文档库 最新最全的文档下载
当前位置:文档库 › 高压输电线路覆冰倒塔非线性屈曲分析

高压输电线路覆冰倒塔非线性屈曲分析

高压输电线路覆冰倒塔非线性屈曲分析
高压输电线路覆冰倒塔非线性屈曲分析

abaqus压杆屈曲分析

a b a q u s压杆屈曲分析 Revised by Petrel at 2021

压杆屈曲分析1.问题描述 在钢结构中,受压杆件一般在其达到极限承载力前就会丧失稳定性,所以失稳是钢结构最为突出的问题。压杆整体失稳形式可以是弯曲、扭转和弯扭。钢构件在轴心压力作用下,弯曲失稳是常见的失稳形式。影响轴心受压构件整体稳定性的主要因素为纵向残余应力、初始弯曲、荷载初偏心及端部约束条件等。实际的轴心受压构件往往会存在上述的一种或多种缺陷,导致构件的稳定承载力降低。 本文利用abaqus对一定截面不同长细比下的H型钢构件进行屈曲分析,通过考虑材料非线性、几何非线性并引入初弯曲,得出构件发生弯曲失稳的极限荷载。通过比较不同长细比下的弯曲失稳的临界荷载得出构件荷载位移曲线,并与《规范》中的构件曲线相比较。钢构件的截面尺寸如图1-1所示。 构件的材料特性:,, 图1-1 2.长细比计算 通过计算截面几何特性,截面绕y轴的回转半径为,长细比取值及杆件长度见表1: 表1 50 60 80 100 120 150 180 (m) 1.92 2.30 3.07 3.84 4.60 5.76 6.90 3.模型分析

ABAQUS非线性屈曲分析的方法有riks法,generalstatics法(加阻尼),或者动力法。非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已及初始缺陷的影响。其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。 利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load)。其次,就是后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始缺陷,所以也称为非线性屈曲分析。此步分析,为了得到极限值,需要得出荷载位移曲线的下降段。缺陷较小的结构初始位移变形较小,在极值点突变,而初始缺陷较大的结构,载荷位移曲线较平滑。 4.建模计算过程 建模计算过程以长细比为50的构件为例,其余构件建模计算过程与之类似。 4.1buckle分析 1在buckle分析中创建part模块,创建的模型为三位可变形壳体单元,截面参数见图1-1,构件长度1.92。如图4-1示 图4-1 2定义材料特性及截面属性并将其赋予单元。材料定义为弹塑性,泊松比0.3,屈服强度,弹性模量;腹板和翼缘板为壳单元,厚度分别为0.008和0,01。材料定义见图4-2

Workbench屈曲分析总结

Workbench 屈曲分析 1、基础概念 结构在载荷作用下由于材料弹性性能发生变形,若变形后结构上的载荷保持平衡,这种状态称为弹性平衡。如果结构在平衡状态时,受到扰动而偏离平衡位置,当扰动消除后仍能恢复原来平衡状态,这种平衡状态称为稳定平衡状态,反之,如果受到扰动而偏离平衡位置,即使扰动消除,结构仍不能恢复原来的平衡状态,而结构在新的状态下平衡,则原来的平衡状态就成为不稳定平衡状态。 当结构所受载荷达到某一值时,若增加一微小的增量,则结构平衡状态将发生很大的改变,这种现象叫做结构失稳或结构屈曲。 根据失稳的性质,结构稳定问题可分为以下三类: 第一类失稳是理想化情况,即达到某个载荷时,除结构原来的平衡状态存在外,出现第二个平衡状态,故又叫做平衡分叉失稳,数学上就是求解特征值问题,又叫做特征值屈曲分析。 第二类失稳是结构失稳,变形将大大发展,而不会出现新的变形形式,即平衡状态不发生质变,也叫极顶失稳,结构失稳时,相应载荷叫做极限载荷,理想结构或完善结构不存在,总是存在这样那样的缺陷,大多数问题属于第二类失稳问题。 第三类失稳是当在和达到某值时,结构平衡状态发生一明显跳跃,突然过渡到非临近的另一具有较大位移的平衡状态,称为跳跃失稳,跳跃失稳没有平衡分叉点,也没有极值点,如坦拱、扁壳、二力杆的失稳都属于此类。 结构弹性稳定分析属于第一类失稳对应workbench 的线性特征值分析(Eigenvalue Buckling ),考虑缺陷,非线性影响的第二类结构属于workbench 的非线性特征值分析(Eigenvalue Buckling ),第三类的失稳对应workbench 的Static Structural ,无论前屈曲平衡状态或后屈曲平衡状态均可一次计算求出,即全过程分析。 1.1屈曲分析基础理论 在平衡状态,考虑到轴向力或中面内力对弯曲变形的影响,根据势能驻值原理得到结构平衡方程为 [][](){}{}P U K K G E =+ 式中为结构弹性刚度矩阵,为结构几何刚度矩阵,也称为初应力刚度矩阵,为节点位移向量;为节点载荷向量,上式也为几何非线性分析平衡方程。 为得到随遇平衡状态,应是系统势能的二阶变分为零。即: [][](){}0=+U K K G E δ 因此必有: [][]()0K E =+G K 式中结构弹性刚度矩阵已知,结构外载荷也就是要求得屈曲载荷未知,结构几何刚度矩 阵未知,为了求得该屈曲载荷,假设有一组载荷[]0P ,对应的几何刚度矩阵为[]0G K ,并假定 屈曲时的载荷是[]0P 的λ倍,固有λ[] 0G K =[]G K ,上式可变为 []E K []G K {}U {}P

输电线路防冰除冰技术

输电线路防冰除冰技术综述 一、除冰技术 目前国内外除冰方法有30余种,大致可分为热力除冰法、机械除冰法、被动除冰法和其他除冰法四类。 热力除冰方法利用附加热源或导线自身发热,使冰雪在导线上无法积覆,或是使已经积覆的冰雪熔化。目前应用较多的是低居里铁磁材料,这种材料在温度0C时,不需要熔冰.损耗很小。这种方法除冰的效果较明显,低居里热敏防冰套筒和低居里磁热线已投入工程实用。采用人力和动力绕线机除冰能耗成本较高。 机械除冰方法最早采用有“ad hoe”法、滑轮铲刮法和强力振动法,其中滑轮铲刮法较为实用,它耗能小,价格低廉,但操作困难,安全性能亦需完善。采用电磁力或电脉冲使导线产生强烈的而又在控制范围内振动来除冰,对雾淞有一定效果,对雨淞效果有限,除冰效果不佳。 被动除冰方法在导线上安装阻雪环、平衡锤等装置可使导线上的覆冰堆积到一定程度时,由风或其它自然力的作用自行脱落。该法简单易行,但可能因不均匀或不同期脱冰产生的导线跳跃的线路事故。 除上述方法外,电子冻结、电晕放电和碰撞前颗粒冻结、加热等方法也正在国内外研究。总之,目前除防冰技术普遍能耗大、安全性低,尚无安全、有效、简单的方法。 1、热力融冰 (1)三相短路融冰是指将线路的一端三相短路,另一端供给融冰电源,用较低电压提供较大短电路电流加热导线的方法

使导线上的覆冰融化。 根据短路电流大小来选取合适的短路电压是短路融冰的重要环节。对融冰线路施加融冰电流有两种方法:即发电机零起升压和全电压冲击合闸。零起升压对系统影响不是很大,但冲击合闸在系统电压较低、无功备用不足时有可能造成系统稳定破坏事故。短路融冰时需将包括融冰线路在内的所有融冰回路中架空输电线停下来,对于大截面、双分裂导线因无法选取融冰电源而难以做到,对500 kV线路而言则几乎不可能。 (2)工程应用中针对输电线路最方便、有效、适用的除冰方法有增大线路传输负荷电流。相同气候条件下,重负载线路覆冰较轻或不覆冰,轻载线路覆冰较重,而避雷线与架空地线相对于导线覆冰更多,这一现象与导线通过电流时的焦耳效应有关,当负荷电流足够大时,导线自身的温度超过冰点,则落在导体表明的雨雪就不会结冰。 为防止导线覆冰,对220 kV及以上轻载线路,主要依靠科学的调度,提前改变电网潮流分配,使线路电流达到临界电流以上;110 kV及以下变电所间的联络线,可通过调度让其带负荷运行,并达临界电流以上;其它类型的重要轻载线路,可采用在线路末端变电所母线上装设足够容量的并联电容器或电抗器以增大无功电流的办法,达到导线不覆冰的目的。 提升负荷电流防止覆冰优点为无需中断供电提高电网可靠性,避免非典型运行方式,简便易行;不足为避雷线和架空地线上的覆冰无法预防。 (3)AREVA输配电2005年在加拿大魁北克省的国有电力公司Hydro—Quebec建设世界首个以高压直流(HVDC)技术为基础的防覆冰电力质量系统。这个系统将覆盖约600km输电线,预计能于2006年秋天投入运行。

输电线路的覆冰与主要危害

输电线路的覆冰与主要危害 [摘要]输电线路覆冰严重威胁了电力系统的运行安全,在总结输电线路典型覆冰事故的基础上,对输电线路覆冰事故原因及危害进行了总结分析。 【关键词】输电线路;覆冰;危害 输电线路覆冰的微气象条件是指某一个大区域内的局部地段,由于地形、位置、坡向、温度和湿度等出现特殊变化,造成局部区域形成有别于大区域的更为严重的覆冰条件。这种微气象条件覆冰具有范围小、隐蔽性强等特点,使得输电线路设计、运行维护人员难以采取防冰抗冰措施。 一、线路覆冰的分类和成因 1.气象条件影响导线覆冰的气象因素主要有4种:空气温度、风速风向、空气中或云中过冷却水滴的直径、空气中液态水的含量。随着空气温度的升高,雾粒直径变大,相应液态水的含量增加。当气温在—5—0℃之间,空气或云中过冷却水滴的直径在10—40?m之间,风速较大时形成雨淞;当气温在—16——10℃之间,过冷却水滴的直径在1—20?m之间,风速较小时形成雾淞;混合成的形成介于雨淞和雾淞之间,此时的温度在—9——3℃之间,过冷却水滴的直径在5—35?m之间:严格地说,雨淞—混合淞之间及混合淞-雾淞之间没有严格界限、如气温太低,则过冷却水滴都变成雪花,导线也行不成覆冰了。 2.季节的影响导线覆冰主要发生在前1年的11月到次年的3月之间,尤其是入冬和倒春寒时覆冰发生的概率较高。 3.地形及地理条件的影响东西走向山脉的迎风坡比背风坡严重,山体部位的分水岭、风口处线路覆冰比其他地形严重,线路紧靠江湖水体比线路附近无水源时覆冰严重。总之,受风条件较好的突出地形和空气水分较充足的地区,覆冰程度比较严重。 4.海拔高度的影响就同一地区来讲,一般海拔高度越高,越易覆冰,覆冰也越厚巳多为雾淞,海拔高度较低处多为雨淞和混合淞。 5.线路走向的影响导线的覆冰程度与线路的走向有关,东西走向的导线覆冰普遍比南北走向的导线覆冰严重。冬季覆冰天气大多为北风和西北风.线路南北走向时,风向与导线的轴向基本平行,单位时间内与单位面积内输送到导线上的水滴及雾粒较东西走向的导线少得多;线路东西走向时,风与导线约成90°的夹角,使得导线覆冰最为严重。在严重覆冰地段选择线路走廊时,如条件许可,应尽量避免线路成东西走向。 6.导线悬挂点的影响导线悬挂点越高覆冰越严重,因为空气中的液态水含量随高度的增加而增高,风速越大,液态水含量越高,单位时间内向导线吹送的水滴越多,覆冰越严重。 7.导线本身的影响导线覆冰往往总是在迎风面上先出现扇形或新月牙形积冰,产生偏心荷重,对导线施加扭矩,迫使导线扭转,对未覆冰或覆冰较少的表面对准风向,继续覆冰。导线的刚度越小,扭转越大,覆冰速度越快。 8.电场和负荷电流的影响导线的电场会使其周围的水滴粒子产生电离,并对其有吸引力,因此电场的吸引力会使更多的水滴移向导体表面,增加导线的覆冰量。 9.负荷电流影响导线表面温度当电流较小时,导线产生的焦耳热不能使导

输电线路除冰技术

英文翻译 2008 届电气工程及其自动化专业班级 姓名学号 指导教师职称 二ОО年月日

在冬季,暴风雪是一个导致高功率传输线路中断以及花费数以百万计美元用以线路维修的大麻烦。用约8 - 200千赫的高频率震动法融化冰已经被提出来了(文献1-2)。这种方法需要两个相结合的机械驱动。在这种高频率下,冰是一种有耗介质,直接吸收热量加热冰。另外,电线的集肤效应导致电流只有在薄冰层才导通,由此造成电阻损耗,产生热量。 在这篇文章中,我们在长达1,000公里长的线路上描述该系统设计的实施方法。我们还利用一个适用于33-KV,100-千赫动力的标准系统测试报告了单位长度冻线的损耗的除冰模拟实验。 整个系统见图1。它可以以两种不同的方式部署。由于电线有慢性结冰的问题,或者那些有可能结冰和高可靠性需求的地方,这个系统可以永久的安装连接到部分线路的两端,用以设限控制励磁区域。另外,它也可以安装在汽车上,用以紧急“营救”结冰线路。三辆卡车可以携带一组电源和两套设备。 高频高压下输电线路的除冰系统图 冰介质加热原理 由于冰被视为是有损介质材料,等效电路进行了短暂的一段输电线路涂冰如图2。该组件值赖斯和西塞可以通过文献3给的冰的导电特性模型计算出来。在频率低至12赫兹,介电损耗成为产生热量的主要途径。

随着频率的增加,电压会产生大的压降。虽然较低频率是可行的,但通常采用20-150kHz范围的频率,以避免管制频率(下一章节会详细介绍)。 冰冻输电线路的等效电路图 实现均匀加热 高频下的励磁传输线路会产生驻波,除非在线路远端有相匹配的阻抗来终止。由于驻波,冰介质损耗或者集肤效应单独生热,导致加热不均。一种可能的办法是终止线路的运行,而不是驻波的问题。然而,运动波产生的能量流通常比冰上损耗要大。这种能量需要电源的一端来处理,另一端来吸收并终止。因此,电源的功率容量需要增加到远远超过所需的。终止端必须有能力驱散或者是回收这些损耗功率。因此,如果不循环利用的话,无论是在设备的成本,还是终端损耗,这都是一个昂贵的解决方案。 一个更好的解决方案是使用适用于两个热效应原理的驻波以达到相 辅相成的效果。在驻波模式中,冰介质加热时发生最强烈是在电压波腹,而集肤效应生热最为强烈是在电流波腹。因此,两者是相辅相成的。而且,如果幅度在适当的比例内,总热量就可以在线路上均匀分布了。

高压电线覆冰厚度测量方法

高压电线覆冰厚度测量方法 摘要针对2008年初我国南方地区输电线路大面积遭受的覆冰灾害天气,在介绍常规冰厚检测方法的基础上,提出一种基于行波传输时差的冰厚测量方法。理论推导了有关的冰厚计算公式,采用GPS行波定位系统精确记录行波传输时间,表明该方法具有较高的精确度。 关键词高压电线;行波传输时差;GPS行波定位;冰厚测量;方法 2008年1月中旬以来,我国华中、华东、南方等区域遭遇了罕见的持续低温、雨雪和冰冻极端天气,电力基础设施遭到大面积的严重破坏,部分地区电力设施受灾损坏极其严重[1]。电网覆冰严重,造成电线断裂、电杆倒塌、大面积停电等冰灾事故,严重威胁电网的安全稳定运行[2]。 目前,对于输电线路覆冰情况的检测主要通过人工巡视来完成。由于输电线路覆冰受局部微地形气候条件影响大,而有些线路架设在人烟稀少、交通不便的地区,极大地增加了巡视人员的劳动强度。现有的覆冰在线监测技术稳定性有待提高,机械传动部件容易冻结,监测参数不全,尤其在恶劣气候条件下可能发生摄像镜头冰雪遮蔽和冻结的问题,降低了监测结果的时效性和准确性[3]。 笔者提出采用基于行波传输时差的测量方法,可以精确地测量出行波到达线路两端的时间,通过时间差可以计算输电导线在正常运行以及覆冰期间的实际长度,利用长度与冰厚的关系可以计算出冰灾时期导线的覆冰厚度。 1线路长度与冰厚的关系 影响输电线路负荷的主要因素有线路自重、冰重以及风吹产生的压力。当导线覆冰时,随着覆冰厚度的增加,导线的弧垂会增大,线路长度也会伸长,可以通过建立线路长度与冰厚的关系来计算导线覆冰厚度。 1.1比载计算 作用在导线上荷载都是不均匀的,为了便于计算,将单位长度输电线路上的荷载折算到单位面积上的数值定义为线路的比载,用r表示,单位为N/m·mm2。实际情况中,根据各因素的影响不同,可分为垂直比载和水平比载,垂直比载包括自重比载和冰重比载,水平比载即风压比载。 1.1.1自重比载。自重比载是由导线自身重量引起的比载,可认为其大小不受气象条件变化的影响。其计算公式如下: 1.2导线长度计算

非线性屈曲分析

ansys workbench非线性屈曲分析 (2013-08-26 21:26:29) 转载▼ 标签: ansys 很多旋转受压结构必须进行屈曲分析,常规结构屈曲分析软件有nastran、abaqus和ansys,nastran对线性大型模型分析效率较高;abaqus屈曲分析使用较少;ansys使用比较频繁,其快速建模,与CAD软件的良好借口及有限元模型前处理的便捷性(WB界面)很有吸引力,屈曲分析功能较为完善,可以进行线性、非线性和后屈曲分析。 ansys学习资料中介绍较多的是线性屈曲分析。线性屈曲分析在工业实际中预测的值偏高,有的甚至超过实际实验测试值的几十倍,线性分析唯一优势是其分析速度较快。但在实际中其预测值参考价值不大,仅给定结构屈曲失效的上限值。非线性屈曲分析考虑其他因素,包括结构加工缺陷(几何),材料非线性等,因此较为接近实际情况,但计算耗时较长。针对最艰难学习情况归纳总结非线性屈曲分析时技术要点及应注意事项。 对于规则旋转壳,承受外压载荷作用,进行非线性屈曲分析时,必须加上几何缺陷,关键步是添加APDL语句 /prep7 upgeom,0.1,1,1,file,rst cdwrite,db,file,cdb /solu 该步引入屈曲模态情况下的几何缺陷,缺陷为屈曲模态变形相对值的0.1倍,该值可以根据实际加工水平等其他条件确定,上述 语句保存在txt文档中,在workbench流程APDL模块调用。 分析详细流程为,static structure模块导入几何,施加载荷和边界条件,分析求解,将linear buckling拖入流程中,共享static structure模块数据,进行线性屈曲模块分析,Mechanial APDL

高压输电线路除冰技术

高压输电线路除冰技术 摘要:近些年来我国高压输电线路受冰灾的次数高达数千次,由于高压输电线路物布置地理位置,很容易受天气气候的影响,尤其是在大风天气下,高压输电线路由于覆冰的影响会引发电线的舞动,从而造成断线,杆塔倒塌等恶劣事故的发生,所以高压输电线路除冰成为了每个电力工作人员工作的一大重点。 关键词:高压输电线路除冰技术要点 0 前言 高压输电线路的防除覆冰成为电力工作者工作的一个重点,应该加强对高压输电线路覆冰的研究工作。电力工作者应该提高对高压输电线路除冰工作的重视,深刻理解高压输电线路覆冰的危害,掌握高压输电线路除冰的基本技术,做好高压输电线路的除冰工作,在实践的基础上总结高压输电线路除冰经验,对高压输电线路除冰技术进行合理的展望,完成对高压输电线路的保护,用技术的手段确保高压输电线路的问题,进而提升供电的稳定。电力从产生到应用一般要经历高压输电线路的输送,随着经济和社会的发展,各界对电力需求越来越高,电力生产能力也相应提高,高压输电线路的长度正在逐步增加,以完成电力和各界的需求。高压输电线路布设于田野、山脉和水系,容易受到天气因素的影响,据不完全统计,进50 年我国高压输电线路遭受冰灾的次数高达1000 次,高压输电线路覆冰会引发电线的舞动,在风力较大的情况下会导致断线和杆塔倒塌,成为影响我国北方高压输电网络安全的重要因素。 1.高压输电线路机械除冰法 使用机械外力迫使高压输电线路导线上的覆冰脱落,分为的方法。“ad hoc”法、滑轮铲刮法、电磁力除冰法和机器人除冰法。 1.1“ad hoc”法 “ad hoc”法,被告称之为外力敲打法,就是由工作人员在现场利用工具敲击输电线路,以此来达到除冰的目地,这个方法简便易行,但只能用于以10KV为主的近距离线路除冰,效率低,工作量大,只能在紧急情况下使用,应用范围极小。 1.2滑轮铲刮法 它是由在地面上的工作人员通过控制输电线路上的滑轮移动,利用力的作用,使导线弯曲,然后使覆冰破裂,这个方法效率高、操作简便、能耗小,并且价格低廉,是目前输电线路穝有效的除冰方法之一,但是此种方法受地形限制,安全性能还不太完善。 1.3电磁力除冰法

浅析输电线路覆冰舞动及防治

浅析输电线路覆冰舞动及防治 发表时间:2016-03-10T15:41:49.440Z 来源:《电力设备》2015年8期供稿作者:袁洪凯 [导读] 国网山东省电力公司滨州供电公司在实际操作中更应该从覆冰导线的舞动预防开始,做好地域数据分析、做好前期防舞动装置,这样才能从根本上最便捷的避免舞动的产生。 (国网山东省电力公司滨州供电公司山东滨州 256600) 摘要:本文就覆冰导线产生舞动的原因以及防止输电导线产生舞动的措施两个方面进行探讨,但是探讨的结果发现,输电导线不仅仅是关系着电力系统的运行,更关系到整个民生,因此对于输电导线中存在的严重问题就必须解决。在实际操作中更应该从覆冰导线的舞动预防开始,做好地域数据分析、做好前期防舞动装置,这样才能从根本上最便捷的避免舞动的产生。 关键词:输电线路;覆冰舞动;防治 一、破坏输电导线运行的主要因素 我国经济社会飞速的发展,国家对于经济发展的主力部门——电力部门充分重视,根据国家的相关规定,我们必须不断完善电网的网架结构。由于电力的发展主要依靠于输电导线对电力的输送,输电导线对电力的输送直接影响了人们的生活与工作,而破坏输电导线运行的主要因素之一就是导线的覆冰,其中又有三种情况的覆冰导线来破坏导线的运输工作,①本文将要探讨的覆冰导线舞动而导致的破坏; ②覆冰过多而大量脱落产生的晃动和弹跳;③覆冰过重产生破坏。 二、覆冰导线舞动原因探析 由于我国疆域辽阔,南北、东西地形、气候等条件差异大,因此产生覆冰的原因不同,覆冰导线舞动产生的原因也有所不同。就目前而言,人们所认同的覆冰导线舞动的起因分析主要为形成覆冰、线路的结构参数与风激励的原因。 2.1覆冰的原因 覆冰厚度一般为2.5~48mm,覆冰导线的形成主要分为三类,其一是雨凇,其二是雾凇,其三是霜凇。 ①雨凇。根据相关的数据分析和研究发现,覆冰导线舞动中导线上覆冰的产生原因主要是雨凇。在风速很大且气温在零度上下时,尤其在低海拔地区的冻雨时节雨凇产生的情况较大。雨凇产生的这种自然条件是冰体在粘性最强的情况,不容易小部分脱落,会呈块状的黏附在导线上,容易在有风的情况下产生舞动,对导线的安全性造成威胁。 ②雾凇。雾凇主要形成于山区,其形成条件主要是气温相对较低且风速也相对较小的情况下。由于气温较低因此低空云的水汽温度也很低,在水汽遇到同样处于低温的输电导线时,凝结成冰附着于导线上。或者是由于山间昼夜温差大,清晨产生的雾气遇冷在输电导线上凝结成冰,因此雾凇所形成的冰体密度相对较小,主要是通过不断凝结的过程来形成覆冰,雾凇作为一种覆冰导线,其舞动时产生的破坏性最小。 ③霜凇。霜凇的产生条件与雨凇的产生条件相似,都为零度左右且风速较大的情况下,霜凇作为不断累积的冰体之一,其密度大大的高于雨凇与雾凇所产生的冰体。因此只要在有湿云的情况下,就容易产生雾凇,雾凇通过其晶体的不断累积不断的增加质量。 2.2线路的结构参数 除了覆冰的原因外还有线路的结构参数来影响覆冰导线的舞动,而线路的结构参数还包括了分裂导线、张力、弧度与垂直度等参数。线路的结构参数对覆冰导线舞动的影响主要是通过大量的数据以及相关工作人员日积月累的工作经验得出的。 ①分裂导线。在线路的结构参数中,分裂导线产生舞动的因素最大,由于分裂导线是由不同的子导线构成的,而各个子导线的扭转刚度比单独存在的单导线又大很多。因此在同等结冰的情况下,单导线因为扭转刚度比较低,因此容易发生扭转,这样冰体在上面不容易大面积的附着。而分裂导线中的各个子导线由于刚度较强且扭转度不强,就会使得冰体增大,发生舞动。 ②弧度。不同弧度的导线也会产生不同幅度的舞动,一般的输电导线都具有一定的弧度,这个弧度范围是国家规定的标准,因此在这样一定的弧度范围内可以保证输电导线能够有效的进行输电且不受到影响。如果导线的弧度小于标准弧度,那么就会造成导线过于紧绷,虽然这样的导线不易发生舞动,但是热胀冷缩容易让导线很容易的受到损坏。如果导线弧度大于标准弧度,那么导线在覆冰的情况下舞动更大。 三、防舞动措施 就目前的舞动现象分析而言,我国的电网管理者和工作根据已有的经验和得到的数据在防舞动方面有了一定的成就。防舞动措施主要根据各地的气候、地形等自然条件来采取避舞——避免产生舞动、抗舞——对抗会产生的舞动进行改进以及抑舞——抑制舞动的产生。 3.1避舞 避免舞动的产生就是企业的规避措施,对于电力企业来说,其防治出现经济和安全损失的措施之一就是避免覆冰输电导线出现舞动。既然要避免就要对于该地所处的自然条件和社会条件两个方面出发,对于自然条件来说,应当了解当地的气候、地貌和地形,从而选择适合当地的导线;对于社会条件来说,应当对当地的工作人员进行经验传授和防舞动措施的讲解,从而保证在舞动发生时有对应的措施来解决。 3.2抗舞 由于避舞是对自然条件和社会条件的一种预估,对其无法进行改变,因此就出现了抗舞这一措施。抗舞就是在无法更改的地形、气候条件下,通过更改输电导线的原料、材质以及其他方面来保证输电的安全运行。抗舞主要是通过检测该地地形之后,选择更适宜该地的材质,选择高强度的机械来防止出现覆冰导线舞动的情况。 3.3抑舞 抑舞即通过相应的装置和器械来抑制舞动的产生,同之前的避舞措施来对有可能产生舞动的区域进行具体勘测,然后安装防舞动装置。 ①改变导线系统的结构。通过改变导线的系统结构可以防治舞动的产生,其主要原因是通过在系统结构中加入防舞动装置,其中防舞

采用ABAQUS进行屈曲后屈曲和破坏分析

| w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s | Buckling, Postbuckling, and Collapse Analysis with Abaqus | w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s | Day 1 ?Lecture 1Basic Concepts and Overview ?Workshop 1Buckling and Postbuckling Analyses of a Crane Structure ?Lecture 2 Finite Element Formulation ?Lecture 3Finite Element Implementation in Abaqus ?Lecture 4Eigenvalue Buckling Analysis ?Workshop 2Eigenvalue Buckling of a Ring Subjected to External Pressure ?Workshop 3 Elastic Buckling of Ring-Supported Cylindrical Shell under Hydrostatic Pressure

| w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s | Buckling, Postbuckling, and Collapse Analysis with Abaqus Day 2 ?Lecture 5 Regular and Damped Static Solution Procedures for Postbuckling Analyses ?Workshop 4Nonlinear Buckling of Ring-Supported Cylindrical Shell under Hydrostatic Pressure ?Workshop 5Static Buckling Analysis of a Circular Arch ?Lecture 6Modified Riks Static Solution Procedure for Postbuckling Analyses ?Workshop 5Static Buckling Analysis of a Circular Arch (continued)?Lecture 7Dynamic Analysis Solution Procedures for Postbuckling Analyses ?Workshop 5Static Buckling Analysis of a Circular Arch (continued)?Workshop 6Tube Crush Dynamic Analysis ?Lecture 8Putting It All Together… ?Workshop 7Capstone Workshop: Lee’s Frame Buckling Problem ?Workshop 8 Buckling and Postbuckling Analyses of a Stiffened Panel | w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s | Legal Notices The Abaqus Software described in this documentation is available only under license from Dassault Systèmes and its subsidiary and may be used or reproduced only in accordance with the terms of such license. This documentation and the software described in this documentation are subject to change without prior notice. Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation. No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiary.? Dassault Systèmes, 2011. Printed in the United States of America Abaqus, the 3DS logo, SIMULIA and CATIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries. Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the Abaqus 6.11 Release Notes and the notices at: https://www.wendangku.net/doc/c215316729.html,/products/products_legal.html.

基于粒子群算法优化支持向量机的输电线路覆冰预测_尹子任_苏小林

基于粒子群算法优化支持向量机的输电线 路覆冰预测 尹子任,苏小林 (山西大学工程学院,太原 030013) Icing Thickness Forecasting of Transmission Line Based on Particle Swarm Algorithm to Optimize Support Vector Machine YING Zi-ren,SU Xiao-lin (Engineering College of Shanxi University,Taiyuan 030013.China) puts data (SVM),using the training model to forecast the line thickness KEY 摘要: 关键词: 1引言 输电线路覆冰常会引起线路断线、舞动、绝缘子冰闪等事故,严重影响了输电线路的可靠性。输电线路覆冰受天气影响因素比较大,比如温度、湿度、风速,以这些因素为输入量对线路覆冰进行预测,为防冰提供可靠依据。 目前在线路覆冰预测中常用的有图像法[1],数学关系模型[2]和基于神经网络的智能算法[3][4]。其中图像法的误差较大,观测 同时利用 可 性,对未来样本具有较强的学习泛化能力。而且支持向量机引入了特征空间和核函数的概念,把非线性问题映射到高维空间当作线性问题解决,同时解决了“维数灾难”问题。在新的高维线性空间中求取最优线性分类面来分离训练样本,将寻找最优线性回归超平面的算法归结为求解一个凸约束条件下的一个凸规划问题,求取全局最优解。 支持向量机回归[6]问题可以描述为:学习机在给定的样本中训练输入量和输出量之间的函数关系,能精确的预测未来值。一 DOI:10.13357/https://www.wendangku.net/doc/c215316729.html,ki.jep.000004 网络出版时间:2014-01-28 15:10 网络出版地址:https://www.wendangku.net/doc/c215316729.html,/kcms/doi/10.13357/https://www.wendangku.net/doc/c215316729.html,ki.jep.000004.html

常见输电线路覆冰类型及防控措施分析

常见输电线路覆冰类型及防控措施分析 【摘要】本文就覆冰形成的原因及类型作简要介绍,并对其危害进行深入剖析,在此基础上将应对输电线路覆冰的技术措施进行了分析,供专业人员参考。 【关键词】输电线路覆冰抗冰措施 前言 在现代化社会高速发展的今天,随着电力需求的不断上升和增加,输电线路中的故障问题也越来越复杂,越来越明显。就一般情况而言,在工程项目中需要针对各种常见问题和隐患进行全面的分析和总结,使得这些现象能够得到及时有效的预防和处理,进而为社会发展做出应有的贡献。由于天气的影响而造成输电线路冰闪跳闸现象、导线舞动和线路中断的事故不断涌现,不但造成了严重的输电设备损坏,更是影响了区域经济的正常发展。因此在目前的输电线路管理工作中,做好冰害事故管理和预防已成为一项不容忽视的工作流程,是提高电网抗击自然灾害能力中不可忽视的一环。 一、覆冰的形成 覆冰是一种物理现象,是由多种气象因素综合决定的,其中包括气温、湿度、空气流速以及大气环流等。当气温在冰点以下时,雪或雨等水性物质与输电线表面接触产生冻结并层层裹覆,此时覆冰现象就产生了。 1、五种覆冰类型 白霜——当气温处于冰点以下且湿度较高时,空气中的水分与低温物体接触,粘着在其表面即形成白霜。一般来说白霜不会对输电线路的安全构成威胁,这主要是因为这种覆冰与输电线的粘连强度不高,低幅度的振动就可使其脱离线路表面。 湿雪——当空气湿度较低时雪花不容易与输电线表面粘着,但如果空气湿度较高,雪花飘落过程中聚结了未形成晶体的水分,就很容易附着在输电线表面,层层包裹形成积雪。即使出现积雪也不一定会出现覆雪危情,因为此种覆冰受风力强度影响较大,强风很容易就把积覆的雪吹散了。常发生覆雪危情的地方,往往是海拔不高风强较低的区域。 雨凇——当气温在零度以下风力较强时,在海拔相对较低的区域,覆冰常常呈现高密度、强附着力、高透光性等特点,一般在冻雨期较常见但持续时间较短。随着时间的推移此种覆冰会向另一种覆冰类型( 混合凇) 发展,所以输电线覆冰为单一雨凇的情况较为罕见。 软雾凇——在高海拔山区气温极低的条件下,环境湿度较大,如果风力不强则会形成此种覆冰。其特征恰好与雨凇相反,呈现低密度、弱附着力、低透光性

输电线路等值覆冰厚度智能监测装置技术规范

附件5: 智能监测装置技术规范之五 等值覆冰厚度智能监测装置技术规范 国家电网公司生技部 中国电力科学研究院 2010 年9月

目次 1范围 (3) 2规范性引用文件 (3) 3术语和定义 (4) 4装置组成 (4) 5装置功能 (4) 6技术要求 (5) 7检验方法 (8) 8检验规则 (13) 9安装、调试与验收 (14) 附录A(规范性附录)覆冰智能监测装置数据输出接口 (16)

架空输电线路等值覆冰厚度智能监测装置技术规范 1范围 本标准规定了架空输电线路等值覆冰厚度智能监测装置的组成、技术要求、试验方法、检验规则等。 本标准适用于交流66kV~1000kV、直流±500kV~±800kV架空输电线路。 2规范性引用文件 下列文件中的条款通过本导则的引用而成为本导则的条款。凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本导则,然而,鼓励根据本导则达成协议的各方研究是否可使用这些文件的最新版本。凡是不注明日期的引用文件,其最新版本适用于本导则。 GB191 包装储运图示标志 GBJ233 110~500kV架空送电线路施工及验收规范 GB1179 铝绞线及钢芯铝绞线 GB2314 电力金具通用技术条件 GB/T2317.2 电力金具电晕和无线电干扰试验 GB/T2317.3 电力金具热循环试验方法 GB/T2338 架空电力线路间隔棒技术条件和试验方法 GB/T2423.1-2008 电工电子产品环境试验第2部分:试验方法试验A:低温 GB/T2423.2-2008 电工电子产品环境试验第2部分:试验方法试验A:高温 GB/T 2423.4-2008电工电子产品基本环境试验规程试验Db:交变湿热试验方法GB/T 2423.10-2008 电工电子产品环境试验第二部分:试验方法试验Fc和导则:振动(正弦) GB2887 电子计算站场地通用规范 GB4208 外壳防护等级(IP代码) GB 4798.4-2007 电工电子产品应用环境条件无气候防护场所使用 GB/T6587.6 电子测量仪器运输试验 GB/T6593 电子测量仪器质量检验规则 GB9361 计算站场地安全要求 GB/T11463 电子测量仪器可靠性试验 GB/T13926 工业过程测量和控制系统的电磁兼容性 GB/T14436 工业产品保证文件总则 GB12632 单晶硅太阳电池总规范 GB/T16927.1-1997 高电压试验技术第一部分:一般试验要求 GB/T17626.2-2006 试验和测量技术静电放电抗扰度试验 GB/T17626.3-2006 试验和测量技术射频电磁场辐射抗扰度试验 GB/T17626.8-2006 试验和测量技术工频磁场抗扰度试验 GB/T17626.9-1998 试验和测量技术脉冲磁场抗扰度试验 DL/T741-2001 架空送电线路运行规程 DL/T5092 110~500kV架空送电线路设计技术规程 JJG455-2000工作测力仪 JJG2057-90平面角计量器具检定系统 QX/T1-2000 Ⅱ型自动气象站 Q/GDW245-2008 架空输电线路在线监测系统通用技术条件

屈曲分析全过程

屈曲分析的过程说明: 屈曲分析是一种用于确定结构开始变得不稳定时的临介荷载和屈 曲结构发生屈曲响应时的模态形状的技术。ANSYS提供两种结构屈曲荷载和屈曲模态分析方法:非线性屈曲分析和特征值屈曲分析。 非线性屈曲分析是在大变形效应开关打开的情况下的一种非线性 静力学分析,该分析过程一直进行到结构的极限荷载或最大荷载。非 线性屈曲分析的方法是,逐步地施加一个恒定的荷载增量,直到解开 始发散为止。尤其重要的是,要一个足够小的荷载增量,来使荷载达 到预期的临界屈曲荷载。若荷载增量太大,则屈曲分析所得到的屈曲 荷载就可能不准确,在这种情况下打开自动时间步长功能,有助于避 免这类问题,打开自动时间步长功能,ANSYS程序将自动寻找屈曲荷载。 特征值屈曲分析步骤为: 1.建模 2.获得静力解:与一般静力学分析过程一致,但必须激活预应 力影响,通常只施加一个单位荷载就行了 3.获得特征屈曲解: A.进入求解 B.定义分析类型 C.定义分析选项 D.定义荷载步选项

E.求解 4.扩展解 之后就可以察看结果了 示例1: !ansys7.0有限元分析实用教程 !3.命令流求解 !ANSYS命令流: !Eigenvalue Buckling FINISH!这两行命令清除当前数据/CLEAR /TITLE,Eigenvalue Buckling Analysis /PREP7!进入前处理器 ET,1,BEAM3!选择单元 R,1,100,833.333,10!定义实常数 MP,EX,1,200000!弹性模量 MP,PRXY,1,0.3!泊松比 K,1,0,0!创建梁实体模型 K,2,0,100 L,1,2!创建直线 ESIZE,10!单元边长为1mm

输电线路覆冰检测技术(修改版)

输电线路覆冰在线检测 覆冰引起的输电线路导线舞动、杆塔倾斜倒塌、断线及绝缘子闪络等生产事故,严重影响了电网的正常运行。目前,检测线路覆冰的方法主要有人工巡视检测、观冰站等,这些方法存在着人工巡视劳动强度大、时间长,检测结果准确度不高等问题。因此探讨更为完善的检测技术对输电线路的运行及提高整个电力系统的安全可靠性具有重要的实际意义和指导作用。 1 相关标准 (1)Q/GDW 554-2010 《输电线路等值覆冰厚度监测装置技术规范》 (2)Q/GDW182-2008《中重冰区架空输电线路设计技术》 (3)DL/T 5440-2009 《重冰区架空输电线路设计技术规程》 2 覆冰在线检测技术 导线上的覆冰一般可分为4类:雨淞、混合淞、雾淞和积雪,其中雨淞和混合淞对导线的危害最为严重。输电线路设计时,以雨凇为基准折算拟定覆冰允许厚度。线路覆冰检测最基本的是对覆冰厚度的检测,然后和设计值比较。除了检测实际运行输电线路的覆冰厚度外,也常通过模拟导线法进行检测。 输电线路覆冰在线监测技术是通过在易覆冰区域的铁塔上安装覆冰自动检测站,运用在线检测的传感器、装置电源、通讯网络等关键技术,随时掌握线路的覆冰情况,并可实现预、报警,达到降低电网覆冰事故损失的目的。在线检测系统既减轻了个人劳动强度、降低事故的发生概率,又能及时地了解线路的覆冰情况,故而得到广泛推广运用。 3 输电线路覆冰在线检测方法 在线检测技术的机理是利用传感器(安装位置如图1示)获得导线的重力变化、杆塔绝缘子的倾斜角、导线舞动频率以及线路现场的温度、湿度、风速、风向、雨量等数据信息通过无线通讯网络传往监控中心,然后再通过建立数学模型近似计算出当前的导线等效覆冰厚度,最后经专家分析软件得到结论。 应用于覆冰的在线检测法有很多,从覆冰检测原理及分析方法来说,可分为称重法、导线倾角-弧垂法、图像法。 3.1 称重法 称重法包括冰样称重检测法和荷重增量法,目前荷重增量法的应用较广泛。其工作原理是线路覆冰后,导线上的荷重产生一个增量,这个增量即为覆冰的质量。 先称取一段导线上的覆冰质量(将拉力传感器测量在一个垂直档距内导线的质量), 折算出单位长度导线上的覆冰质量G (利用风速、风向和倾角传感器计算出风阻系数和绝缘子的倾斜分量,最终得出覆冰质量),再用设计时所用计算公式(1)算出导线的平均等值覆冰厚度: 图1 拉力传感器现场安装示意图

相关文档