效的。这个工具箱涵盖了航天器控制设计的各个方面。用户可以在很短的时间内完成各种类型航天器控制系统的设计和仿真试验。软件的模型和数据易于修改,具有良好的可视化功能。大部分算法都可以看到源代码。 Spacecraft Control Toolbox(简称SCT)由不同的模块组成。 组成结构图如下 各个模块的主要功能和特点

SCT Core Toolbox -- 基本工具箱 SCT基本工具箱针对需要迅速解决实际工程问题的工程师而设计,包含了航天器控制系统设计的基本内容,也是其他SCT模块运行的基础。它建立在PSS公司大量工程经验的基础上,其中包括GPS IIR、Inmarsat 3和GGS Polar Platform卫星的控制系统设计。迄今这些系统仍然在太空正常运行。PSS公司使用这个工具箱完成的Cakrawarta-1卫星姿态控制系统设计,所花费用仅仅是通常的十分之一。这颗卫星从1997年11月升空一直运行至今。另外的例子还包括一颗NASA卫星的姿态控制系统设计。 主要功能和特点 ?航天器控制系统设计和分析 ?柔性多体航天器姿态动力学建模 ?包含柔性体展开模型和多体的逻辑树描述 ?轨道动力学分析和仿真 ?姿态估计 ?星历表计算 ?包括大气、重力场和磁场的环境模型 ?指向保持的燃料预算 ?各种有用参数的数据库; ?可视化

航天概论大作业

航天技术概论大作业 第二章 1.大气层分几层?各层有什么特点? 答:大气层共有对流层,平流层,中间层,热层和散逸层5个层次。 (1)对流层主要特点:气温随高度升高而降低;风向、风速经常变化;空气上下对流剧烈;有云、雨、雾、雪等天气现象。 (2)平流层主要特点:空气沿铅垂方向的运动较弱,因而气流比较平稳,能见度较好。 (3)中间层主要特点:气温随高度升高而下降,且空气有相当强烈的铅垂方向的运动。 (4)热层主要特点:空气密度极小,温度随高度增高儿上升。 (5)散逸层主要特点:空气极其稀薄,大气分子不断向星际空间逃逸。 2.什么是国际标准大气?

答:国际标准大气是由国际性组织(如国际民用航空组织、国际标 准化组织)颁布的一种“模式大气”,它依据实测资料,用简化方程近似地表示大气温度、密度和压强等参数的平均铅垂分布,并排列成表,形成国际标准大气表。 3.大气的状态参数有哪些? 答:大气的状态参数是指它的压强P 、温度T 、密度ρ这三个参数。 对一定数量的气体,这三个参数就可以决定它的状态。它们之间的关系,可用气体状态方程表示,如下 RT ρ=P 4.什么是大气的粘性? 答:大气的粘性是空气在流动过程中表现出的一种性质,主要是由 于气体分子作不规则运动的结果。 5.何谓声速与马赫? 答:声速是指声波在物体中传播的速度。空气被压缩的程度与声 速成反比,与飞机飞行速度成正比,要衡量空气被压缩程度 的大小,就用马赫Ma 来表示,a v M a =。 6.什么是飞行相对原理? 答:在实验研究和理论分析中,往往采用让飞机静止不动,而空气 以相同的速度沿相反的方向流过飞机表面,此时在飞机上产生的空气动力效果与飞机以同样的速度在空气中飞行所产生的空气动力效果完全一样,这就是飞行“相对运动原理”。 8.低速气流和超声速气流的流动特点有何不同?

实验一 航天器轨道计算

实验一航天器轨道要素与空间位置关系 一、实验目的 1.了解航天器轨道六要素与空间位置的关系。 2.掌握航天器轨道要素的含义。 二、实验设备 安装有Matlab的计算机。 三、实验内容 1.实验原理 航天器的六个轨道要素用于描述航天器的轨道特性,有明显的几何意义。它们决定轨道的大小、形状和空间的方位,同时给出航天器运动的起始点。这六个轨道要素分别是: ①轨道半长轴(a):它的长度是椭圆长轴的一半,可用公里或地球赤道半径或天文单位为单位。根据开普勒第三定律,半长轴与运行周期之间有确定的换算关系。 ②轨道偏心率(e):为椭圆两焦点之间的距离与长轴的比值。偏心率为0时轨道是圆;偏心率在0~1之间时轨道是椭圆,这个值越大椭圆越扁;偏心率等于1时轨道是抛物线;偏心率大于1时轨道是双曲线。抛物线的半长轴是无穷大,双曲线的半长轴小于零。 ③轨道倾角(i):轨道平面与地球赤道平面的夹角,用地轴的北极方向与轨道平面的正法线方向之间的夹角度量,轨道倾角的值从0°~180°。倾角小于90°为顺行轨道,卫星总是从西(西南或西北)向东(东北或东南)运行。倾角大于90°为逆行轨道,卫星的运行方向与顺行轨道相反。倾角等于90°为极轨道。 ④升交点赤经(Ω):它是一个角度量。轨道平面与地球赤道有两个交点,卫星从南半球穿过赤道到北半球的运行弧段称为升段,这时穿过赤道的那一点为升交点。相反,卫星从北半球到南半球的运行弧段称为降段,相应的赤道上的交点为降交点。在地球绕太阳的公转中,太阳从南半球到北半球时穿过赤道的点称为春分点。春分点和升交点对地心的张角为升交点赤经,并规定从春分点逆时针量到升交点。轨道倾角和升交点赤经共同决定轨道平面在空间的方位。

航空概论大作业

航空概论期末大作业 班级: 学号: 姓名: 日期:年月日

①纵观我国航空的发展历程,试阐述对我国航空工业未来发展的设想。(60分) 回首过往,展望未来---中国航空业 中国是世界文明古国,中国的风筝和火箭是世界公认的最古老的航空器。但在近代中国的屈辱历史中,我国的工业化水平远落后于西方国家。新中国成立后,我国的航空工业开始快速发展。经过半个多世纪的努力,基本建成了我国的航空工业体系,如今它在我国的国防和经济建设中发挥着越来越重要的作用。 从1910年清政府开始筹办飞机修造厂到1949年,旧中国只有十多个设备相当简陋的航空工厂,修理、装配、设计和制造过少量飞机。当时所有原材料、机载成品和设备均依赖国外进口,根本没有自己独立的航空工业,更谈不上航空科研体系。 尽管总体上我国的航空工业业与发达国家之间还存在较大差距,但50多年来,我国先后建立了飞机、发动机、航空电子、军械武器、仪表等专业设计研究机构。我国航空科研的技术手段不断更新、实验设备日臻完善,已建成了一批技术先进的风洞试验设施、飞机全机静力实验室、发动机高空模拟试车台和飞机试验实时数据采集和处理系统等。 我国航空工业的产品主要有军用飞机、民用飞机、战术导弹、航空发动机、机载设备和以各种机动车为主的民用产品。 1.军用飞机在抗美援朝战争中诞生的我国航空工业,初期阶段主要承担修理军用飞机以保障战争需要的紧迫任务。到1952年底,修理各型飞机470多架,发动机2600多台,有力地支援了抗美援朝战争。1953年开始的第一个五年计划期间,我国的航空工业在苏联的援助下进行建设。新中国第一架试制成功的飞机是仿制苏联的雅克-18飞机生产的初级教练机。该机命名为初教5。它们全部交付部队使用,为我国训练和培养早期飞行员做出了很大贡献。新中国自行设计并研制成功的第一架飞机是歼教1,它于1958年7月26日首飞成功。我国自行设计制造并投入成批生产和装备部队的第一种飞机是初教6,改飞机性能比初教5有所提高,采用前三点式起落架以适应现代飞机的训练要求。我国第一架喷气式战斗机是歼5型飞机,这是一种高亚音速歼击机,用于国土防空和争夺前线制空权,兼有一定的近距对地攻击能力,是当时世界上比较先进的战斗机。歼6飞机是我国第一代超声速战斗机,最大平飞速度达到声速的1.4倍,机身头部进气,装两台发动机,采用大后掠角机翼和全动式水平尾翼。在歼6飞机成批生产和装备部队后,我国的第二代超声速战斗机也研制成功,包括歼7和歼8系列。歼7和歼8都是高空高速歼击机,在飞行性能、飞行品质、救生系统、武器系统、机载电子设备和发动机性能方面都比歼6有明显改进和提高。歼8飞机是我国自行设计制造的战斗机,于1969年7月5日首飞,1980年设计定型并开始交付空军使用。歼8的空气动力布局与歼7类似,但更突出高空、高速性能,装两台涡喷七甲发动机。歼10战斗机是我国自行研制的具有完全自主知识产权的第三代战斗机,分单座、双座两种,性能先进,用途广泛,实现了我国战斗机从第二代到第三代的历史性跨越。轰5是我国自行改进设计的轻型轰炸机,1966年9月25日首飞成功,第二年正式批量生产,有轰5鱼雷型和特种武器试验机、轰侦5和轰教5等型号。轰6是我国研制的高亚声速中型轰炸机,它还被成功改装为空中加油机,采用插头锥管式空中加油方式,可同

航天器控制原理

1.1 世界航天技术发展的概况 航天技术发展是当今世界上最引人注目的事业之一,它推动着人类科学技术的进步,使人类活动的领域由大气层内扩展到宇宙空间。航天技术是现代科学技术的结晶,是基础科学和技术科学的集成,力学、热力学、材料学、医学、电子技术、光电子技术、自动控制、计算机、真空技术、低温技术、半导体技术、喷气推进、制造工艺学等学科,以及这些科学技术在航天应用中相互交叉、渗透而产生的大量新学科,都对航天技术的发展起了重要作用。所以,航天技术是一个国家科学技术水平的重要标志。 航天技术是一门综合性的工程技术,主要包括:制导与控制技术,热控制技术,喷气推进技术,能源技术,空间通信技术,遥测遥控技术,生命保障技术,航天环境工程技术,火箭及航天器的设计、制造和试验技术,航天器的发射、返回和在轨技术等。由多种技术融于一体的航天系统是现代高技术的复杂大系统,不仅规模庞大,技术高新、尖端,而且人力、物力耗费巨大,工程周期长。时至今日,航天技术已被广泛应用到政治、军事、经济和科学探测等领域,已成为一个国家综合国力的象征。 .1.2 近代航天技术的发展 19世纪末20世纪初,火箭才又重新蓬勃地发展起来。近代的火箭技术和航天飞行的发展,涌现出许多勇于探索的航天先驱者,其中代表人物K.3.齐奥尔科夫斯基,R.戈达德(Robert Goddard),H.奥伯特(Hermann Oberth)。 航天技术从20世纪50年代末期的研究试验阶段到70年代中期,发展到了广泛实际应用阶段。其中60年代以来,为科学研究、国民经济和军事服务的各种科学卫星与应用卫星得到了很大发展。至70年代,军、民用卫星已全面进入应用阶段。一方面向侦察、通信、导航、预警、气象、测地、海洋、天文观测和地球资源等专门化的方向发展,同时另一方面,各类卫星亦向多用途、长寿命、高可靠性和低成本的方向发展。这两种趋势相互补充,取得了显著的效益。80年代中后期,基于模块化和集成化设计思想的新型微、小卫星崛起,成为航天技术发展中的一个新动向。这类卫星重量轻、成本低、研制周期短、见效快,已逐渐成为今后应用卫星的一支生力军。

航天器机构技术与应用课程考试作业

航天器机构技术与应用课程考试作业 总体要求:可任意选择下面作业1-作业3的其中任意1项作为课程考试作业,每个作业最多不超过3人组成设计分析团队,但要求每人在团队中承担独立工作,并且根据各自独立负责的工作内容形成个人课程报告,并且在2018年11月30日前提交。 ●作业1: 参考图1,调研隼鸟2号小行星探测的MASCOT着陆器相关文献资料,假设小行星物质密度为2g/cm3,形状近似假设为圆球形。设计MASCOT着陆器从卫星本体释放分离机构并进行释放分离与着陆动力学仿真,形成课程报告。 ●作业2: 参考图1,调研隼鸟2号小行星探测的MASCOT着陆器相关文献资料,假设小行星物质密度为2g/cm3,形状近似假设为圆球形。设计MASCOT着陆器在小行星上移动机构并进行移动过程动力学仿真,形成课程报告。

图1 隼鸟2号MASCOT着陆器 作业3: 已知一航天器由两个舱段组成,依靠4个连接解锁装置实现舱段间的连接,在轨运行一段时间后,按预定飞行程序,4个连接解锁装置解锁,然后通过布置在对接面的4个弹簧分离推杆实现两个段在轨分离。 请根据以下给定条件,对舱段间的分离弹簧进行参数设计,并对分离过程进 行仿真分析。 (1)航天器组合体示意如图1所示,4个弹蓄分离推杆在段对接面上的安装 位置如图2所示

图1 图2 (2)舱段A、B在分离时刻的质量特性分别见表1和表2。 表1 舱A分离时刻质量特性 表2舱B分离时刻质量特性 (3)4个弹簧分离推杆最多允许采用两种规格,每个弹簧分离推杆的作用行程20mm; (4)分离性能指标要求如下: a、相对分离速度:0.5±0.1m/s; b、完全分离时刻两舱相对姿态角:不超过3°; c、完全分离时刻两舱相对姿态角速度:不超过2.5°/s。

相关文档
相关文档 最新文档