文档库 最新最全的文档下载
当前位置:文档库 › 点阵LED外文翻译3000字文献教学内容

点阵LED外文翻译3000字文献教学内容

点阵LED外文翻译3000字文献教学内容
点阵LED外文翻译3000字文献教学内容

Based on AT89C52 LED overview

LED (Light Emitting Diode), light-emitting diode, is a solid state semiconductor devices, which can be directly converted into electricity to light. LED is the heart of a semiconductor chip, the chip is attached to one end of a stent, is the negative side, the other end of the power of the cathode, the entire chip package to be epoxy resin. Semiconductor chip is composed of two parts, part of the P-type semiconductor, it inside the hole-dominated, the other side is the N-type semiconductor, here is mainly electronic. But linking the two semiconductors, among them the formation of a "PN junction." When the current through the wires role in this chip, will be pushing e-P, P zone in the hole with electronic composite, and then to be issued in the form of photon energy, and this is the principle of LED luminescence. The wavelength of light that is the color of light, is formed by the PN junction of the decisions of the material.

LED history 50 years ago, people have to understand semiconductor materials can produce light of the basic knowledge, the first commercial diodes in 1960. English is the LED light emitting diode (LED) acronym, and its basic structure is an electroluminescent semiconductor materials, placed in a wire rack, then sealed with epoxy resin around, that is, solid package, Therefore, the protection of the internal batteries can play the role of line, so the seismic performance LED good.

LED is the core of the P-type semiconductor and components of the N-type semiconductor chips, the P-type semiconductor and N-type semiconductor between a transition layer, called the PN junction. In some semiconductor materials in the PN junction, the injection of a small number of carrier-carrier and the majority of the extra time will be in the form of light energy to release, thus the power to direct conversion of solar energy. PN junction on reverse voltage, a few hard-carrier injection, it is not luminous. This use of injection electroluminescent diodes is produced by the principle of light-emitting diodes, commonly known as LED. When it in a positive state of the work (that is, at both ends with forward voltage), the current flows from the LED anode, cathode, semiconductor crystals on the issue from the ultraviolet to infrared light of different colors, light and the strength of the currents.

Instruments used for the first LED light source instructions, but all kinds of light colored LED lights in traffic and large screen has been widely applied, have a very good economic and social benefits. The 12-inch red traffic lights as an example, is used in the United States have long life, low-efficiency 140 watt incandescent lamp as a light source, it produced 2,000 lumens of white light. The red filter, the loss-90 percent, only 200 lumens of red light. In the light of the new design, Lumileds companies have 18 red LED light source, including the loss of circuit, a total power consumption of 14 watts to generate the same optical effect. Automotive LED lights is also the source of important areas.

For general lighting, people need more white light sources. The 1998 white LED successful development. This is the GaN LED chip and Yttrium Aluminum Garnet (YAG) package together cause. GaN chip of the Blu-ray (λ p = 465nm, Wd = 30nm), made of high-temperature sintering of the Ce3 + YAG phosphors excited by this Blu-ray after irradiating a yellow, the peak 550 nm. Blue-chip installed in the LED-based Wanxing reflection in the cavity, covered with a resin mixed with YAG thin layer, about 200-500 nm. LED-based tablets issued by the Blu-ray absorption part of the phosphor, the phosphor another part of the Blu-ray and a yellow light mixed, can be a white. Now, the InGaN / YAG white LED, YAG phosphor by changing the chemical composition of the phosphor layer and adjust the thickness of the 3500-10000 K color temperature can be colored white. This blue LED through the method by white, constructed simple, low-cost, high technology is mature, so use the most.

In the 1960s, the use of science and technology workers semiconductor PN junction of The principle of developing a LED light-emitting diodes. At that time, the development of LED, the materials used are GaASP, its luminous color is red. After nearly 30 years of development, and now we are very familiar with the LED, has been sent to red, orange, yellow, green, blue, and other shade. However lighting necessary for white LED light only in recent years to develop, readers here to tell us about lighting with white LED.

The LED display screen and video display into the text by LED matrix blocks. Graphic display can be displayed with computer, English, Chinese text and graphics, Video screen using microcomputer control, graphic, image, with real-time, synchronization, clear information dissemination way play all kinds of information, but also shows 2d, 3d animation, videos, TV, VCD programs and live. The LED display screen display bright colors, stereo sense is strong, such as oil, such as films, widely used in finance, taxation, industry and commerce, telecommunications, sports, advertising, corporations, transportation, education system, station, port, airport, hospital, shopping malls, hotels, Banks, securities market, market, and construction management of industrial enterprises, Christie's and other public places.

The LED display can display the change of digital image; text, graphics, Not only can be used for indoor environment can also be used in outdoor environment, projectors, LCD TV wall, and the incomparable advantages.

LED by the wide attention and rapid development, and it is the advantages of itself. These advantages in is: high brightness, working voltage, low consumption, miniaturization, impact resistance and long service life and stable performance. LED the development prospect, is currently towards a higher brightness, higher resistance to climate, higher and higher light shine density evenness, reliability, the direction of development. Full-color

The classification of the LED display

1, the color can be divided into gezer

The single color display: single colors (red or green).

Double colors: red and green screen, double colors gray, can show 256 levels 65536 colors.

Full-color display: red, green, and blue, gray level 256 gezer full-color display screen can show more than 1,600 colors.

2, according to the classification of display devices

LED digital display: display device for seven yards, suitable for making the clock display screen, interest rates, digital electronic display screen.

Pictures of LED dot matrix LCD display device is composed of many: evenly composed of light emitting diode matrix display module, suitable for broadcast text, images of information.

LED video display: display device is composed by many light-emitting diodes, video, animation shows various video files.

3, by using occasions classification

Indoor display: light point is lesser, general Φ 3mm - Φ 8mm, display area of general several ten square meters to.

Outdoor screen area to several hundred square meters general dozens, high brightness, can work under the sun, in the wind, rain, waterproof function.

4 points, according to the classification of light in diameter

Indoor screens: Φ 3mm, Φ 3.75 mm, Φ 5mm,

Outdoor screen: Φ 10mm, Φ 12mm and Φ 16mm Φ, 19mm, Φ 20mm, Φ 21mm, Φ 22mm, Φ 26mm

The basic unit of the light outdoor screen for led light cone tube, the principle is a group of red, green, and blue light emitting diode sealed in a plastic tube in common

5. Display horizontally scrolling, static, vertical scroll and flip shows, etc. Single block module control drive 12 (maximum control and block), 16X48 matrix 8X8 matrix (or 32X48 matrix), is a single block of MAX7219 (or PS7219, HD7279, ZLG7289 8279 and other similar LED display driver module) 12 times (or 24 times)! Can use "cascade" means any bitmap big screen composed. Show good effect, low consumption, and the cost of using MAX7219 circuit is lower.

The LED display inspection method,

See appearance, specifications, screen body flatness, screen the attachment within

2 look bad, after the light screen is not in scope, the screen (generally now basically no)

Color consistency, displays text display is normal, the picture to screen, full-color play white, red, green and blue.

Technical advantage

Existing common indoor full-color scheme comparison:

1 the matrix modules: design, color dot matrix LCD by indoor artifacts

Advantage: the cost of raw materials, production and processing of the most advantage of simple process, quality is stable.

Faults: color consistency, Mosaic phenomenon, serious effect.

2. Single lamp schemes for solving the bitmap screen color: for outdoor screen technology,

a scheme of pixels, outdoor multiplexing technique (also called pixel sharing technology, virtual pixels to indoor display technology) transplantation.

Advantage: color consistency than bitmap module of good way.

Weakness: the effect not beautiful, color mixing, horizontal Angle and have off color. Process is relatively complex, anti-static high. Actual pixel resolution do 10,000 more difficult.

Features

? Compatible with MCS-51? Products

? 8K Bytes of In-System Programmable (ISP) Flash Memory

? 1000 Write/Erase Cycles

? Fully Static Operation: 0 Hz to 33 MHz

? Three-level Program Memory Lock

? 256 x 8-bit Internal RAM

? 32 Programmable I/O Lines

? Three 16-bit Timer/Counters

? Eigh t Interrupt Sources

? Full Duplex UART Serial Channel

? Low-power Idle and Power-down Modes

? Interrupt Recovery from Power-down Mode

? Watchdog Timer

? Dual Data Pointer

? Power-off Flag

Description

The AT89C52 is a low-power, high-performance CMOS 8-bit microcontroller with 8K bytes of in-system programmable Flash memory. The device is manufactured using Atmel’s high-density nonvolatile memory technology and is compatible with the industry standard 80C51 instruction set and pinout. The on-chip Flash allows the programmemory to be reprogrammed in-system or by a conventional nonvolatile memory programmer.By combining a versatile 8-bit CPU with in system programmable Flash on a monolithicchip, the Atmel AT89C52 is a powerful icrocontroller which provides a highly-flexible and cost-effective solution to many embedded control applications.The AT89C52 provides the following tandard features: 8K bytes of Flash, 256 bytes of RAM, 32 I/O lines, Watchdog timer, two data pointers, three 16-bit timer/counters, a six-vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator,and clock circuitry. In addition, the AT89C52 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes.The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and interrupt system to continue functioning. The Power-down mode saves the RAM contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware reset.

In the Counter function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since two machine cycles (24 oscillator periods) are required to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the oscillator frequency. To nsure that a given level is sampled at least once before it changes, the level should be held for at least one full machine cycle.

Interrupts

The AT89C52 has a total of six interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (Timers 0, 1, and 2), and the serial port interrupt. These interrupts are all shown in Figure 10. Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in Special Function Register IE. IE also contains a global disable bit, EA, which

disables all interrupts at once. Note that Table 5 shows that bit position IE.6 is unimplemented. In the AT89C52, bit position IE.5 is also unimplemented.

User software should not write 1s to these bit positions, since they may be used in future AT89 products. Timer 2 interrupt is generated by the logical OR of bits TF2 and EXF2 in register T2CON. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and that bit will have to be cleared in software. The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag, TF2, is set at S2P2 and is polled in the same cycle in which the timer overflows.

Reference data:

1. the ATMEL company AT89S52 technical manuals

2.Shenzhen Development Co., Ltd. AT89C52

3.Fudan University Press, single-chip microprocessor theory, application and test ZHANG You-de, etc.

开关稳压电源-外文翻译

DC Switching Power Supply Protection Technology Abstract: The DC switching power supply protection system, protection system design principles and machine protection measures, an analysis of switching power supply in the range of protected characteristics and its design methodology,introduced a number of practical protection circuit. Keywords: switching power supply protection circuit system design 1、Introduction DC switching regulator used in the price of more expensive high-power switching devices, the control circuit is also more complex, In addition, the load switching regulators are generally used a large number of highly integrated electronic systems installed devices. Transistors and integrated device tolerance electricity, less heat shocks. Switching Regulators therefore should take into account the protection of voltage regulators and load their own safety. Many different types of circuit protection, polarity protection, introduced here, the program protection, over-current protection, over-voltage protection, under-voltage protection and over-temperature protection circuit. Usually chosen to be some combination of protection, constitutes a complete protection system. 2、polarity protection DC switching regulator input are generally not regulated DC power supply. Operating errors or accidents as a result of the situation will take its wrong polarity, switching power supply will be damaged. Polarity protection purposes, is to make the switching regulator only when the correct polarity is not connected to DC power supply regulator to work at. Connecting a single device can achieve power polarity protection. Since the diode D to flow through switching regulator input total current, this circuit applied in a low-power switching regulator more suitable. Power in the larger occasion, while the polarity protection circuit as a procedure to protect a link, save the power required for polarity protection diodes, power consumption will be reduced. In order to easy to operate, make it easier to identify the correct polarity or not, collect the next light. 3、procedures to protect Switching power supply circuit is rather complicated, basically can be divided into low-power and high-power part of the control part of the switch. Switch is a high-power

人工智能专业外文翻译-机器人

译文资料: 机器人 首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。另一方面它也是生产力发展的需求的必然结果,也是人类自身发展的必然结果,那么随着人类的发展,人们在不断探讨自然过程中,在认识和改造自然过程中,需要能够解放人的一种奴隶。那么这种奴隶就是代替人们去能够从事复杂和繁重的体力劳动,实现人们对不可达世界的认识和改造,这也是人们在科技发展过程中的一个客观需要。 机器人有三个发展阶段,那么也就是说,我们习惯于把机器人分成三类,一种是第一代机器人,那么也叫示教再现型机器人,它是通过一个计算机,来控制一个多自由度的一个机械,通过示教存储程序和信息,工作时把信息读取出来,然后发出指令,这样的话机器人可以重复的根据人当时示教的结果,再现出这种动作,比方说汽车的点焊机器人,它只要把这个点焊的过程示教完以后,它总是重复这样一种工作,它对于外界的环境没有感知,这个力操作力的大小,这个工件存在不存在,焊的好与坏,它并不知道,那么实际上这种从第一代机器人,也就存在它这种缺陷,因此,在20世纪70年代后期,人们开始研究第二代机器人,叫带感觉的机器人,这种带感觉的机器人是类似人在某种功能的感觉,比如说力觉、触觉、滑觉、视觉、听觉和人进行相类比,有了各种各样的感觉,比方说在机器人抓一个物体的时候,它实际上力的大小能感觉出来,它能够通过视觉,能够去感受和识别它的形状、大小、颜色。抓一个鸡蛋,它能通过一个触觉,知道它的力的大小和滑动的情况。第三代机器人,也是我们机器人学中一个理想的所追求的最高级的阶段,叫智能机器人,那么只要告诉它做什么,不用告诉它怎么去做,它就能完成运动,感知思维和人机通讯的这种功能和机能,那么这个目前的发展还是相对的只是在局部有这种智能的概念和含义,但真正完整意义的这种智能机器人实际上并没有存在,而只是随着我们不断的科学技术的发展,智能的概念越来越丰富,它内涵越来越宽。 下面我简单介绍一下我国机器人发展的基本概况。由于我们国家存在很多其

指纹识别系统(文献综述)

指纹识别方法的综述 摘 要: 对在指纹的预处理和特征提取、指纹分类、指纹的匹配过程中的方向图、滤波器、神经网络等关 键性原理和技术做了详细的说明,并对在各个过程中用到的方法做了进一步的比较,讨论了各种方法的优越性。 0 引 言 自动指纹识别是上世纪六十年代兴起的,利用计算机取代人工来进行指纹识别的一种方法。近年 来,随着计算机技术的飞速发展,低价位指纹采集仪的出现以及高可靠算法的实现,更使得自动指纹识 别技术越来越多地进入到人们的生活和工作中,自动指纹识别系统的研究和开发正在成为国内外学术 界和商业界的热点。相对于其他生物特征鉴别技术例如语音识别及虹膜识别,指纹识别具有许多独到 的优点,更重要的是它具有很高的实用性和可行性,已经被认为是一种理想的身份认证技术,有着十分 广泛的应用前景,是将来生物特征识别技术的主流。 1 指纹取像 图 1 是一个自动指纹识别系统AFIS(Automated Fingerprint Identification System) 的简单流程。 → → → ↓ ↑ ———— 将一个人的指纹采集下来输入计算机进行处理是指纹自动识别的首要步骤。指纹图像的获取主要利用设备取像,方便实用,比较适合AFIS 。利用设备取像的主要方法又利用光学设备、晶体传感器和超声波来进行。光学取像设备是根据光的全反射原理来设计的。晶体传感器取像是根据谷线和脊线皮肤与传感器之间距离不同而产生的电容不同来设计的。超声波设备取像也是采用光波来取像,但由于超声波波长较短,抗干扰能力较强,所以成像的质量非常好。 2 图像的预处理与特征提取 无论采取哪种方法提取指纹,总会给指纹图像带来各种噪声。预处理的目的就是去除图像中的噪 音,把它变成一幅清晰的点线图,以便于提取正确的指纹特征。预处理是指纹自动识别过程的第一步, 它的好坏直接影响着指纹识别的效果。常用的预处理与特征提取( Image Preprocessing and Feature Ex 2 t raction) 方法的主要步骤包括方向图计算、图像滤波、二值化、细化、提取特征和后处理。当然这些步骤 可以根据系统和应用的具体情况再进行适当变化。文献[ 1 ]提出了基于脊线跟踪的方法能够指纹取像 图像预处理 特征提取 指纹识别 数据库管理

中英文文献翻译-加工中心数控技术

加工中心数控技术 出处:数控加工中心的分类以及各自特点 出版社:化学工业出版社; 第1版 (2009年3月16日) 作者:徐衡、段晓旭 加工中心是典型的集高技术于一体的机械加工设备,它的发展代表了一个国家设计制造的水平也大大提高了劳动生产率,降低了劳动成本,改善了工人的工作环境,降低了工人的劳动强度。本文经过对不同运动方案和各部件的设计方案的定性分析比较确定该教立式加工中心的进给传动方案为:采用固定床身,电主轴通过安装座安装在床身导轨的滑座上,床身导轨采用滚动导轨,可以实现Y 方向的进给运动。由X-Y双向精密数控工作台带动工件完成X,Y两个方向的进给运动;X,Y,Z三个方向的进给运动均滚珠丝杠,并由交流伺服电机驱动。导轨、滚珠丝杠有相应的润滑、防护等装置。 加工中心(英文缩写为CNC 全称为Computerized Numerical Control):是带有刀库和自动换刀装置的一种高度自动化的多功能数控机床。在中国香港,台湾及广东一代也有很多人叫它电脑锣。 工件在加工中心上经一次装夹后,数字控制系统能控制机床按不同工序,自动选择和更换刀具,自动改变机床主轴转速、进给量和刀具相对工件的运动轨迹及其他辅助机能,依次完成工件几个面上多工序的加工。并且有多种换刀或选刀功能,从而使生产效率大大提高。 加工中心数控机床是一种装有计算机数字控制系统的机床,数控系统能够处理加工程序,控制机床完成各种动作。与普通机床相比,数控机床能够完成平面曲线和空间曲面的加工,加工精度和生产效率都比较高,因而应用日益广泛。 数控机床的组成 一般来说,数控机床由机械部分、数字控制计算机、伺服系统、PC控制部分、液压气压传动系统、冷却润滑和排泄装置组成。数控机床是由程序控制的,零件的编程工作是数控机床加工的重要组成部分。伺服系统是数控机床的驱动部分,计算机输出的控制命令是通过伺服系统产生坐标移动的。普通的立式加工中心有三个伺服电机,分别驱动纵向工作台、横向工作台、主轴箱沿X向、Y向、Z向运动。X、Y、Z是互相垂直的坐标轴,因而当机床三坐标联动时可以加工空

反激式开关电源外文翻译

Measurement of the Source Impedance of Conducted Emission Using Mode Separable LISN: Conducted Emission of a Switching Power Supply JUNICHI MIY ASHITA,1 MASAYUKI MITSUZAW A,1 TOSHIYUKI KARUBE,1 KIYOHITO Y AMASAW A,2 and TOSHIRO SA TO2 1Precision Technology Research Institute of Nagano Prefecture, Japan 2Shinshu University, Japan SUMMARY In the procedure for reducing conducted emissions, it is helpful to know the noise source impedance. This paper presents a method of measuring noise source complex impedances of common and differential mode separately. We propose a line impedance stabilization network (LISN) to measure common and differential mode noise separately without changing LISN impedances of each mode. With this LISN, conducted emissions of each mode are measured inserting appropriate impedances at the equipment under test (EUT) terminal of the LISN. Noise source complex impedances of switching power supply are well calculated from measured results. ? 2002 Scripta Technica, Electr Eng Jpn, 139(2): 72 78, 2002; DOI 10.1002/eej.1154 Key words:Conducted emission; noise terminal voltage; noise source impedance; line impedance stabiliza-tion network (LISN); EMI. 1. Introduction Switching power supplies are employed widely in various devices. High-speed on/off operation is accompa-nied by harmonic noise that may cause electromagnetic interference (EMI) with communication devices and other equipment. To prevent the interference, methods of meas-urement and limit values have been set for conducted noise (~30 MHz) and radiated noise (30 to 1000 MHz). Much time and effort are required to contain the noise within the limit values; hence, the efficiency of noise removal tech-niques is an urgent social problem. Understanding of the mechanism behind noise generation and propagation is necessary in order to develop efficient measures. In particu-lar, the propagation of conducted noise must be investi-gated. Modeling and analysis of equivalent circuits have been carried out in order to investigate conducted noise caused by switching [1, 2]. However, the stray capacitance and other circuit parameters of each device must be known in order to develop an equivalent circuit, which is not practicable in the field of noise removal. On the other hand, noise filters and other noise-removal devices do not actually provide the expected effect [3, 4], which is explained by the difference between the static characteristics measured at an impedance of 50 ?, and the actual impedance. Thus, it is necessary to know the noise source impedance in order to analyze the conducted noise. Regulations on the measurement of noise terminal voltage [5] suggest using LISN; in particular, the vector sum (absolute voltage) of two propagation modes, namely, common mode and differential mode, is measured in terms of the frequency spectrum. Such a measurement, however, does not provide phase data, and propagation modes cannot be separated; therefore, the noise source impedance cannot be derived easily. There are publications dealing with the calculation of the noise source impedance; for example, common mode is only considered as the principal mode, and the absolute value of the noise source impedance for the common mode is found from the ground wire current and ungrounded voltage [6], or mode-separated measure-ment is performed by discrimination between grounded and ungrounded devices [7]. However, measurement of the ground wire current is impossible in the case of domestic single-phase two-line devices. The complex impedance can be found using an impedance analyzer in the nonoperating state, but its value may be different for the operating state. Thus, there is no simple and accurate method of measuring source noise impedance as a complex impedance. ? 2002 Scripta Technica Electrical Engineering in Japan, V ol. 139, No. 2, 2002 Translated from Denki Gakkai Ronbunshi, V ol. 120-D, No. 11, November 2000, pp. 1376 1381

文献综述_人工智能

人工智能的形成及其发展现状分析 冯海东 (长江大学管理学院荆州434023) 摘要:人工智能的历史并不久远,故将从人工智能的出现、形成、发展现 状及前景几个方面对其进行分析,总结其发展过程中所出现的问题,以及发展现状中的不足之处,分析其今后的发展方向。 关键词:人工智能,发展过程,现状分析,前景。 一.引言 人工智能最早是在1936年被英国的科学家图灵提出,并不为多数人所认知。 当时,他编写了一个下象棋的程序,这就是最早期的人工智能的应用。也有著名的“图灵测试”,这也是最初判断是否是人工智能的方案,因此,图灵被尊称为“人工智能之父”。人工智能从产生到发展经历了一个起伏跌宕的过程,直到目前为止,人工智能的应用技术也不是很成熟,而且存在相当的缺陷。 通过搜集的资料,将详细的介绍人工智能这个领域的具体情况,剖析其面临的挑战和未来的前景。 二.人工智能的发展历程 1. 1956年前的孕育期 (1) 从公元前伟大的哲学家亚里斯多德(Aristotle)到16世纪英国哲学家培根(F. Bacon),他们提出的形式逻辑的三段论、归纳法以及“知识就是力量”的警句,都对人类思维过程的研究产生了重要影响。 (2)17世纪德国数学家莱布尼兹(G..Leibniz)提出了万能符号和推理计算思想,为数理逻辑的产生和发展奠定了基础,播下了现代机器思维设计思想的种子。而19世纪的英国逻辑学家布尔(G. Boole)创立的布尔代数,实现了用符号语言描述人类思维活动的基本推理法则。 (3) 20世纪30年代迅速发展的数学逻辑和关于计算的新思想,使人们在计算机出现之前,就建立了计算与智能关系的概念。被誉为人工智能之父的英国天才的数学家图灵(A. Tur-ing)在1936年提出了一种理想计算机的数学模型,即图灵机之后,1946年就由美国数学家莫克利(J. Mauchly)和埃柯特(J. Echert)研制出了世界上第一台数字计算机,它为人工智能的研究奠定了不可缺少的物质基础。1950年图灵又发表了“计算机与智能”的论文,提出了著名的“图灵测试”,形象地指出什么是人工智能以及机器具有智能的标准,对人工智能的发展产生了极其深远的影响。 (4) 1934年美国神经生理学家麦克洛奇(W. McCulloch) 和匹兹(W. Pitts )建立了第一个神经网络模型,为以后的人工神经网络研究奠定了基础。 2. 1956年至1969年的诞生发育期 (1)1956年夏季,麻省理工学院(MIT)的麦卡锡(J.McCarthy)、明斯基(M. Minshy)、塞尔夫里奇(O. Selfridge)与索罗门夫(R. Solomonff)、 IBM的洛

虹膜识别外文翻译文献

虹膜识别外文翻译文献 虹膜识别外文翻译文献 (文档含中英文对照即英文原文和中文翻译) 外文: The first chapter 1.1 The research background of iris recognition Biometrics is a technology for personal identification using physiological characteristics and behavior characteristics inherent in the human body. Can be used for the biological characteristics of biological recognition, fingerprint, hand type face, iris, retina, pulse, ear etc.. Behavior has the following characteristics: signature, voice, gait, etc.. Based on these characteristics, it has been the development of hand shape recognition, fingerprint recognition, facial recognition, iris recognition, signature recognition and other biometric technology, many techniques have been formed and mature to application of. Biological recognition technology in a , has a long history, the ancient Egyptians through identification of each part of the body size measure to carry out identity may be the earliest human based on the earliest history of biometrics. But the modern biological recognition technology began in twentieth Century 70 time metaphase, as biometric devices early is relatively expensive, so only a higher security level atomic test, production base.due to declining cost of microprocessor and various electronic components, precision gradually improve, control device of a biological recognition technology has been gradually applied to commerce authorized, such as access control, attendance management, management system, safety certification field etc.. All biometric technology, iris recognition is currently used as a convenient and accurate.

机械类数控车床外文翻译外文文献英文文献车床.doc

Lathes Lathes are machine tools designed primarily to do turning, facing and boring, Very little turning is done on other types of machine tools, and none can do it with equal facility. Because lathes also can do drilling and reaming, their versatility permits several operations to be done with a single setup of the work piece. Consequently, more lathes of various types are used in manufacturing than any other machine tool. The essential components of a lathe are the bed, headstock assembly, tailstock assembly, and the leads crew and feed rod. The bed is the backbone of a lathe. It usually is made of well normalized or aged gray or nodular cast iron and provides s heavy, rigid frame on which all the other basic components are mounted. Two sets of parallel, longitudinal ways, inner and outer, are contained on the bed, usually on the upper side. Some makers use an inverted V-shape for all four ways, whereas others utilize one inverted V and one flat way in one or both sets, They are precision-machined to assure accuracy of alignment. On most modern lathes the way are surface-hardened to resist wear and abrasion, but precaution should be taken in operating a lathe to assure that the ways are not damaged. Any inaccuracy in them usually means that the accuracy of the entire lathe is destroyed. The headstock is mounted in a foxed position on the inner ways, usually at the left end of the bed. It provides a powered means of rotating the word at various speeds . Essentially, it consists of a hollow spindle, mounted in accurate bearings, and a set of transmission gears-similar to a truck transmission—through which the spindle can be rotated at a number of speeds. Most lathes provide from 8 to 18 speeds, usually in a geometric ratio, and on modern lathes all the speeds can be obtained merely by moving from two to four levers. An increasing trend is to provide a continuously variable speed range through electrical or mechanical drives. Because the accuracy of a lathe is greatly dependent on the spindle, it is of heavy construction and mounted in heavy bearings, usually preloaded tapered roller or ball types. The spindle has a hole extending through its length, through which long bar stock can be fed. The size of maximum size of bar stock that can be machined when the material must be fed through spindle. The tailsticd assembly consists, essentially, of three parts. A lower casting fits on the inner ways of the bed and can slide longitudinally thereon, with a means for clamping the entire assembly in any desired location, An upper casting fits on the lower one and can be moved transversely upon it, on some type of keyed ways, to permit aligning the assembly is the tailstock quill. This is a hollow steel cylinder, usually about 51 to 76mm(2to 3 inches) in diameter, that can be moved several inches longitudinally in and out of the upper casting by means of a hand wheel and screw. The size of a lathe is designated by two dimensions. The first is known as the swing. This is the maximum diameter of work that can be rotated on a lathe. It is approximately twice the distance between the line connecting the lathe centers and the nearest point on the ways, The second size dimension is the maximum distance between centers. The swing thus indicates the maximum work piece diameter that can be turned in the lathe, while the distance between centers indicates the maximum length of work piece that can be mounted between centers. Engine lathes are the type most frequently used in manufacturing. They are heavy-duty machine tools with all the components described previously and have power drive for all tool movements except on the compound rest. They commonly range in size from 305 to 610 mm(12 to 24 inches)swing and from 610 to 1219 mm(24 to 48 inches) center distances, but swings up to 1270 mm(50 inches) and center distances up

企业风险管理外文文献翻译2014年译文5000字

文献出处:Bedard J C, Hoitash R, et al. The development of the enterprise risk management theory [J]. Contemporary Accounting Research, 2014, 30(4): 64-95. (声明:本译文归百度文库所有,完整译文请到百度文库。) 原文 The development of the enterprise risk management theory Bedard J C, Hoitash R Abstract Enterprise risk management as an important field of risk management disciplines, in more than 50 years of development process of the implementation of dispersing from multiple areas of research to the integration of comprehensive risk management framework evolution, the theory of risk management and internal audit and control theory are two major theoretical sources of risk management theory has experienced from the traditional risk management, financial volatility to the development of the enterprise risk management, risk management and internal audit and control theory went through the internal accounting control and internal control integrated framework to the evolution of enterprise risk management, the development of the theory of the above two points to the direction of the enterprise risk management, finally realizes the integration development, enterprise risk management theory to become an important part of enterprise management is indispensable. Keywords: enterprise risk management, internal audit the internal control 1 The first theory source, evolution of the theory of risk management "Risk management" as a kind of operation and management idea, has a long history: thousands of years ago in the west have "don't put all eggs in one basket" the proverb, the ancient Chinese famous "product valley hunger" allusions and "yicang ("

基于单片机的开关电源外文参考文献译文及原文

本科毕业设计(论文) 外文参考文献译文及原文 学院信息工程学院 专业信息工程 年级班别 学号 学生姓名 指导教师

目录 译文 (1) 基于单片机的开关电源 (1) 1、用途 (1) 2、简介 (1) 3、分类 (2) 4、开关电源的分类 (3) 5、技术发展动向 (4) 6、原理简介 (6) 7、电路原理 (7) 8、DC/DC变换 (8) 9、AC/DC变换 (8) 原文 (10) The design Based onsingle chip switching power supply (10) 1、uses (10) 2、Introduction (10) 3、classification (11) 4、the switching power supply. (13) 5、technology developments (14) 6、the principle of Introduction (17) 7、the circuit schematic (18) 8、the DC / DC conversion (19) 9, AC / DC conversion (20)

译文 基于单片机的开关电源 1、用途 开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED 照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防,电脑机箱,数码产品和仪器类等领域。 2、简介 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和开关器件(MOSFET、BJT等)构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源。随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。

相关文档
相关文档 最新文档