文档库 最新最全的文档下载
当前位置:文档库 › 基于物理拓扑的改进Chord模型

基于物理拓扑的改进Chord模型

基于物理拓扑的改进Chord模型
基于物理拓扑的改进Chord模型

使用Visio从Excel生成网络拓扑图

使用Visio从Excel生成网络拓扑图 东北欧网络技术服务部郭辉略 摘要:在工程实施中,微波传输网络拓扑是制定项目实施计划的一个重要输入,需要及时共享给项目组的各个模块。很多项目中我们的传输网络拓扑是用Pathloss,Mapinfo等软件绘制,不利于其它模块同事的阅读。本文提供一个方法可以用Visio软件生成简洁明了的传输网络拓扑关系图。 关键字:Visio 网络拓扑图 一.输入信息的准备: 本方法的输入信息是一个站点列表及每个站点对应的上行站点,另外的信息可以附加。 此信息的来源可以是微波网规从Pathloss输出的链路列表(注意在做链路规划的时候保持画链路总是从下行站划往上行站,这样在输出链路列表时就能保持所有近端站是下行站点,远端站是上行站点,这里不再详述)。 在R项目中是客户提供的一个站点连接关系表,从左到右表示了下行方向。本文以此为例说明生成拓扑图的步骤。 从这些信息中我们可以做出所有站点的列表及其对应的上行站点,同时加上一些希望在图上体现的信息。如下:

二.使用Visio生成拓扑图 此方法是使用Microsoft Visio 2003从Excel表格生成组织结构图的功能。 1.运行Microsoft Visio 2003 2.“文件”-“新建”-“组织结构图”-“组织结构图向导”

3.选择“使用向导输入的信息”

4.选择一个Excel文件用来存储站点信息。注意这个文档并非刚才做好的站点列表。点击 “下一步”并确定。 5.Visio会自动打开一个Excel模板,把前面准备好的站点列表信息复制入模板,存档并 关闭Excel表格。

网络系统拓扑结构图

网络拓扑结构 网络拓扑结构是指用传输媒体互联各种设备的物理布局。将参与LAN工作的各种设备用媒体互联在一起有多种方法,实际上只有几种方式能适合LAN的工作。 如果一个网络只连接几台设备,最简单的方法是将它们都直接相连在一起,这种连接称为点对点连接。用这种方式形成的网络称为全互联网络,如下图所示。 图中有6个设备,在全互联情况下,需要15条传输线路。如果要连的设备有n个,所需线路将达到n(n-1)/2条!显而易见,这种方式只有在涉及地理范围不大,设备数很少的条件下才有使用的可能。即使属于这种环境,在LAN技术中也不使用。我们所说的拓扑结构,是因为当需要通过互联设备(如路由器)互联多个LAN时,将有可能遇到这种广域网(WAN)的互联技术。目前大多数网络使用的拓扑结构有3种: ①星行拓扑结构; ②环行拓扑结构; ③总线型拓扑结; 1.星型拓扑结构 星型结构是最古老的一种连接方式,大家每天都使用的电话都属于这种结构,如下图所示。其中,图(a)为电话网的星型结构,图(b)为目前使用最普遍的以太网(Ethernet)星型结构,处于中心位置的网络设备称为集线器,英文名为Hub。

(a)电话网的星行结构(b)以Hub为中心的结构 这种结构便于集中控制,因为端用户之间的通信必须经过中心站。由于这一特点,也带来了易于维护和安全等优点。端用户设备因为故障而停机时也不会影响其它端用户间的通信但这种结构非常不利的一点是,中心系统必须具有极高的可靠性,因为中心系统一旦损坏,整个系统便趋于瘫痪。对此中心系统通常采用双机热备份,以提高系统的可靠性。 这种网络拓扑结构的一种扩充便是星行树,如下图所示。每个Hub与端用户的连接仍为星型,Hub的级连而形成树。然而,应当指出,Hub级连的个数是有限制的,并随厂商的不同而有变化。 还应指出,以Hub构成的网络结构,虽然呈星型布局,但它使用的访问媒体的机制却仍是共享媒体的总线方式。 2.环型网络拓扑结构 环型结构在LAN中使用较多。这种结构中的传输媒体从一个端用户到另一个端用户,直到将所有端用户连成环型,如图5所示。这种结构显而易见消除了端用户通信时对中心系统的依赖性。 环行结构的特点是,每个端用户都与两个相临的端用户相连,因而存在着点到点链路,但总是以单向方式操作。于是,便有上游端用户和下游端用户之称。例如图5中,用户N是用户N+1的上游端用户,N+1是N的下游端用户。如果N+1端需将数据发送到N端,则几乎要绕环一周才能到达N端。 环上传输的任何报文都必须穿过所有端点,因此,如果环的某一点断开,环上所有端间的通信便会终止。

H3C工程案例-网络拓扑模型选择

1网络拓扑模型选择 网络的拓扑结构很大程度上决泄了网络的性能。 常见的网络拓扑结构主要有星型结构.网状结构、环形结构、双平而等几种,可以适用于的绝大多数广域网的构建,同时,也适用于绝大多数局域网的构建。 不同的拓扑结构具有不同的特性.网络建设中拓扑的选择要根拯实际情况而左。 1.1星形网络 1 滋耳形岡綁 ? 如图1所示,可以适合中小型的网络。 图1标准星形网络 具有以下特点: ?结构简单,便于设计: ?线路成本相对较低: ?网络扩展性好。 缺点是对核心设备的处理能力和接口带宽都要求很髙,核心设备一旦出现故障,苴他节点之间可能无法通信,存在单点故障隐患? 2.双星结构 对于规模比较大的网络,下属主要的分支节?点比较多,可以考虑采用双星结构。如图2所示, 图1图2双星网络 具有以下特点:

?可靠性高。采用两个核心肖点的双连接星型网络结构,使得网络具有可靠性、可用性及安全性,避免了单点失效的隐患。 ?支持流量的负载分担。网络流量可能随着多种业务的发展日益壮大(如语音,视频会议), 网络流量的负载分担问题将会成为网络可用性的主要因素,采用双连接的网络结构,使得 网络的流量能够比较合理的分布在各条链路上。 ?支持网络的冗余备份。核心节点采用两台髙性能的网络设备,使得核心层具有较好的冗余备份能力。同时,两台核心设备之间要采用高速链路互连,提供了核心设备间的髙速互连 带宽,避免两台设备之间形成传输瓶颈。 双星结构是实际网络中普遍采用的网络结构之一。 1.2网状网络 1.全网状结构 对于规模比较小的网络,可以考虑采用网状结构。如图3所示: 图2图3全网状网络 具有以下特点: ?骨干路由器之间full meshed全连接,任何两台设备之间都有链路连接,适用于骨「肖点不多的小型网络。 ?对于两点之间的通信提供了多种可选路由,有可靠性高、生存性强的特点,且不存在链路瓶颈问题和失效问题。 ?当核心设备较多时,规划和部署比较复杂。 2.部分网状结构 部分网状结构,就是为了在多设备情况下避免全网状的空级的链路,根据实际情况,可选择重点节点和其他肖点分别建立链路连接,非重点节点之间选择性连接,如图4所示:

网络拓扑结构大全和图片

网络拓扑结构总汇 网络拓扑结构总汇 网络拓扑结构总汇 网络拓扑结构总汇 网络拓扑结构总汇 星型结构 星型拓扑结构是用一个节点作为中心节点,其他节点直接与中心节点相连构成的网络。中心节点可以是文件服务器,也可以是连接设备。常见的中心节点为集线器。 星型拓扑结构的网络属于集中控制型网络,整个网络由中心节点执行集中式通行控制管理,各节点间的通信都要通过中心节点。每一个要发送数据的节点都将要发送的数据发送中心节点,再由中心节点负责将数据送到目地节点。因此,中心节点相当复杂,而各个节点的通信处理负担都很小,只需要满足链路的简单通信要求。 优点: (1)控制简单。任何一站点只和中央节点相连接,因而介质访问控制方法简单,致使访问协议也十分简单。易于网络监控和管理。 (2)故障诊断和隔离容易。中央节点对连接线路可以逐一隔离进行故障检测和定位,单个连接点的故障只影响一个设备,不会影响全网。 (3)方便服务。中央节点可以方便地对各个站点提供服务和网络重新配置。 缺点: (1)需要耗费大量的电缆,安装、维护的工作量也骤增。 (2)中央节点负担重,形成“瓶颈”,一旦发生故障,则全网受影响。 (3)各站点的分布处理能力较低。 总的来说星型拓扑结构相对简单,便于管理,建网容易,是目前局域网普采用的一种拓扑结构。采用星型拓扑结构的局域网,一般使用双绞线或光纤作为传输介质,符合综合布线标准,能够满足多种宽带需求。 尽管物理星型拓扑的实施费用高于物理总线拓扑,然而星型拓扑的优势却使其物超所值。每台设备通过各自的线缆连接到中心设备,因此某根电缆出现问题时只会影响到那一台设备,而网络的其他组件依然可正常运行。这个优点极其重要,这也正是所有新设计的以太网都采用的物理星型拓扑的原因所在。 扩展星型拓扑: 如果星型网络扩展到包含与主网络设备相连的其它网络设备,这种拓扑就称为扩展星型拓扑。 纯扩展星型拓扑的问题是:如果中心点出现故障,网络的大部分组件就会被断开。

Salama网络拓扑随机生成算法Matlab源码

Salama网络拓扑随机生成算法Matlab源码(2007-03-0610:19:00) %Salama博士的网络拓扑随机生成算法 %Border_length----正方形区域的边长,单位:km %Node_amount------网络节点的个数 %Alpha------------网络特征参数,Alpha越大,短边相对长边的比例越大 %Beta-------------网络特征参数,Beta越大,边的密度越大 %Sxy--------------用于存储节点的序号,横坐标,纵坐标的矩阵 %Cost-------------用于存储边的费用的邻接矩阵,费用在[2,10]之间随机选取,无边的取无穷大 %Delay------------用于存储边的时延的邻接矩阵,时延等于边的距离除以三分之二光速,无边的取无穷大 function[Sxy,Cost,Delay]=Net_Create(Border_length,Node_amount,Alpha,Beta) %参数初始化 Sxy=zeros(3,Node_amount); Cost=zeros(Node_amount,Node_amount); Delay=Cost; %在正方形区域内随机均匀选取Node_amount个节点 for i=1:Node_amount Sxy(2,i)=Border_length*rand; Sxy(3,i)=Border_length*rand; end %按横坐标由小到大的顺序重新为每一个节点编号 temp=Sxy; Sxy2=Sxy(2,:); Sxy2_sort=sort(Sxy2); for i=1:Node_amount pos=find(Sxy2==Sxy2_sort(i)); if length(pos)>1 error('仿真故障,请重试!'); end temp(1,i)=i; temp(2,i)=Sxy(2,pos); temp(3,i)=Sxy(3,pos); end Sxy=temp; %在节点间随机产生边,并构造延时矩阵和费用矩阵 for i=1:(Node_amount-1)

几种网络拓扑结构及对比

局域网的实验一 内容:几种网络拓扑结构及对比 1星型 2树型 3总线型 4环型 计算机网络的最主要的拓扑结构有总线型拓扑、星型拓扑、环型拓扑以及它们的混合型。计算机网络的拓扑结构就是把网络中的计算机与通信设备抽象为一个点,把传输介质抽象为一条线,由点与线组成的几何图形就就是计算机网络的拓扑结构。网络的拓扑结构:分为逻辑拓扑与物理拓扑结构这里讲物理拓扑结构。总线型拓扑:就是一种基于多点连接的拓扑结构,所有的设备连接在共同的传输介质上。总线拓扑结构使用一条所有PC都可访问的公共通道,每台PC只要连一条线缆即可但就是它的缺点就是所有的PC不得不共享线缆,优点就是不会因为一条线路发生故障而使整个网络瘫痪。环行拓扑:把每台PC连接起来,数据沿着环依次通过每台PC直接到达目的地,在环行结构中每台PC都与另两台PC相连每台PC的接口适配器必须接收数据再传往另一台一台出错,整个网络会崩溃因为两台PC之间都有电缆,所以能获得好的性能。树型拓扑结构:把整个电缆连接成树型,树枝分层每个分至点都有一台计算机,数据依次往下传优点就是布局灵活但就是故障检测较为复杂,PC环不会影响全局。星型拓扑结构:在中心放一台中心计算机,每个臂的端点放置一台PC,所有的数据包及报文通过中心计算机来通讯,除了中心机外每台PC仅有一条连接,这种结构需要大量的电缆,星型拓扑可以瞧成一层的树型结构不需要多层PC的访问权争用。星型拓扑结构在网络布线中较为常见。 编辑本段计算机网络拓扑 计算机网络的拓扑结构就是引用拓扑学中研究与大小,形状无关的点,线关系的方法。把网络中的计算机与通信设备抽象为一个点,把传输介质抽象为一条线,由点与线组成的几何图形就就是计算机网络的拓扑结构。网络的拓扑结构反映出网中个实体的结构关系,就是建设计算机网络的第一步,就是实现各种网络协议的基础,它对网络的性能,系统的可靠性与通信费用都有重大影响。最基本的网络拓扑结构有:环形拓扑、星形拓扑、总线拓扑三个。 1、总线拓扑结构 就是将网络中的所有设备通过相应的硬件接口直接连接到公共总线上,结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可“收听”到。拓扑结构 优点:结构简单、布线容易、可靠性较高,易于扩充,节点的故障不会殃及系统,就是局域网常采用的拓扑结构。缺点:所有的数据都需经过总线传送,总线成为整个网络的瓶颈;出现故障诊断较为困难。另外,由于信道共享,连接的节点不宜过多,

电力系统网络拓扑结构识别

学院 毕业设计(论文)题目:电力系统网络拓扑结构识别 学生姓名:学号: 学部(系):机械与电气工程学部 专业年级:电气工程及其自动化 指导教师:职称或学位:教授

目录 摘要 (3) ABSTRACT (4) 一绪论 (6) 1.1课题背景及意义 (6) 1.2研究现状 (6) 1.3本论文研究的主要工作 (7) 二电力系统网络拓扑结构 (7) 2.1电网拓扑模型 (7) 2.2拓扑模型的表达 (9) 2.3广义乘法与广义加法 (10) 2.4拓扑的传递性质 (11) 三矩阵方法在电力系统网络拓扑的应用 (13) 3.1网络拓扑的基本概念 (13) 3.1.1规定 (13) 3.1.2定义 (14) 3.1.3连通域的分离 (14) 3.2电网元件的等值方法 (15) 3.2.1厂站级两络拓扑 (15) 3.2.2元件级网络拓扑 (16) 3.3矩阵方法与传统方法的比较 (16) 四基于关联矩阵的网络拓扑结构识别方法研究 (17) 4.1关联矩阵 (17) 4.1.1算法 (17) 4.1.2定义 (17) 4.1.3算法基础 (18)

4.2拓扑识别 (19) 4.3主接线拓扑辨识原理 (20) 4.4算法的简化与加速 (24) 4.5流程图 (25) 4.5.1算法流程图 (25) 4.5.2节点编号的优化 (26) 4.5.3消去中间节点和开关支路 (26) 4.5.4算法的实现 (27) 4.6分布式拓扑辨识法 (27) 4.7举例和扩展 (28) 五全文总结 (29) 参考文献 (30) 致 (31) 摘要 电力系统拓扑分析是电力能量流(生产、传输、使用)流动过程中,对用于转换、保护、控制这一过程的元件(在电力系统分析中认为阻抗近似为0的元件)状态的分析,目的是形成便于电网分析与计算的模型,它界于EMS底层和高层之间。就调度自动化而言,底层信息(如SCADA)是拓扑分析的基础,高层应用(如状态估计、安全调度等[1])是拓扑分析的目的。可见,电力系统在实时运行中,这些元件的状态变化决定了运行方式的变化。如何依据厂站实时信息,快速、准确地跟踪这些变化,是实现电力系统调度自动化过程中基础而关键的工作[2]。拓扑分析在电力系统调度自动化中如此重要的地位,至少应该作到如下几点。 (1)拓扑分析的正确性:对任何情形下的运行方式,由元件状态的状况,针对各种电气接线关系,如单、双母线接线及旁路母线、3/2接线、角型接线等,均能

网络的拓扑结构分类

网络的拓扑结构分类 网络的拓扑结构是指网络中通信线路和站点(计算机或设备)的几何排列形式。 1.星型网络:各站点通过点到点的链路和中心站相连。特点是很容易在网络中增加新的站点,数据的安全性和优先级容易控制,易实现网络监控,但中心节点的故障会引起整个网络瘫痪。 每个结点都由一条单独的通信线路和中心结点连结。优点:结构简单、容易实现、便于管理,连接点的故障容易监测和排除。缺点:中心结点是全网络的可靠瓶颈,中心结点出现故障会导致网络的瘫痪。 2.环形网络:各站点通过通信介质连成一个封闭

的环形。环形网容易安装和监控,但容量有限,网络建成后,难以增加新的站点。 各结点通过通信线路组成闭合回路,环中数据只能单向传输。 优点:结构简单、容易实现,适合使用光纤,传输距离远,传输延迟确定。 缺点: 环网中的每个结点均成为网络可靠性的瓶颈,任意结点出现故障都会造成网络瘫痪,另外故障诊断也较困难。最著名的环形拓扑结构网络是令牌环网(Token Ring) 3.总线型网络:网络中所有的站点共享一条数据通道。总线型网络安装简单方便,需要铺设的电缆最短,成本低,某个站点的故障一般不会影响整个网络。但介质的故障会导致网络瘫痪,总线网安全性低,监控比较困难,增加新站点也不如星型网容易。

是将网络中的所有设备通过相应的硬件接口直接连 接到公共总线上,结点之间按广播方式通信,一个结 点发出的信息,总线上的其它结点均可“收听”到。 优点:结构简单、布线容易、可靠性较高,易于扩充, 是局域网常采用的拓扑结构。 缺点:所有的数据都需经过总线传送,总线成为整个 网络的瓶颈;出现故障诊断较为困难。最著名的总线 拓扑结构是以太网(Ethernet)。 树型网、簇星型网、网状网等其他类型拓扑结构 的网络都是以上述三种拓扑结构为基础的。 ④树型拓扑结构 是一种层次结构,结点按层次连结,信息交换主要在上下结点之间进行,相邻结点或同层结点之间一般不进行数据交换。优点:连结简单,维护方便,适用于汇集信息的使用要

某校园网总体设计方案

校园网总体设计方案 【摘要】 当今社会,以信息通信技术为代表的科技革命,正在以前所未有的方式和速度改变着我们的生活与学习。其中以计算机网络的发展更为突出,已深入我们生活的方方面面,人类社会即将快速步入信息社会。校园计算机网络作为计算机整个网络系统的重要组成部分,成为我们学习与接触得最多的网络之一,校园网络的建设已成为计算机网络基础建设的重要内容。校园网络建设所使用的技术是以局域网技术为主的计算机网络应用技术,校园网是学校进行教育科研教学、各项管理工作和各类信息交流沟通的应用平台,是集相关软件和硬件设备于一体的具有综合功能的宽带计算机局域网,为学校提供了一个日常教学、科研、管理和通讯的综合性应用环境。建设校园网的目的是建设一个以计算机辅助教学、办公与管理自动化、现代计算机校园文化核心,以现代网络技术为依托,技术先进、扩展性强,能覆盖全校主要楼宇的玄远主干网络,将学校的各种服务器、工作站、终端和外部设备通过局域网络连接起来,并进一步与广域网相连,向世界宣传自己和从Internet上获取教学资源,形成结构合理、内外沟通的校园计算机网络系统,在此基础上建立能满足教学、管理和研究工作所需要的软硬件环境,开发各类信息库和应用系统,为学校各类人员提供充分的网络信息服务。校园网络的越来越重要,这样,它的设计也实现也就显得越来越重要,无论在速度方面还是安全方面,都应该全面的考虑设计。本毕业设计主要是以建设校园网络的建设与使用为主要内容,对其中所须用到的技术做一个分析和介绍。论文的主要内容有:校园网的技术思想、技术方案,网络设备的选型以及校园网络的运行状况等,能使读者对校园网络的建设有一个比较全面的了解!

网络拓扑结构大全和图片(星型、总线型、环型、树型、分布式、网状拓扑结构)

网络拓扑结构总汇 星型结构 星型拓扑结构就是用一个节点作为中心节点,其她节点直接与中心节点相连构成得网络。中心节点可以就是文件服务器,也可以就是连接设备。常见得中心节点为集线器。 星型拓扑结构得网络属于集中控制型网络,整个网络由中心节点执行集中式通行控制管理,各节点间得通信都要通过中心节点。每一个要发送数据得节点都将要发送得数据发送中心节点,再由中心节点负责将数据送到目地节点。因此,中心节点相当复杂,而各个节点得通信处理负担都很小,只需要满足链路得简单通信要求。 优点: (1)控制简单。任何一站点只与中央节点相连接,因而介质访问控制方法简单,致使访问协议也十分简单。易于网络监控与管理。 (2)故障诊断与隔离容易。中央节点对连接线路可以逐一隔离进行故障检测与定位,单个连接点得故障只影响一个设备,不会影响全网。 (3)方便服务。中央节点可以方便地对各个站点提供服务与网络重新配置。 缺点: (1)需要耗费大量得电缆,安装、维护得工作量也骤增。 (2)中央节点负担重,形成“瓶颈”,一旦发生故障,则全网受影响。 (3)各站点得分布处理能力较低。 总得来说星型拓扑结构相对简单,便于管理,建网容易,就是目前局域网普采用得一种拓扑结构。采用星型拓扑结构得局域网,一般使用双绞线或光纤作为传输介质,符合综合布线标准,能够满足多种宽带需求。 尽管物理星型拓扑得实施费用高于物理总线拓扑,然而星型拓扑得优势却使其物超所值。每台设备通过各自得线缆连接到中心设备,因此某根电缆出现问题时只会影响到那一台设备,而网络得其她组件依然可正常运行。这个优点极其重要,这也正就是所有新设计得以太网都采用得物理星型拓扑得原因所在。 扩展星型拓扑: 如果星型网络扩展到包含与主网络设备相连得其它网络设备,这种拓扑就称为扩展星型拓扑。 纯扩展星型拓扑得问题就是:如果中心点出现故障,网络得大部分组件就会被断开。 环型结构 环型结构由网络中若干节点通过点到点得链路首尾相连形成一个闭合得环,这种结

建模与仿真动态拓扑模型

建模与仿真动态拓扑模型:应用综述 摘要 许多拓扑系统在生命期中都会发生调整变化。把这些调整变化模仿进系统,进而抽象成模型,这样的拓扑模型和相应的静态的相比,更容易去理解和维护。混合流的系统规范(HFSS)是一个可以用动态拓扑表达的混合系统规范。HFSS支持这种用增加/减少部件和内部联系自我进行改装的拓扑的表达。在本文中,我们给出了转换系统、移动部件、无界元胞自动机这几种动态拓扑模型的表达。我们还提供用HFSS表达的空间移动实体。 1.介绍 在生命期,许多系统的拓扑都在进行调整。一个有效的表达要有将这种变化描述进模型的能力。一般来说,这种表达的导向,是更直觉的和更容易维护的模型。这些系统的例子,包括传感器网络、重组电脑、错误容忍系统、森林火灾报警、人工操作系统、生态系统、人工神经网络、机器人组的形成。一个动态拓扑模型可以提供实体和它们之间的关系。 HFSS是一个可以用随机时间的拓扑表达连续/离散的系统的模拟仿真规范。这个规范是定义在一个大的变化范围上的规范,包括一

个拓扑模型的形成和结尾。但是HFSS 拓扑模型中的调整变化不具备构建所有拓扑的可能。 本文我们通过描述几个组系统的表达,提供动态拓扑的模拟仿真综述。第3部分中,我们给出了一个填充系统,在这里瓶子是模型化的部件,可以联系填充控制。第4部分中,我们给出一个电路,它被模型化为转换系统,这个系统的电流等价为一个二极管。第5部分中,我们使用动态拓扑去表达无界元胞自动机。这个表达探讨了HFSS 表达大型自动装置的能力。HFSS 赋于一个代表基于同事和同事的交流的能力,使模型很容易得到改进。 2.HFSS 规范 我们简略地提供HFSS 的描述,用动态拓扑为混合系统提供一个表达。这个规范给出两种模型:基础的和网络的。后面的模型是由基础的和网络的组成的模型。HFSS 的拓扑调整能力基于动态结构的概念。 2.1 HFSS 基础模型 一个HFSS 基础模型通过HFSS =(X, Y, S, ρ,τ, 0q ,σ , Λc, λ)限定。 其中 c d X X X =? 是输入值的设定 c d Y Y Y =?是输出值的设定 S 是部分状态的设定

计算机网络毕业论文计算机网络拓扑结构分析

计算机网络拓扑结构分析 计算机网络的拓扑结构分析是指从逻辑上抽象出网上计算机、网络设备以及传输媒介所构成的线与节点间的关系加以研究,下 面是搜集整理的一篇探究计算机网络拓扑结构的论文范文,欢迎 阅读参考。 摘要:通过对计算机网络拓扑结构的概念、分类、特点的介绍,在分析其复杂网络结构的基础上,探讨出计算机网络拓扑结 构模型的有效构建,对其在实际应用中的冗余设计进行了研究, 提高了网络系统设计的可靠性、安全性。 关键词:计算机网络;拓扑结构;网络协议;冗余设计 1、计算机网络拓扑结构的概念和分类 计算机网络的拓扑结构是指网上计算机或网络设备与传输媒 介所构成的线与节点的物理构成模式。计算机网络的节点一般有 两大类:一是交换和转换网络信息的转接节点,主要有:终端控 制器、集线器、交换机等;二是各访问节点,主要是终端和计算机 主机等。其中线主要是指计算机网络中的传输媒介,其有有形的,也有无形的,有形的叫“有线”,无形的叫“无线”。根据节点 和线的连接形式,计算机网络拓扑结构主要分为:总线型、星型、树型、环型、网状型、全互联型拓扑结构。如图1所示。

总线型主要是由一条高速主干电缆也就是总线跟若干节点进 行连接而成的网络形式。此网络结构的主要优点在于其灵活简单,容易构建,性能较好;缺点是总线故障将对整个网络产生影响,即 主干总线将决定着整个网络的命运。星型网络主要是通过中央节 点集线器跟周围各节点进行连接而构成的网络。此网络通信必须 通过中央节点方可实现。星型结构的优点在于其构网简便、结构 灵活,便于管理等;缺点是其中央节点负担较重,容易形成系统的“瓶颈”,线路的利用率也不高。树型拓扑是一种分级结构。在 树型结构的网络中,任意两个节点之间不产生回路,每条通路都 支持双向传输。这种结构的特点是扩充方便、灵活,成本低,易 推广,适合于分主次或分等级的层次型管理系统。环型拓扑结构 主要是通过各节点首尾的彼此连接从而形成一个闭合环型线路, 其信息的传送是单向的,每个节点需安装中继器,以接收、放大、发送信号。这种结构的优点是结构简单,建网容易,便于管理;其 缺点是当节点过多时,将影响传输效率,不利于扩充。网状型主 要用于广域网,由于节点之间有多条线路相连,所以网络的可靠 性较高。由于结构比较复杂,建设成本较高。 2、计算机网络拓扑的特点 随着网络技术的发展,计算机网络拓扑结构越来越呈现出一 种复杂性。近些年来对于计算机拓扑的研究,越来越趋向于计算 机拓扑节点度的幂律分布特点。这种分布在规模不同的网络拓扑 中表现出一定的稳定性,也就是指,在规模不同的计算机拓扑中,它们的节点度表现出一种幂律分布,即:P(k)=k-β。其中,β一般在2―3这个小范围内进行波动,k是指节点度,P(k)表示度为 k的节点出现的概率,即分布率。

计算机网络-综合题

1.1 1.在Internet网中,某计算机的IP地址是 11001010.01100000.00101100.01011000 ,请回答下列问题: 1)用十进制数表示上述IP地址? 2)该IP地址是属于A类,B类,还是C类地址? 3)写出该IP地址在没有划分子网时的子网掩码? 4)写出该IP地址在没有划分子网时计算机的主机号? 5)将该IP地址划分为四个子网(包括全0和全1的子网),写出子网掩码,并写出四个子网的IP地址区间(如:192.168.1.1~192.168.1.254) 1. 20 2.96.44.88 2. C类 3. 255.255.255.0 4. 88 5. 255.255.255.192 202.96.44.1~202.96.44.63 202.96.44.65~202.96.44.127 202.96.44.129~202.96.44.191 202.96.44.193~202.96.44.254 1.2 下表是一个使用CIDR的路由表。地址各字节是16进制的。如: C4.50.0.0/12中的“/12”表示网络掩码的前12位是1,即FF.F0.0.0。请说明下列地址将被传送到的下一跳各是什么。(10分)

(a)C4.4B.31.2E (b)C4.5E.05.09 (c)C4.4D.31.2E (d)C4.5E.03.87 (e)C4.5E.7F.12 (f)C4.5E.D1.02 1.3 某一网络地址块20 2.101.102.0中有5台主机A、B、C、D和E,它们的 IP地址及子网掩码如下表所示。 240(D)=11110000(B) 18(D)=00010010(B) 146(D)=10010010(B) 158(D)=10011110(B) 161(D)=10100001(B) 173(D)=10101101(B) 164(D)=10100100(B) [问题1](2分)

网络拓扑结构

网络拓扑结构 拓扑这个名词是从中借用来的。网络拓扑是网络形状,或者是它在物理上的连通性。构成网络的拓扑结构有很多种。网络拓扑结构是指用传输媒体互连各种设备的物理布局,就是用什么把网络中的等设备连接起来。拓扑图给出、的网络配置和相互间的连接,它的结构主要有、、、分布式结构、树型结构、网状结构、等。 星型 星型结构是最古老的一种连接,大家每天都使用的属于这种结构。一般网络环境都被设计成星型拓扑结构。星型网是广泛而又首选使用的网络拓扑设计之一。 星型结构是指各以星型连接成网。网络有中央节点,其他节点(、)都与中央节点直接相连,这种结构以中央节点为中心,因此又称为。 星型拓扑结构便于集中控制,因为端用户之间的通信必须经过中心站。由于这一特点,也带来了易于维护和安全等优点。端用户设备因为而停机时也不会影响其它端用户间的通信。同时星型拓扑结构的时间较小,较高。 在星型拓扑结构中,网络中的各通过点到点的连接到一个中央节点(又称中央转接站,一般是或)上,由该中央节点向目的节点传送信息。中央执行集中式通信控制策略,因此中央节点相当复杂,负担比各节点重得多。在星型网中任何两个要进行通信都必须经过中央。 现有的和声音通信的信息网大多采用星型网,流行的专用小PBX(Private Branch Exchange),即电话交换机就是星型网拓扑结构的典型实例。它在一个单位内为综合语音和数据交换信息提供信道,还可以提供语音信箱和等业务,是的一个重要分支。 在星型网中任何两个节点要进行通信都必须经过中央。因此,中央节点的主要功能有三项:当要求通信的站点发出通信请求后,控制器要检查中央转接站是否有空闲的通路,被叫设备是否空闲,从而决定是否能建立双方的物理连接;在两台设备通信过程中要维持这一通路;当通信完成或者不成功要求拆线时,中央转接站应能拆除上述通道。 由于中央节点要与多机连接,线路较多,为便于集中连线,多采用交换设备(交换机)的硬件作为中央节点。[1] 集中式 这种结构便于集中控制。同时它的网络延迟时间较小,传输误差较低。但这种结构非常不利的一点是,中心系统必须具有极高的可靠性,因为中心系统一旦损坏,整个系统便趋于瘫痪。对此中心系统通常采用双机热备份,以提高系统的可靠性。 环型

网络拓扑结构

网络拓扑结构科技名词定义 中文名称:网络拓扑结构 英文名称:n etwork topology 定义:在计算机网络中指定设备和线路的安排或布局;在地理网络中指网络要素之间的连接 网络拓扑是网络形状,或者是它在物理上的连通性?构成网络的拓扑结构有很多种。 网络拓扑结构是指用传输媒体互连各种设备的物理布局,就是用什么方式把网络中的计算机 等设备连接起来。拓扑图给出网络服务器、工作站的网络配置和相互间的连接,它的结构主要有星型结构、环型结构、总线结构、分布式结构、树型结构、网状结构、蜂窝状结构等。 星型拓扑结构(集中式网络) 星型结构是最古老的一种连接方式,大家每天都使用的电话属于这种结构。目前一般网络环境都被设计成星型拓朴结构。星型网是目前广泛而又首选使用的网络拓朴设计之一。星型结构是指各工作站以星型方式连接成网。网络有中央节点,其他节点(工作站、服务器) 都与中央节点直接相连,这种结构以中央节点为中心,因此又称为集中式网络。 星型拓扑结构便于集中控制,因为端用户之间的通信必须经过中心站。由于这一特点,也带来了易于维护和安全等优点。端用户设备因为故障而停机时也不会影响其它端用户间的通信。同时星型拓扑结构的网络延迟时间较小,传输误差较低。但这种结构非常不利的一 点是,中心系统必须具有极高的可靠性,因为中心系统一旦损坏,整个系统便趋于瘫痪。对此中心系统通常采用双机热备份,以提高系统的可靠性。 在星型拓扑结构中,网络中的各节点通过点到点的方式连接到一个中央节点(又称中央转接站,一般是集线器或交换机)上,由该中央节点向目的节点传送信息。中央节点执行集 中式通信控制策略,因此中央节点相当复杂,负担比各节点重得多。在星型网中任何两个节 点要进行通信都必须经过中央节点控制。 现有的数据处理和声音通信的信息网大多采用星型网,目前流行的专用小交换机PBX(Private Branch Exchange),即电话交换机就是星型网拓扑结构的典型实例。它在一个单位内为综合语音和数据工作站交换信息提供信道,还可以提供语音信箱和电话会议等业务,是局域网的一个重要分支。

三维模型拓扑与布线

龙源期刊网 https://www.wendangku.net/doc/c315349360.html, 三维模型拓扑与布线 作者:赵伟明 来源:《电子技术与软件工程》2017年第19期 摘要布线与拓扑,是塑造3D模型的结构线和辅助线,它是一个模型存在的根本,对于初学者在建模中经常重要于考虑造型的准确性,而忽略了布线的意义。本文通过分析各类模型布线要求及模型布线常见错误,结合目前技术提出模型布线方法及技巧。 【关键词】3D 建模拓扑布线 在 3D 建模里,拓扑(Topology)概念,指的是多边形网格模型的点线面布局、结构、连接情况。拓扑对于多边型建模模型是一个比较重要的进阶概念。如果 3D 模型只有型,虽能渲染出好的结果,但是如果没有一个好的拓扑结构,依然不能称得上是一个好的模型。 如图1可以看到,虽然两个平面的外观、大小是一样的,但是内部的顶点、边线、面的排布方式却不尽相同。右边的平面内部结构仅仅是平直的网格,左边的却复杂一些,平面、边线围绕中心部分,形成了一个环状的结构。创建一个模型,如果拥有良好的拓扑结构,不仅模型布线外观看起来比较干净规整,还在很大程度上,改善了建模的工作效率,可以更快、更精确地进行修改、操作模型的整体和细节,从而更好的反映这个物体的结构特征。 1 各类模型布线要求 目前在3D角色建模中,一个角色完整的工作流程经常先在ZBrush软件中雕刻模型、然后拓扑、展UV、制作贴图。但是ZBrush软件雕刻好的模型常常不能直接使用要重新拓扑,拓 扑时又要考虑布线问题。主要原因是首先,在ZBrush软件中创建出来的模型由于面数过高而且网格布线混乱这样对往下的工作造成很大影响,因此不能使用,那么就要进行拓扑,重新创建一个合理的结构布线并且保持模型原貌。正确的结构布线能帮助我们更好地完成往下的工作,特别是在制作贴图和动画时所起的关键作用。 模型一般分为影视用模型(高模)和游戏用模型(低模)两大类。低模又可分为网络游戏模型和次时代游戏模型,两者只存在精度和面数上的差别。 1.1 影视用模型(高模) 一般先是在三维软件中建立一个虚拟场景,按照所要表达的要求建立好模型、灯光、动画等操作,完成后让计算机自动运算,渲染生成最终画面。这样就不需要显卡及内存进行大量的即使演算,也不用考虑后台服务器能承载多少玩家运行此游戏,因此我们在创建模型时,布线要符合动画原理,以达到视觉效果为主,面数精度要高,细节要丰富,尽量避免三角面出现。 1.2 网络游戏模型

拓扑结构图

拓扑结构图 定义: 拓扑结构图是指由网络节点设备和通信介质构成的网络结构图。网络拓扑定义了各种计算机、打印机、网络设备和其他设备的连接方式。换句话说,网络拓扑描述了线缆和网络设备的布局以及数据传输时所采用的路径。网络拓扑会在很大程度上影响网络如何工作。 网络拓扑包括物理拓扑和逻辑拓扑。物理拓扑是指物理结构上各种设备和传输介质的布局。物理拓扑通常有总线型、星型、环型、树型、网状型等几种。 术语 1.节点 节点就是网络单元。网络单元是网络系统中的各种数据处理设备、数据通信控制设备和数据终端设备。 节点分为:转节点,它的作用是支持网络的连接,它通过通信线路转接和传递信息; 访问节点,它是信息交换的源点和目标。 2.链路 链路是两个节点间的连线。链路分“物理链路”和“逻辑链路”两种,前者是指实际存在的通信连线,后者是指在逻辑上起作用的网络通路。链路容量是指每个链路在单位时间内可接纳的最大信息量。 3.通路 通路是从发出信息的节点到接收信息的节点之间的一串节点和链路。也就是说,它是一系列穿越通信网络而建立起的节点到节点的链路. 常见网络逻辑拓扑结构 星型结构 星型结构是以一个节点为中心的处理系统,各种类型的入网机器均与该中心节点有物理链路直接相连。 星型结构的优点是结构简单、建网容易、控制相对简单。其缺点是属集中控制,主节点负载过重,可靠性低,通信线路利用率低。[3] 总线结构 总线结构是比较普遍采用的一种方式,它将所有的入网计算机均接入到一条通信线上,为防止信号反射,一般在总线两端连有终结器匹配线路阻抗。 总线结构的优点是信道利用率较高,结构简单,价格相对便宜。缺点是同一时刻只能有两个网络节点相互通信,网络延伸距离有限,网络容纳节点数有限。在总线上只要有一个点出现连接问题,会影响整个网络的正常运行。目前在局域网中多采用此种结构。 环型结构 环型结构是将各台连网的计算机用通信线路连接成一个闭合的环。

MESH和星型网络结构

mesh 编辑 Mesh网络即”无线网格网络”,它是“多跳(multi-hop)”网络,是由ad hoc网络发展而来,是解决“最后一公里”问题的关键技术之一。在向下一代网络演进的过程中,无线是一个不可缺的技术。无线mesh可以与其它网络协同通信。是一个动态的可以不断扩展的网络架构,任意的两个设备均可以保持无线互联。 目录 1简介 2MATLAB函数 3晶体学名词 4医学主题词 5Live Mesh 1 简介 .无线网状网(WMN)技术是面向基于IP接入的新型无线移动通信技术,适合于区域环境覆盖和宽带高速无线接入。无线Mesh网络基于呈网状分布的众多无线接入点间的相互合作和协同,具有宽带高速和高频谱效率的优势,具有动态自组织、自配置、自维护等突出特点 Mesh网络的五大优势引

1.快速部署和易于安装 2.非视距传输(NLOS) 3.健壮性 4.结构灵活 5.高带宽 MESH组网方案 Mesh组网需综合考虑信道干扰、跳数选择、频率选取等因素。本节将以基于802.11s的WLAN MESH为例,分析实际可能的各种组网方案。下面重点分析单频组网和双频组网方案及性能。 单频MESH组网 单频组网方案主要用于设备及频率资源受限的地区,分为单频单跳及单频多跳。单频组网时,所有的无线接入点Mesh AP和有线接入点Root AP的接入和回传均工作于同一频段,以图2为例,可采用2.4GHz上的信道802.11b/g进行接入和回传。按照产品实现方式及组网时信道干扰环境的不同,各跳之间采用的信道可能是完全独立的无干扰信道,也可能是存在一定干扰的信道(实际环境中多为后者)。此时由于相邻节点之间存在干扰,所有节点不能同时接收或发送,需要在多跳范围内用CSMA/CA的MAC机制进行协商。随着跳数的增加,每个Mesh AP 分配到的带宽将急剧下降,实际单频组网性能也将受到很大限制。 双频MESH组网 双频MESH组网 双频组网中每个节点的回传和接入均使用两个不同的频段,如本地接入服务用2.4 GHz 802.1l b/g信道,骨干Mesh回传网络使用5.8 GHz 802.11a信道,互不存在干扰。这样每个Mesh AP就可以在服务本地接入用户的同时,执行回传转发功能。双频组网相比单频组网,解决了回传和接入的信道干扰问题,大大提高了网络性能。但在实际环境和大规模组网中,回传链路之间由于采用同样的频段,仍无法完全保证信道之间没有干扰,因此随着跳数的增加,每个Mesh AP分配到的带宽仍存在下降的趋势,离Root AP远的Mesh AP将处于信道接入劣势,故双频组网的跳数也应该谨慎设置。 双频MESH组网

拓扑关系和九交模型

认识拓扑关系和九交模型 ---2008301130103 杨文一、拓扑关系 拓扑关系模型主要以结点、弧段、三角形和多边形作为描述空间物体的最简化元素,运用数学领域中的组合拓扑学来实现对空间简单与复杂物体几何位置和属性信息的完整描述。在该模型中,0 维空间物体代表结点,1 维空间物体代表弧段或边,2 维空间物体代表三角形或其它多边形,3 维空间物体则代表四面体或其它多面体,各类型的空间物体含有各自的坐标序列和属性值,并通过基本的邻接、关联、包含、几何和层次关系等建立之间的相互联系,而不同类型的物体相互组合又构成复杂的地理空间对象。除了结点没有方向性,弧段和多边形空间对象都具有方向性,如弧段L 由A、B 结点组成,其方向性可表示为由A-B或由B-A,多边形则可用顺、逆时针来表示其方向性。如下图: 图1 拓扑关系数据模型描述 拓扑关系数据模型中建立拓扑数据结构的关键是对元素间拓扑关系的描述,最基本的拓扑关系包括以下几种: (1)邻接:借助于不同类型拓扑元素描述相同拓扑元素之间的关系,如多边形和多边形的邻接关系。 (2)关联:不同拓扑元素之间的关系,如结点与链、链与多边形等。 (3)包含:面与其它拓扑元素之间的关系,如结点、线、面都位于某一个面内,则称该面包含这些拓扑元素。 (4)连通关系:拓扑元素之间的通达关系,如点连通度、面连通度的各种性质(如距离等)及相互关系。 (5)层次关系:相同拓扑元素之间的等级关系。如国家包含省、省包含市等。 拓扑数据结构中弧段和链具有方向性,通常以顺、逆时针作为方向基准,或将坐标以顺序方式存储。拓扑元素之间的各种拓扑关系构成了对地理空间实体的拓扑数据结构表达,如图2 所示。

Internet网络拓扑建模

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.wendangku.net/doc/c315349360.html, Journal of Software, Vol.20, No.1, January 2009, pp.109?123 https://www.wendangku.net/doc/c315349360.html, doi: 10.3724/SP.J.1001.2009.03390 Tel/Fax: +86-10-62562563 ? by Institute of Software, the Chinese Academy of Sciences. All rights reserved. Internet网络拓扑建模? 周苗1+, 杨家海2, 刘洪波2, 吴建平1 1(清华大学计算机科学与技术系,北京 100084) 2(清华大学网络研究中心,北京 100084) Modeling the Complex Internet Topology ZHOU Miao1+, Y ANG Jia-Hai2, LIU Hong-Bo2, WU Jian-Ping1 1(Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China) 2(Network Research Center, Tsinghua University, Beijing 100084, China) + Corresponding author: E-mail: zhoum05@https://www.wendangku.net/doc/c315349360.html, Zhou M, Yang JH, Liu HB, Wu JP. Modeling the complex Internet topology. Journal of Software, 2009,20(1): 109?123. https://www.wendangku.net/doc/c315349360.html,/1000-9825/3390.htm Abstract: This paper presents the basic concept of topology’s properties and modeling metrics; categorizes and analyzes both AS-level models and router-lever models. Moreover, this paper summarizes current research achievements on Internet topology’s modeling, especially at the router-level. Finally, it identifies future directions and open problems of the topology modeling research. Key words: Internet topology; AS-level modeling; router-level modeling; topology properties; metrics 摘要: 首先概述Internet网络拓扑建模的意义和分类;总结现阶段已发现的主要网络拓扑特性与度量指标;然后分析、讨论自治域级和路由器级的Internet网络拓扑建模与最新的研究成果;最后针对目前拓扑建模中存在的难点和问题给出总结,并展望未来的研究发展方向. 关键词: Internet网络拓扑;自治域级拓扑建模;路由器级拓扑建模;拓扑特性;度量指标 中图法分类号: TP393文献标识码: A 近年来,大规模的复杂Internet网络拓扑分析研究引起了计算机及物理、数学等多个领域研究人员的兴趣[1?6].然而,Internet网络自身具有复杂性和多变性,导致直接将其作为实验对象进行研究和分析变得十分困难.因此,人们希望根据真实网络数据和关键特征对Internet网络拓扑进行模型抽象,以拓扑模型代替真实Internet 网络作为实验对象进行研究分析,达到通过拓扑建模认识Internet基本特性并指导实际网络建设的目的[1,2,6?10]. 针对Internet网络拓扑建模的研究历程和未来发展方向,张宇[11]、曾伟[12]都曾对网络拓扑建模问题作过综述.但是,上述工作均只针对自治域级(AS(autonomous system)-level)拓扑建模,极少涉及路由器级(router-level)的拓扑建模.可是,作为Internet网络拓扑建模的重要方面,人们已开始越来越关注路由器级的网络拓扑建模[1,3,13].相对自治域级网络拓扑结构,路由器级拓扑更大程度上受到网络服务提供商(ISP)各自的技术水平和用户需求等相关因素的影响.并且,已有研究成果[2,14]表明,路由器级别的Internet网络拓扑特性极有可能存在与自治域级 ? Supported by the National Natural Science Foundation of China under Grant No.60473083 (国家自然科学基金) Received 2008-01-08; Accepted 2008-05-05

相关文档