文档库 最新最全的文档下载
当前位置:文档库 › TOPAS-Rietveld结构精修 -

TOPAS-Rietveld结构精修 -

晶体结构解析基本步骤

晶体结构解析基本步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序的SHELXTL软件,尚需WINGX和DIAMOND程序配合) 注意:每一个晶体数据必须在数据所在的目录(E:\STRUCT)下建立一子目录(如E:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORIG,形成如右图所示的树形结构。 一. 准备 1. 对IP收录的数据, 检查是否有inf、dat和f2(设为sss.f2, 并更名为sss.hkl)文件; 对CCD 收录的数据, 检查是否有同名的p4p和hkl(设为sss.hkl)文件 2. 对IP收录的数据, 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从total reflections项中,记下总点数;从R merge项中,记下Rint=?.???? % (IP收录者常将衍射数据转化为独立衍射点后传给我们); ⊕从unique reflections项中,记下独立点数 对CCD收录的数据, 用EDIT或记事本打开P4P文件, 并于记录下相关数据: ⊕从CELL和CELLSD项中,记下晶胞参数及标准偏差; ⊕从CCOLOR项中,记下晶体颜色; 总点数;从CSIZE项中,记下晶体大小; ⊕从BRA V AIS和SYMM项中,记下BRA V AIS点阵型式和LAUE群 3. 双击桌面的SHELXTL图标(打开程序), 呈 4. New, 先在“查找范围”选择数据所在的文件夹(如E:\STRUCT\AAA), 并选择衍射点数据文件(如sss.hkl),?单击Project Open,?最后在“project name”中给一个易于记忆和区分的任务名称(如050925-znbpy). 下次要处理同一结构时, 则只需Project 在任务项中选择050925-znbpy便可 5. 单击XPREP , 屏幕将显示DOS式的选择菜单: ⊕对IP收录的数据, 输入晶胞参数后回车(下记为) (建议在一行内将6个参数输入, 核对后) ⊕在一系列运行中, 注意屏幕内容(晶胞取向、格子型式、消光规律等), 一般的操作动作是按。之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦 ⊕退出XPREP运行之前,如果机器没有给出默认的文件名[sss],此时, 晶胞已经转换, 一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 6. 在数据所在文件夹中,检查是否产生有PRP、PCF和INS文件(PRP文件内有机器对空间群确定的简要说明) 7. 在第5步中若重新输入文件名, 则要重做第4步, 并在以后将原任务名称(如050925-znbpy)删除 8. 用EDIT 打开sss.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长,更正测量温度TEMP ?? C)。?(单位已设为

晶体结构解析的过程XP

晶体结构解析的过程 (2010-06-10 16:49:31) 转载 分类:晶体解析 标签: 杂谈 1、挑选直径大约为0.1–1.0mm的单晶。 CCD的准直管直径有0.3mm,0.5mm,0.8mm;分别对应得晶体大小是0-0.3mm, 0.3-0.5mm, 0.5-0.8mm. 2、选择用铜靶还是钼靶? 铜靶要求θmax〉=66度,最大分辨率是0.77埃 钼靶要求θmax〉=25度,最大分辨率是0.36埃 3、用smart程序收集衍射数据:得到大约一千张倒易空间的衍射图像,300M 大小。其中matrix图像45张,分成三组,每组15张,用以判定晶体能否解析。 4、用saint程序还原衍射数据:得到很多文件,但是只有三个文件是我们需要的:-ls,p4p,raw。 -ls文件中包含有最大的和最小的θ角,有效地精修衍射点数目。好像不同的机器或者还原程序得到的文件不同,有的是hkl,abs。 5、用shelxtl程序处理上述数据,并画出需要的图形。 5.1 装好shelxtl程序,新建一个project,输入要建立工程的名字,然后打开要解析的p4p或者raw文件。 5.2 用xprep程序确立空间群,建立指令文件 这个过程基本上是一直按回车键的过程(除了在要输入化学成分的时候改动一下和在是否建立指令文件的时候输入Y即可),一般不会出错。如果出错,那就要重新对空间群进行指认(出错可能是出现在下面的精修过程中)。 一般Mean(I/sigma)〉2才可以,越大越好。

得到ins,hkl,pcf三个重要数据文件。 其中ins文件:包含分子式,空间群等信息; hkl文件:包含的是衍射点的强度数据; pcf文件:记录了晶体物理特征,分子式,空间群,衍射数据收集的条件以及使用的相关软件等信息。 5.3 选择要解析的方法:直接法(TREF)还是帕特深法(PATT)? 如果晶体中含有重原子如金属原子,那就要用PATT法;如果晶体中没有原子量差异特别大的原子,就用TREF法。默认的方法是直接法。 5.4 用xs程序解析粗结构 得到res文件:包含了ins文件的内容和所有的Q峰信息。 5.5 用xp程序与xl程序完成原子的指认,付利叶加氢或理论加氢,画图等。 达到比较好的结果标准: A 化学上合理(键长、键角、价态) B R1 <0.08(0.06),wR2 <0.18(0.16),goof=S=1+-0.2(1.00) C R(int)<0.1,R(singma)<0.1 D Maximum=0.000 5.5.1 原子的指认 打开xp 输入fmol

整理晶体结构解析步骤

晶体结构解析步骤Steps to Crystallographic Solution (基于SHELXL97结构解析程序和DOS版SHELXTL画图软件。在DOS下操作) 注意:1. 每一个晶体数据必须在D:/STRUCT下建立一子目录(如D:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORG; 2. 此处用了STRUCT.BA T批文件,它存在于C:\根目录下,内有path= c:\nix; c:\exe; d:\ struct; c:\windows\system32 (struct为工作目录,exe为SHELXL97程序,nix为SHELXTL画图) 3. 在了解DOS下操作之后,可在WIN的WINGX界面下进行结构解析工作,画图可用XP 或DIAMOND软件进行。 一. 准备 1. 检查是否有inf、dat和f2(设为sss.f2)文件 2. 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从R merge项中,记下Rint=?.???? %; ⊕从total reflections项中,记下总点数; ⊕从unique reflections项中,记下独立点数 3. 双击桌面的DOS图标(或Win2000与WinNT的“命令提示符”) 4. 键入STRUCT(属于命令,大小写均可。下同) 5. 进入欲处理的数据所在的文件夹(上面的1~2工作也可在这之后进行) 6. 键入XPREP sss.f2 (屏幕显示DOS的选择菜单) 7. 选择[4],回车(下记为) 8. 输入晶胞参数(建议在一行内将6个参数输入,核对后) 9. 一系列运行(对应的操作动作均为按)之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦) 10. 退出XPREP运行之前,机器要求输入文件名,此时一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 11. 检查是否产生有PRP、PAR和INS文件(PRP文件内有机器对空间群确定的简要说明) 12. 更名:REN aaa.f2 aaa.hkl 13. 用EDIT或记事本打开aaa.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长。 二.解结构 14. 键入SHELXS aaa或XS aaa,(INS文件中, TREF为直接法,PATT为Pattersion法) 15. XP,(进入XP程序)(可能产生计算内址冲突问题,注意选择处理) 16. READ or REAP aaa (aaa.res 为缺省值,若其它文件应是文件名.扩展名,如aaa.ins) 17. FMOL, (不要H原子时,为FMOL LESS $H,或FMOL后,KILL $H, ) (读取各参数,屏幕上显示各原子的键合情况) 18. MPLN/N, (机器认为最好取向) 19. PROJ, (随意转动,直至你认为最理想取向)

晶体解析与精修—其他文件

晶体解析与精修—其他文件 name.res—结果文件(results file):xs、xl、refine产生的文件 name.lst—列表文件(listing file):记录xs、xl、refine过程和结果的文件 《Crystal Structure Refinement: A Crystallographer’s Guide to SHELXL》1一书中关于该文件描述摘录如下: A brief summary of the progress of the structure refinement appears on the console, and a full listing is written to a file name.lst, which can be printed or examined with any text editor. After each refinement cycle a file name.res is (re)written. The .res file is similar to the .ins file, but has updated values for all refined parameters. It may be copied or edited to name.ins for the next refinement run (Figure 1). Figure 1. File organization in SHELXL. 《晶体结构精修——晶体学者的SHELXL软件指南》2一书中相关翻译如下: 结构精修过程的简要总结会出现在命令行窗口,而完整的叙述则写入name.lst文件,该文件可用任意文本编辑器打印和检查。每一轮精修后会产生name.res文件。它与.ins文件相似,不过所有用于精修的参数都被刷新了。name.res文件可以被拷贝或者编辑,保存成name.ins文件进入下一轮精修(Figure 1)。 name.fcf—结构因子文件 name.pcf—记录仪器型号、晶体外观等的文件 name.p4p—记录晶胞参数等的文件,与hkl联用可以省去手动输入晶胞参数的麻烦 name.tex—xcif生成的晶体结构报表文件 name.rtf—xcif生成的晶体结构报表文件,可用word打开 name_tables.html—Olex2生成的晶体结构报表文件,可用浏览器打开 name.abs—记录吸收校正信息的文件(Bruker仪器) name._ls—其中可以找到所用衍射点和Tmax及Tmin等数据(Bruker仪器) name.cif_old—记录仪器型号、晶胞参数及晶体外观等的文件(Rigaku仪器) CrystalClear.cif—记录仪器型号、晶胞参数及晶体外观等的文件(Rigaku仪器)

晶体解析的步骤

晶体解析的步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序和DOS版SHELXTL画图软件。在DOS下操作) 注意: 1. 每一个晶体数据必须在D:/STRUCT下建立一子目录(如D:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORG; 2. 此处用了STRUCT.BAT批文件,它存在于C:\根目录下,内有path= c:\nix; c:\exe; d:\ struct; c:\windows\system32 (struct为工作目录,exe为SHELXL97程序,nix为SHELXTL 画图) 3. 在了解DOS下操作之后,可在WIN的WINGX界面下进行结构解析工作,画图可用XP 或DIAMOND软件进行。 一. 准备 1. 检查是否有inf、dat和f2(设为sss.f2)文件 2. 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从R merge项中,记下Rint=?.???? %; ⊕从total reflections项中,记下总点数; ⊕从unique reflections项中,记下独立点数 3. 双击桌面的DOS图标(或Win2000与WinNT的“命令提示符”) 4. 键入STRUCT(属于命令,大小写均可。下同) 5. 进入欲处理的数据所在的文件夹(上面的1~2工作也可在这之后进行) 6. 键入XPREP sss.f2 (屏幕显示DOS的选择菜单) 7. 选择[4],回车(下记为) 8. 输入晶胞参数 (建议在一行内将6个参数输入,核对后) 9. 一系列运行(对应的操作动作均为按)之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦) 10. 退出XPREP运行之前,机器要求输入文件名,此时一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 11. 检查是否产生有PRP、PAR和INS文件(PRP文件内有机器对空间群确定的简要说明) 12. 更名:REN aaa.f2 aaa.hkl 13. 用EDIT或记事本打开aaa.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长。 二.解结构 14. 键入SHELXS aaa或XS aaa, (INS文件中, TREF为直接法,PATT为Pattersion 法) 15. XP, (进入XP程序)(可能产生计算内址冲突问题,注意选择处理) 16. READ or REAP aaa (aaa.res 为缺省值,若其它文件应是文件名.扩展名,如aaa.ins)

结构精修 三个主要步骤

结构精修 由直接法或帕特森方法得到的结构解往往已经非常令人满意了,但坐标并不非常精确,一部分甚至全部的原子类型的归属也是不正确的(如果全然出错),而且结构的细节会丢失(H-原子,无序,溶剂分子等)。 前一种解决方案中的原子位置并不是衍射实验的直接结果,而是对由测得的密度和“以某种方法确定的”相位计算得出的电子密度函数的解释。 更好的相位可以由原子的位置计算得出,这就为有着更高精度的电子密度函数的重新确定提供了条件。而依据这样得到的新的电子密度图,我们可以得出更精确的原子位置,从而进一步得到更精确的相位角,依此类推。在这样的循环中,我们对原子模型进行了调整:原子类型得到了修正,丢失的原子得以提出,等等。 我们把这样的整个过程称为结构精修。 结构精修:三个主要步骤 对Fo-Fc图的精密检验有助于提出新原子,除去“问题”原子。 只要找到了所有的非氢原子,原子就可以进行各项异性精修。 只要模型各向异性化了,氢原子的位置就能确定或计算得出。

结构精修:电子密度图 不同种类电子密度图: Fo 图:由基于观察到的结构的计算,结合由原子模型计算出的相位进行加工得到。这种图反映的是观察到的电子密度;它的精确度很大程度上取决于相位的精确度。 Fc 图:由基于原子模型算出的结构因素和相位计算得到。这种图反映的是只根据原子模型得到的电子密度。 Fo- Fc 图:两种图的差异。在模型与实验得到的密度相符合的地方趋近于零,在模型中“该有原子却没有”的地方有很大的正值,在模型中“不该有原子却有”的地方有很大的负值。Fo- Fc 图中较小的正值或负值指向原子类型归属不正确的地方。 结构精修:电子密度图 F O -F C F O 图 模型:一个Cp 环 对电子密度图的检查说明说明当前这个配体不是一个Cp 环,但实际上是一个Cp *环。

晶体解析步骤(精)

1挑选直径大约为0.1–1.0mm的单晶。 CCD的准直管直径有0.3mm,0.5mm,0.8mm;分别对应得晶体大小是0-0.3mm, 0.3-0.5mm, 0.5-0.8mm. 2 选择用铜靶还是钼靶 铜靶要求θmax〉=66度,最大分辨率是0.77埃 钼靶要求θmax〉=25度,最大分辨率是0.36埃 3 用smart程序收集衍射数据 得到大约一千张倒易空间的衍射图像,300M大小。其中matrix图像45张,分成三组,每组15张,用以判定晶体能否解析。 4 用saint程序还原衍射数据 得到很多文件,但是只有三个文件是我们需要的:-ls,p4p,raw。 -ls文件中包含有最大的和最小的θ角,有效地精修衍射点数目。 好像不同的机器或者还原程序得到的文件不同,有的是hkl,abs。 5 用shelxtl程序处理上述数据,并画出需要的图形。 5.1 装好shelxtl程序,新建一个project,输入要建立工程的名字,然后打开要解析的p4p 或者raw文件 5.2 用xprep程序确立空间群,建立指令文件 这个过程基本上是一直按回车键的过程(除了在要输入化学成分的时候改动一下和在是否建立指令文件的时候输入Y即可),一般不会出错。如果出错,那就要重新对空间群进行指认(出错可能是出现在下面的精修过程中)。 一般Mean(I/sigma)〉2才可以,越大越好。 得到ins,hkl,pcf三个重要数据文件。 其中ins文件:包含分子式,空间群等信息; hkl文件:包含的是衍射点的强度数据; pcf文件:记录了晶体物理特征,分子式,空间群,衍射数据收集的条件以及使用的相

关软件等信息。 5.3 选择要解析的方法:直接法(TREF)还是帕特深法(PA TT)? 如果晶体中含有重原子如金属原子,那就要用PATT法;如果晶体中没有原子量差异特别大的原子,就用TREF法。默认的方法是直接法。 5.4 用xs程序解析粗结构 得到res文件:包含了ins文件的内容和所有的Q峰信息。 5.5 用xp程序与xl程序完成原子的指认,付利叶加氢或理论加氢,画图等。 达到比较好的结果标准: A 化学上合理(键长、键角、价态) B R1 <0.08(0.06),wR2 <0.18(0.16),goof=S=1+-0.2(1.00) % C R(int)<0.1,R(singma)<0.1 D Maximum=0.000 5.5.1 原子的指认 打开xp 输入fmol = 出现一系列的Q峰信息。每次打开xp后都要先输入此命令。 输入pick 进入Q峰之间连接的结构体系中。 根据化学经验(键长,键角以及连接方式)和自己晶体的预测的结构,对Q 峰进行取舍。 取舍完毕后,进行原子的命名。当闪点在某个原子上时,从键盘上输入要命名的原子的符号,然后回车;闪点就会跳到下一个要命名的Q峰上。当闪点在某个Q峰上时,如果直接回车,会删掉此原子,用backspace可以复原;如果直接敲空格键,闪点会跳到下一个Q峰上。 敲“/”键,保存命名结果,退出;敲“esc”键,不保存结果,退出。 输入pers

用xshell进行晶体结构解析和精修

用xshell进行晶体结构解析和精修本教程以Olex2软件自带的Co(II)的配合物为样本,其结构如下: 一、打开应用程序 双击“xshell.exe”打开xshell应用程序 该程序初始界面如下图所示: 二、打开晶体数据 打开方式1:菜单栏File下拉菜单第一个菜单Load

打开方式2:XShell Main Toolbar的第一个按钮 打开方式3:快捷组合键“Ctrl+L” 以以上三种方式中的任意一种点击Load,在弹出的对话框中选择要打开的文件,并打开该文件,如下图所示:

打开后如下图所示,蓝色区域显示的是化合物的结构,右下角是Q峰条 三、结构解析 1.Q峰的显示 将Q峰条处的“”用鼠标拉至最左端,让左边蓝色界面中的Q峰数目减少至0个,如下图所示:

可以看到,系统默认固定下了中心金属Co,并将其命名为Co1,以及三个S原子,并将其命名为S2,S3,S4 2. 结构的放大与缩小 在XShell Main Toolbar中最后有两个按钮,如上图所示,可以将蓝色界面显示的结构放大和缩小以便查看局部结构和全局结构 3. 不相连结构的单独显示 当结构中有不连在一起的多个单独结构时,可以只显示其中某个单独结构,比如当前状态下Co1是一个单独结构,S3是一个单独结构,S2-S4是一个单独结构。比如我要显示S2-S4这个单独结构,可以将鼠标放在S2-S4结构中的任意原子或者键上,当鼠标变为白色十字时(如下左图所示),单击鼠标右键,在弹出的菜单(如下右图所示)中点击“Associate Connected Atoms”即可单独显示S2-S4独立结构: 单独显示的S2-S4独立结构:

晶体结构分析讲义(上)

晶体结构分析 主讲人:吴文源 2010.5

1.Shelxtl 使用流程 ※解析原始文件有hkl文件(或raw文件),包含衍射数据;p4p文件,包含晶胞参数 ※为一个晶体的数据建立project,该项目下所有文件具有相同的文件名;一旦在XPREP 中发生hkl文件的矩阵转换,则需要输出新文件名的hkl等文件,因此要建立新的project。※首先运行XPREP,寻找晶体的空间群 ※然后运行XS,根据XPREP设定的空间群,寻找结构初解 ※在Xshell中观察初解是否合理,如不合理,需重回XPREP中设定其他的空间群 2.Xshell 使用流程 ※找出重原子或者确定性大的原子 ※找出其余非氢原子 ※精修原子坐标 ※精修各项异性参数 ※找到氢原子(理论加氢或差值傅里叶图加氢) ※反复精修,直到wR2等指标收敛。最后的R1<0.06(0.08) wR2<0.16(0.18) ※通过HTAB指令寻找氢键,判定氢的位置是否合理,并且将相关氢键信息通过HTAB和EQIV指令写进ins文件中 ※将原子排序(sort) 3.cif 文件生成和检测错误流程 ※在步骤1、2完成后,在ins文件中加入以下三条命令 bond $H conf acta ※此时生成了cif和fcf文件,将cif文件拷贝到planton所在文件夹中检测错误,也可以通过如下在线检测网址:https://www.wendangku.net/doc/cd15827766.html,/services/cif/checkcif.html ※根据错误提示信息,修改或重新精修,将A、B类错误务必全部消灭,C类错误尽量消灭。 4.Acta E 投稿准备流程 投稿前,请务必切实做好如下工作: ※按步骤1、2、3解析晶体并生成相应cif和fcf文件。 ※准备结构式图(Chemical structural diagram)、分子椭球图(Molecular ellipsoid diagram)和晶胞堆积图(Packing diagram),最好是pdf格式。 ※按要求撰写文章的文字部分,填写cif中相应段落,注意格式要求! _publ_section_title 题目 _publ_section_abstract 摘要 _publ_section_related_literature 相关文献 _publ_section_comment 评论 _publ_section_exptl_prep 制备方法 _publ_section_exptl_refinement 精修说明 _publ_section_references 参考文献 _publ_section_figure_captions 插图说明 _publ_section_table_legends 表格说明 _publ_section_acknow ledgements 致谢 ※将cif中需要填写的其他部分(在cif的标准空白样本中以!标注)全部完成,并再次检查整个cif文件格式和内容。

晶体结构解析

晶体结构解析 1、挑选直径大约为0.1–1.0mm的单晶。 CCD的准直管直径有0.3mm,0.5mm,0.8mm;分别对应得晶体大小是0-0.3mm, 0.3-0.5mm, 0.5-0.8mm. 2、选择用铜靶还是钼靶? 铜靶要求θmax〉=66度,最大分辨率是0.77埃 钼靶要求θmax〉=25度,最大分辨率是0.36埃 3、用smart程序收集衍射数据:得到大约一千张倒易空间的衍射图像,300M大小。其中matrix图像45张,分成三组,每组15张,用以判定晶体能否解析。 4、用saint程序还原衍射数据:得到很多文件,但是只有三个文件是我们需要的:-ls,p4p,raw。 -ls文件中包含有最大的和最小的θ角,有效地精修衍射点数目。好像不同的机器或者还原程序得到的文件不同,有的是hkl,abs。 5、用shelxtl程序处理上述数据,并画出需要的图形。 5.1 装好shelxtl程序,新建一个project,输入要建立工程的名字,然后打开要解析的p4p或者raw文件。 5.2 用xprep程序确立空间群,建立指令文件 这个过程基本上是一直按回车键的过程(除了在要输入化学成分的时候改动一下和在是否建立指令文件的时候输入Y即可),一般不会出错。如果出错,那就要重新对空间群进行指认(出错可能是出现在下面的精修过程中)。 一般Mean(I/sigma)〉2才可以,越大越好。得到ins,hkl,pcf三个重要数据文件。 其中ins文件:包含分子式,空间群 等信息; hkl文件:包含的是衍射点的强度 数据; pcf文件:记录了晶体物理特征, 分子式,空间群,衍射数据收集的条 件以及使用的相关软件等信息。 5.3 选择要解析的方法:直接法 (TREF)还是帕特深法(PATT)? 如果晶体中含有重原子如金属原 子,那就要用PATT法;如果晶体中 没有原子量差异特别大的原子,就用 TREF法。默认的方法是直接法。 5.4 用xs程序解析粗结构 得到res文件:包含了ins文件的内 容和所有的Q峰信息。 5.5 用xp程序与xl程序完成原子的 指认,付利叶加氢或理论加氢,画图 等。 达到比较好的结果标准: A 化学上合理(键长、键角、价态) B R1 <0.08(0.06),wR2 <0.18(0.16), goof=S=1+-0.2(1.00) C R(int)<0.1,R(singma)<0.1 D Maximum=0.000 5.5.1 原子的指认 打开xp 输入fmol 出现一系列的Q峰信息。每次打开 xp后都要先输入此命令。 输入pick 进入Q峰之间连接的结构体系中。 根据化学经验(键长,键角以及连接 方式)和自己晶体的预测的结构,对 Q 峰进行取舍。 取舍完毕后,进行原子的命名。当闪 点在某个原子上时,从键盘上输入要 命名的原子的符号,然后回车;闪点 就会跳到下一个要命名的Q峰上。当 闪点在某个Q峰上时,如果直接回 车,会删掉此原子,用backspace可 以复原;如果直接敲空格键,闪点会 跳到下一个Q峰上。 敲“/”键,保存命名结果,退出;敲 “esc”键,不保存结果,退出。 输入pers 可以看棍球图,如果有错误的原子命 名,可以继续用pick命令进行修改。 输入proj 可以看到结构图,并可以旋转观看 输入grow 可以长出对称的单元。如果没有对称 的单元,则此命令无效。 输入fuse 删除grow出来的原子和其他操作长 出的原子,这些原子不能带入精修的 过程中。 输入sort /n 对原子进行排序,按照原子名称的 序号;如果输入sort $C $N则按照原 子种类进行排序。 输入file name.ins 保存所作的命名信息。会有提示询 问是否从name.res中拷贝信息,直接 回车。 注意:name指用xs解析时命名的作 业名,不能更改。 输入quit 退出程序,敲esc退出程序 5.5.2 用xl进行精修 点击xl 出现精修过程,看是否符合5.5中 的标准(可以关闭xl后,通过增加 ins中的ls的次数或者copy name.res to name.ins 命令进行反复精修,切记 每次xl精修后生成的是res文件,因 此要将res拷贝成ins再次进行精修 才有效)。 如果其他的条件不符合,则要修改 ins文件:加入 anis(对所有指令后的非氢原子进 行各向异性精修,anis n对指令后的 前n个原子进行各向异性精修,anis C对指令后的指定原子进行各向异 性精修) omit(忽略指定的衍射点,一般都 要用到omit 0 52)

蛋白结构解析流程概要

结构解析和修正流程 以下是我总结的晶体结构解析方法: I 分子置换法 使用condition:目标蛋白A有同源蛋白结构B,同源性30%以上。 用到的软件及程序: HKL2000, CCP4, COOT, Phenix, CNS, 解析过程:收集数据(X-RAY)--> hkl2000 处理数据--> 置换前数据处理分子置换(ccp4 Molecular Replacement--MR) -->COOT手工修正,氨基酸序列调换 -->phenix refine--coot 手工修正 phenix refine。。。__拉氏构象图上outlier为0为之,且R-free,R-work达到足够低的值。 -->phenix 加水refine (溶剂平滑)。。。(若修正过程中有bias 最好也用CNS修正一下)II 同晶置换法--硒代蛋白 使用condition:目标蛋白没有同源结构。 用到的软件及程序:HKL2000, CCP4, COOT, Phenix, CNS, 解析过程:收集数据(X-ray 硒代蛋白及母体蛋白)--> hkl2000处理数据-->ccp4 程序包搜索搜索硒信号(gap),相位确定 -->搭模 --->以硒代数据得到的pdb为模型和母体高分辨数据得到的mtz进行分子置换--> 后面修正过程与分子置换相似。 各步骤介绍: I .hkl2000:将x-ray 收集的图像编译转化为数字信息,得到的关键文件有.sca和.log ,log文件会给出hkl2000 处理的过程记录,sca文件是最终处理的输出文件。sca文件包含晶体的空间群等信息。带有可以被转化为电子密度图的信息。评价hkl2000处理是否成功的参数有数据完整度,最高分辨率等,一般希望处理出在完整度允许的情况下最高分辨率的数据。 分子置换前处理:ccp4 软件包 a. data reduction,即将sca文件转换为mtz文件。用imported integrated data。 b. cell content analysis 这个是晶体中蛋白聚集体数的分析,通过分析晶体含水量得到一个晶胞内的蛋白分子数。用mtz文件进行。含水量在40%-60%之间时对应得n即为正确值。这个聚集体数会在mr中使用。 II. model 选取:进行分子置换的model为已知的同源蛋白结构或硒代得到的pdb,对model的要求是越接近球形越好。一般用单体。从pdb库中下载了pdb后可以用vim编辑,选取自己想要的那一段做model。 III. 分子置换:ccp4 软件包 MR 以选取好的model.pdb为模板,对mtz文件进行分子置换,这时要修改的程序参数为在晶体中寻找的model的个数,及分子量,model的个数通过

晶体结构解析基本步骤

晶体结构解析基本步骤-CAL-FENGHAI.-(YICAI)-Company One1

晶体结构解析基本步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序的SHELXTL软件,尚需WINGX和DIAMOND程序配合) 注意:每一个晶体数据必须在数据所在的目录(E:\STRUCT)下建立一子目录(如E:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORIG,形成如右图所示的树形结构。 一. 准备 1. 对IP收录的数据, 检查是否有inf、dat和f2(设为, 并更名为文件; 对CCD收录的数据, 检查是否有同名的p4p和hkl(设为文件 2. 对IP收录的数据, 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从 total reflections项中,记下总点数;从R merge项中,记下Rint=. % (IP 收录者常将衍射数据转化为独立衍射点后传给我们); ⊕从unique reflections项中,记下独立点数 对CCD收录的数据, 用EDIT或记事本打开P4P文件, 并于记录下相关数据: ⊕从CELL和CELLSD项中,记下晶胞参数及标准偏差; ⊕从CCOLOR项中,记下晶体颜色; 总点数;从CSIZE项中,记下晶体大小; ⊕从BRAVAIS和SYMM项中,记下BRAVAIS点阵型式和LAUE群 3. 双击桌面的SHELXTL图标(打开程序), 呈 4. New, 先在“查找范围”选择数据所在的文件夹(如E:\STRUCT\AAA), 并选择衍射点数据文件(如,单击Project Open,最后在“project name”中给一个易于记忆和区分的任务名称(如050925-znbpy). 下次要处理同一结构时, 则只需Project 在任务项中选择050925-znbpy便可 5. 单击XPREP , 屏幕将显示DOS式的选择菜单: ⊕对IP收录的数据, 输入晶胞参数后回车(下记为) (建议在一行内将6个参数输入, 核对后) ⊕在一系列运行中, 注意屏幕内容(晶胞取向、格子型式、消光规律等), 一般的操作动作是按。之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦 ⊕退出XPREP运行之前,如果机器没有给出默认的文件名[sss],此时, 晶胞已经转换, 一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 6. 在数据所在文件夹中,检查是否产生有PRP、PCF和INS文件(PRP文件内有机器对空间群确定的简要说明) 7. 在第5步中若重新输入文件名, 则要重做第4步, 并在以后将原任务名称(如050925-znbpy)删除

晶体结构解析步骤

晶体结构解析步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序和DOS版SHELXTL画图软件。在DOS下操作) 注意: 1. 每一个晶体数据必须在D:/STRUCT下建立一子目录(如D:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORG; 2. 此处用了STRUCT.BAT批文件,它存在于C:\根目录下,内有path= c:\nix; c:\exe; d:\ struct; c:\windows\system32 (struct为工作目录,exe为SHELXL97程序,nix为SHELXTL画图) 3. 在了解DOS下操作之后,可在WIN的WINGX界面下进行结构解析工作,画图可用XP或DIAMOND软件进行。 一. 准备 1. 检查是否有inf、dat和f2(设为sss.f2)文件 2. 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从R merge项中,记下Rint=?.???? %; ⊕从total reflections项中,记下总点数; ⊕从unique reflections项中,记下独立点数 3. 双击桌面的DOS图标(或Win2000与WinNT的“命令提示符”) 4. 键入STRUCT(属于命令,大小写均可。下同) 5. 进入欲处理的数据所在的文件夹(上面的1~2工作也可在这之后进行) 6. 键入XPREP sss.f2 (屏幕显示DOS的选择菜单) 7. 选择[4],回车(下记为) 8. 输入晶胞参数 (建议在一行内将6个参数输入,核对后) 9. 一系列运行(对应的操作动作均为按)之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦) 10. 退出XPREP运行之前,机器要求输入文件名,此时一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 11. 检查是否产生有PRP、PAR和INS文件(PRP文件内有机器对空间群确定的简要说明) 12. 更名:REN aaa.f2 aaa.hkl 13. 用EDIT或记事本打开aaa.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长。 二.解结构 14. 键入SHELXS aaa或XS aaa, (INS文件中, TREF为直接法,PA TT为Pattersion法) 15. XP, (进入XP程序)(可能产生计算内址冲突问题,注意选择处理) 16. READ or REAP aaa (aaa.res 为缺省值,若其它文件应是文件名.扩展名,如aaa.ins) 17. FMOL, (不要H原子时,为FMOL LESS $H,或FMOL后,KILL $H, ) (读取各参数,屏幕上显示各原子的键合情况)

Shelxle 结构解析和精修

SHELX Tutorial Introduction 关于此教程 此教程的主要目的是介绍如何使用SHELX程序包,解析和精修一个小分子的晶体结构(少于200个非氢原子)。 我们推荐新手练习文档中的所有步骤。 步骤1-5中的所有的章节都遵循下注释:需要用户操作的使用蓝色背景。其它文本部分用于解释图标以及重要的晶体学概念。 本教程中使用的案例 典型的小分子结构通常是金属有机或者纯有机分子。本教程中使用的是VitC 的衍生分子:内酯环上连接一个长烷基链。 本图显示的是最终原子结构的3D模型。当然在你自己的操作过程中,可能会出现各种意想不到的事情。 程序和文件

在结构精修过程中,我们会使用Shelxle去编辑RES文件,从而准备下一轮精修的INS文件。RES文件和INS文件都可以使用任何文本编辑程序打开。 结构解析程序流程 本教程主要是对于结构解析和精修的介绍。前提是,X射线衍射实验已经完成,所有的衍射点数据都已经过指标化,还原和校正。通常衍射仪将会产生包含衍射数据的hkl文件(通常是SHELX格式)以及用于结构解析.ins文件。如果没有ins文件或者需要重新产生.ins文件,你也可以使用XPREP(BRUKER copyright)读取hkl文件,推断空间群并产生.ins文件。尤其对于一些结构,必须使用XPREP 重新指标化HKL文件中的衍射点,从何和正确的空间群相一致。比如本例子中的momo_unmerged.hkl. 利用XPREP,我们可以确定数据的Laue群以及初始的空间群,并且产生下一步SHELXT需要的指令文件mono.ins以及相应的HKL文件 mono.hkl。我们可以重新指标化HKL文件,也可以对分辨率做相应的截取。在接下来的结构解析步骤中,新产生的HKL文件不会被进一步修改,之后所有程序中都会使用到该文件。INS文件需要至少指定晶体结构中有哪些元素。

晶体解析步骤

AFIX, DFIX, HFIX, HIMP这些加氢的指令怎用阿(讨论一下加氢的基本步骤吧) 想请教有关加氢的问题(讨论一下加氢的基本步骤吧) 1. AFIX, DFIX, HFIX, HIMP这些加氢的指令怎用阿 2. 如果可以用Q峰加氢..要用哪个指令呢?指令怎样用?在哪个文件加? 3. 如果找不到Q峰,除了hadd之外,大家都是怎样加氢的??要用哪个指令?指令怎样用?在哪个文件加?? 4. 除了这些指令...大家都是怎样加的...大家谈谈加氢的经验和过程吧... 有高手可以把加?做??劫...我想一定?成?精攘帖的...也可以?初?者?考... 感谢分享...这些都是我们初学者要学的阿...拜托...热心的人回答一下吧 跟帖学习,就用过AFIX 和DFIX,没闹明白到底是怎么回事,q峰加氢应该就是用name指令吧?找不到Q峰就就加大Q峰的数量,还是没有就可以基本判断没有H了吧?溶剂水的加氢一直没搞定。 有高手知道??? 怎?是?人??? 老弟是不是没有shelx的说明书啊? 再次建议你静下心来好好看看. 1. AFIX, DFIX, HFIX, HIMP这些加氢的指令怎用阿 AFIX 内容比较多, 看书去. DFIX DANG是分别固定键长键角的. 形式 DFIX 0.85 0.01 O1 H1 DANG 1.35 0.01 H1 H2

HFIX 和AFIX差不多, 但在没加氢前用在.ins中,修正后,回直接帮你把理论的氢产生好. himp用来在xp中改变X-H的键长. 比如himp 0.82 h1 2. 如果可以用Q峰加氢..要用哪个指令呢?指令怎样用?在哪个文件加? plan 300 在.ins文件中加 3. 如果找不到Q峰,除了hadd之外,大家都是怎样加氢的??要用哪个指令?指令怎样用?在哪个文件加?? 碳上的氢, hadd足矣. O上的氢, 一般从Dif-fourier map找, 就是把合适的Q命名为H. 在xp中 先用envi o1之类的命令找到合适的Q, 在用name q1 h1改名. 4. 除了这些指令...大家都是怎样加的...大家谈谈加氢的经验和过程吧... 没有秘诀, 反复尝试. 如果数据比较好, 可以找到H; 如果不好, 要按照尽可能形成氢键的原则. 我有个quick question....何时需要固定键长呢??哪些原子上的氢需要固定键长键角? 像是3.里面的O上加的氢...在指定名称之后...需要固定键长吗??怎固定??? 谢谢老师的回应阿....你人真的太好了 哀...凌晨快要三点了....看这些指令头都晕了..... 引用xi2004老?的:""1. AFIX, DFIX, HFIX, HIMP这些加氢的指令怎用阿 AFIX 内容比较多, 看书去. DFIX DANG是分别固定键长键角的. 形式 DFIX 0.85 0.01 O1 H1 DANG 1.35 0.01 H1 H2 HFIX 和AFIX差不多, 但在没加氢前用在.ins中,修正后,回直接帮你把理论的氢产生好. himp用来在xp中改变X-H的键长. 比如himp 0.82 h1""

相关文档