文档库 最新最全的文档下载
当前位置:文档库 › 操作系统课程设计(小型的操作系统)资料

操作系统课程设计(小型的操作系统)资料

操作系统课程设计(小型的操作系统)资料
操作系统课程设计(小型的操作系统)资料

操作系统课程设计报告

题目:一个小型的操作系统

班级:计122(杏)

学号:1213023075

姓名:贾苏

日期:2014/06/23

1.实验平台

(1)软件平台:

开发系统平台:Windows 7 (64)

Microsoft visual c++ 6.0

测试系统平台:Windows 7 (64)

(2)硬件平台:

cpu:AMD A6-3420 APU

内存:4GB

硬盘:500G

2.所需实现的功能及相应的阐述:

(1)进程调度管理

为了贴切现实中的os,采用RR(轮转调度算法),且不提供用户显式的选择调度算法,即对用户是透明的。

现实中的处理器主频为1Ghz~3Ghz,选取中间点为1.5Ghz,得时间片大小为0.7ns ,为方便计算*10,则时间片大小定为7ns。

假设进程之间的调度和切换不耗费cpu时间。

(2)死锁的检测与处理

检测当然采用的是银行家算法

处理:让用户选择kill一个进程,释放他所占有的所有资源。(3)虚拟分页调度管理

虚拟分页:给出的是逻辑值访问磁盘将那个数据块放入到内存中内存中的地址采用一定的算法相对应于磁盘的地址。

特规定访存采用的是按字节寻址

内存的大小128KB

外存的大小1MB

即整个系统可以提供1MB的逻辑地址空间供进程进行访问(在地址总线足够扫描内存的情况下)。

虚拟地址映射采用:直接映射法

规定的8kB为一个页面,故内存有16个页面,外存有128个页面。如果产生了内存已满,便会产生缺页中断,淘汰采用FIFO算法,利用一个队列来做。

部分内外存的对应表

0 0,128,2*128+0.......

1 1,129,2*128+1.......

2 2,130,2*128+2.......

16 127,128+16,2*128+16.........

(4)I/O中断处理

设中断来自两个方面:

1.DMA输送开始和结束时的中断

设定一个宏定义为DMA一次传输的数据量的大小->DmaNum 假定为10kb每次

DMA开始:耗费1ns cpu时间进行中断处理

DMA 结束:耗费2ns cpu 时间进行中断处理

由操作系统课程知,DMA 传输数据时不需要CPU 的干预。 2.随机的中断

发生外部随机中断,cpu 无条件的立即响应,并执行中断处理程序,同样的假设中断处理程序的调度和切换不耗费cpu 时间。

(5)内存地址越界或内存不足

进程访问内存时超过了进程所要的最大值,此时发生中断,已达到内存保护的功能。

内存不足时即为当前的动态地址重定位寄存器中的值+进程所需的内存大小超过了内存的上限,此时进行内存紧凑,同时修改被移动的进程中的各个有关参数。 3.总体设计

4.程序所需的数据结构及其抽象过程

开始

进程信息查看

死锁检测与解除

内存空间查看

查看cpu 运行

外存空间查看

开始运行

查看运行情况

内存管理

先定义本次操作系统外设的资源,假设有A类资源10个,B类资源5个,C类资源6个->NeedRescourse;

作业中的各个进程都需要一个代号->ProcessName,各个进程到来的时间不同,故需要记录一下->ArriveTime,每个进程所需要的cpu 时间是不够的->NeedCpuTime,每个进程所需的内存空间大小是不一样的->NeedMem。

各个进程中的任务是不同的故需要预先设定本进程中所要执行的操作类型->OpKind,如果是计算型的直接给出所需要的cpu时间即可,如果是I/O型的还需要给出所传输的数据量的大小->NeedTranDataNum,在此可以给OpKind做一个union型的结构。多道程序程序在运行的过程中需要对进程所需内存的地址进行动态地址重定位,故在系统之中需要设置一个动态地址重定位寄存器,其中的内容是下次进程可以使用的内存始址->DynReg。

抽象结果:

struct Process{

char ProcessName[10];//进程的名字

int ArriveTime; // ns级别

int NeedCpuTime; //此进程所需要的时间

int NeedMem; //所需要的cpu时间

FlagForOp OpKind; //用于指示是何种操作

int NeedTranDataNum; //给IO用的数据块

int OpCpus; //计算类型的操作所需的cpu时间

int NeedRescourse[3] ;//需要资源的数目NULL代表不需要使用

Process *next;

};

5.详细设计

1.进程信息查看

依次遍历全部的链表,并将它们的信息依次打印出来。

实现函数名:void ShowProcessInfo()

2.死锁的检测和解除

假定本系统中的各个所需资源均是独占型资源,在进程运行的过程中不再释放,故只需要遍历链表将各个进程中所需的资源统计出来,只要不大于系统中预设的即可,一旦进程所需的资源大于系统中的最大量,给予用户选择kill一进程,已达到释放资源的目的。

死锁检测函数:void DeedLock()

void DeedLock_LookNeedRescourse()

死锁解除函数:void DeedLock_KillProcess()

3.内存空间查看

查看各个进程所占用的内存的空间,借助于DynReg这个全局变量实行内存空间的动态重定位。

实现函数:void LookMem()

4.查看CPU运行

以CPU的角度,查看作业的运行情况,

实现函数:void LookCpu()

void LookCpu_ShowRunningProcess()

5.外存空间查看

外存空间是用户的工作区间,故只要遍历整个进程链表,统计出所有进程占有的全部空间即可。

实现函数:void LookDiskMem()

6.查看运行

查看系统运行中各个资源的使用情况:

实现函数:void ShowRunningProcess()

void ShowRunningProcess_CalculateCpuNeed(int*,int) 7.内存管理

缺页调度算法:FIFO(借助于循环队列实现)

实现函数:void MemToDiskMem()

6.程序运行和调试

1.打开程序的初始界面:

按系统提示输入进程数,及其相关的各个参数

2.输入完成后的主界面:

用户可以按下相关的选择键实施有关的各个操作。

3.按下1 查看各个进程的信息

可以看到刚刚输入的各个进程的有关信息

4.按下2

5.按下3 查看运行时CPU的使用情况

可见此时系统是安全的。

系统出差提示

按下1显示当前各个进程所需的资源

然后kill进程1后在查看一下作业中的进程,发现被kill的进程没有的,实现了此功能。

6.按下4 查看内存的使用情况

7.按下5 查看外存空间

8.按下6 查看运行情况

9.按下7 产看内存使用情况

(1)没有产生缺页

(2)产生缺页

10.按下9 退出此系统

7.遇到的问题

(1)自己编写映射表相当的困难,一度想改用Java语言,在于对C++语言的了解不够。

(2)出错处理没有完全做完,做的不够精细,很多地方直接结束(3)对用户输入的数据做的类型检查不够充分

(4)delete job时总是出现系统错误,后debug发现,由于对象之中存在不为空的指针,导致出错,故再释放指针所占空间后系统正常运行。

8.源代码

#include

#include

#include

#include

#include"CirQueue.h" //循环队列的头文件

using namespace std;

#define MAXMEM 128 //定义本次操作系统的最大内存容量

#define MAXDISKMEM 1024 //定义本次操作系统的最大外存容量

#define YE 10 //定义本次操作系统的分页大小并以此实现虚拟存储

int UsedMAXMEM=0;

int UsedMAXDISKMEM=0;

//定义进程可能用到的外部资源

#define A 10

#define B 5

#define C 6

//cpu

#define RR 7 //定义时间片大小为7ns

#define BEFOREDMA 1 //DMA之前所需的cpu时间

#define AFTERDMA 2 //DMA之后所需的cpu时间

#define ONEDMANUM 10//DMA一次最多传送10kb的数据

enum FlagForOp{

IO,Calculate,others

};

int DynReg=0;//定义用于描述动态地址重定位寄存器的全局变量

struct Process{

char ProcessName[10];//进程的名字

int ArriveTime;// ns级别

int NeedCpuTime;//此进程所需要的时间

int NeedMem;//所需要的cpu时间

FlagForOp OpKind;//用于指示是何种操作

int NeedTranDataNum;//给IO用的数据块

int OpCpus;//计算类型的操作所需的cpu时间

//假设others不需要其他的各个操作。

int NeedRescourse[3];//需要资源的数目 NULL代表不需要使用 0——a....

Process *next;

};

class JOB{

Process *p;

Process *head;

Process *head1;//建立一个备用的链表

// Process *wait,*runing; //wait 为等待链表 running是正在运行的进程public:

JOB(){

head1=p=head=NULL;//初始化为空

cout<<"Please waiting .The System is initial."<

Sleep(2000);//暂停一秒 maybe Sleep()

cout<<"System is already. Now you should enter information of you job."<

int n;

cout<<"enter your job's process num."<

cin>>n;

while(n){

p=new Process();

cout<<"please enter the name of process."<

cin>>p->ProcessName;

cout<<"please enter the arrivetime of process."<

cin>>p->ArriveTime;

cout<<"please enter the NeedCpuTime of process."<

cin>>p->NeedCpuTime;

cout<<"please enter the NeedMem of process."<

cin>>p->NeedMem;

while(p->NeedMem>128){

cout<<"This System can't not accept your job! Maybe your job is too large! Please enter a num <128"<

cin>>p->NeedMem;

}

cout<<"please enter the operation of process.0 to TranDiskNum ,1 to cpu"<

int nn;

cin>>nn;

if(nn==0){

cout<<"please enter the NeedTranDataNum."<

cin>>p->NeedTranDataNum;

p->OpKind=IO;

}else{

cout<<"please enter the OpCpus."<

cin>>p->OpCpus;

p->OpKind=Calculate;

}

cout<<"PLease enter the A,B or C you need"<

for(int i=0;i<3;i++){

cin>>p->NeedRescourse[i];

}

p->next=NULL;//尾结点为空表示一个节点的完成下面进行插入链表的工作

head=SortLinkTable(head,p);

n--;

}//while

LinkCopy();//将本次整理好的链表依次赋值赋给备用链表

Provide_Same_Process_Name();//检查重名现象

}

void Provide_Same_Process_Name();

void VisitLinkTable();

Process* SortLinkTable(Process*,Process*);

void BeginRunning();

void ShowProcessInfo();

void DeedLock();

void DeedLock_KillProcess();

void DeedLock_LookNeedRescourse();

void LookCpu();

void LookCpu_ShowRunningProcess();

void LookMem();

void ShowRunningProcess();

void ShowRunningProcess_CalculateCpuNeed(int*,int);

void LookDiskMem();

void LookMem_ChangeMem();

bool CheckMem();

void LookDiskMem_Change();

void LinkCopy();

void MemToDiskMem();

~JOB(){

delete head;

delete head1;

delete p;

}

};

JOB *job;//设置全局变量

void JOB::Provide_Same_Process_Name(){

system("cls");

char buffer[10];

Process *temp=head1;

Process *temp1=head1;

while(temp){

temp1=temp->next;

while(temp1){

if(strcmp(temp->ProcessName,temp1->ProcessName)==0){

cout<<"Mini_OperationSystem had detect the same name process in your job!"<

cout<<"This System can't accept this sitution.Please Rename your Process! \nThanks for your corporation!"<

cout<<"This is ALL your process name:"<

VisitLinkTable();

cout<<"Enter 1 to rename the former,0 to rename the later!"<

int n=0;

cin>>n;

cout<<"Now Enter new Name:"<

cin>>buffer;

strcpy(temp1->ProcessName,buffer);

}else{

cin>>buffer;

strcpy(temp->ProcessName,buffer);

}

}//end if

temp1=temp1->next;

}//end while temp1

temp=temp->next;

}//while

}

void AgainEnterJOB(){

system("cls");

delete job;

job=new JOB();

}

void JOB::VisitLinkTable(){//不加JOB前缀的时候编译不过加上代表此函数是JOBclass之中的while(head1){

cout<ProcessName<

head1=head1->next;

}

cout<<"\nNow , You can see The List to checkout."<

}

void JOB::LinkCopy(){

Process *temp=NULL,*temp2=head;

if(head1==NULL){

cout<<"LinkCopy() is Here!"<

}

if(head1)//不为空时将其下一个置为空

head1->next=NULL;

head1=NULL;

while(temp2){

//apply a new node

temp=new Process();

strcpy(temp->ProcessName,temp2->ProcessName);

temp->ArriveTime=temp2->ArriveTime;

temp->NeedCpuTime=temp2->NeedCpuTime;

temp->NeedMem=temp2->NeedMem;

temp->OpKind=IO;

temp->NeedTranDataNum=temp2->NeedTranDataNum;

}else{

temp->OpKind=Calculate;

temp->OpCpus=temp2->OpCpus;

}

for(int i=0;i<3;i++){

temp->NeedRescourse[i]=temp2->NeedRescourse[i];

}

//apply end

temp->next=NULL;

//cout<<"copy is right!"<

if(head1==NULL){

head1=temp;

}else{

Process *k=head1;

while(k->next){//寻找到最后一个节点不断的循环退不出去

k=k->next;

}

k->next=temp;

}

// cout<<"copy is right!"<

temp2=temp2->next;

}//while

if(head1==NULL)

cout<<"LinkCopy() is out!"<

system("pause");

}

void JOB::MemToDiskMem(){

system("cls");

CirQueue q(16); //一共定义的16个页面 q.EnQueue(e);

int *Mem;

int count=0; //记录下进程的数目

Process *temp_head1=head1;

while(temp_head1){

count++;

temp_head1=temp_head1->next;

}

temp_head1=head1;

Mem=new int[count];

int temp_count=0;

while(temp_head1){

int Begin=0;

cout<<"Process: "<ProcessName<<" memery use situation:"<

Begin+=temp_head1->NeedMem;

int k=0; //所需的页面数目

if(Begin%YE==0){

k=Begin/YE;

}else{

k=Begin/YE+1;

}

Mem[temp_count++]=k;

cout<

temp_head1=temp_head1->next;

}//end while

cout<

temp_head1=head1;

cout<<"Want to see 缺页调度过程 Y/N. "<

char option;

int total=0,AllTotal=0;

cin>>option;

if(option=='y'||option=='Y'){

for(int i=0;i

AllTotal+=Mem[i];

for(int j=0;j

if(q.EnQueue(true)){

temp_count=0;

while(temp_count

temp_head1=temp_head1->next;

temp_count++;

}

cout<<"Process :"<ProcessName<<" need mem is loading.ok"<

temp_head1=head1;

}else{

temp_count=0;

while(temp_count

temp_head1=temp_head1->next;

temp_count++;

}

cout<<"Process :"<ProcessName<<" need mem is loading error 缺页调度"<

temp_head1=head1;

total++;

bool flag=q.DeQueue();

if(q.EnQueue(true)){

cout<<"Process :"<ProcessName<<" need mem is loading ok 缺页调度"<

}

}

}//for2

cout<

}//for1

}

cout<<"一共产生了:"<

system("pause");

}

void JOB::LookCpu_ShowRunningProcess(){

system("cls");

int NowTime=0;

Process *run=head1;//临时试用一下最终需要归还为NULL

Process *wait=head1;// dsvrfgvregrefswgvregegsdgre

int count=0;

while(run){//计算等待运行的进程的个数

count++;

run=run->next;

}

run=head1;//还原运行链表

//建立一个映射表

char **Run_Process_Name=new char*[count];//申请一个动态的二维表

for(int i=0;i

Run_Process_Name[i]=new char[10];

strcpy(Run_Process_Name[i],run->ProcessName);

run=run->next;

}

run=NULL;

int *Run_Process_CpuNeed=new int[count];

//映射表建立完毕

//计算各个进程中所需的cpu时间

ShowRunningProcess_CalculateCpuNeed(Run_Process_CpuNeed,count);

Process *priorNode=NULL;

//Process *tail=head;

while(true){

//int time11=wait->ArriveTime;

if(wait&&NowTime>=wait->ArriveTime){

if(run==NULL){

run=wait;

priorNode=run;

}else{//连接到尾部

Process *temp=run;

while(temp->next!=priorNode){//寻找到前驱节点

temp=temp->next;

}

temp->next=wait;//将结点连接上链表

priorNode=wait;

//wait->next=run;

}

wait=wait->next;//释放一个结点

priorNode->next=run;//连接上头部形成循环链表

}

if(run){

run=run->next; //重新调度

cout<"<ProcessName<<" is Running"<

cout<<"cpu 调度下一个运行的进程。"<

NowTime+=RR;

//依据上面建设的映射按名取出所需运行的时间

int ALLNeedCpu;

for(int i=0;i

if(strcmp(Run_Process_Name[i],run->ProcessName)==0)

break;

}

ALLNeedCpu=Run_Process_CpuNeed[i];

ALLNeedCpu-=RR;//减去本次运行的时间

if(ALLNeedCpu>0){

Run_Process_CpuNeed[i]=ALLNeedCpu;//重新写回到数组中保持一致性

}else{ //此节点已经做完了请直接释放

if(run->next==run){

run=NULL;

}else{

Process *k=run;

while(k->next!=run){//寻找当前运行节点的前一个结点

k=k->next;

}

k->next=k->next->next;

run=k;

}

}

}// end if(run)

if(wait==NULL&&run==NULL)//没有等待CPU的进程了和没有正在运行的进程满足退出的要求 ->退出break;

NowTime++;

}//while

system("pause");

LinkCopy();// //将受损的链表修复

}

void JOB::ShowRunningProcess(){

system("cls");

int NowTime=0;

Process *run=head1;//临时试用一下最终需要归还为NULL

Process *wait=head1;// dsvrfgvregrefswgvregegsdgre

int count=0;

while(run){//计算等待运行的进程的个数

count++;

run=run->next;

}

run=head1;//还原运行链表

//建立一个映射表

char **Run_Process_Name=new char*[count];//申请一个动态的二维表

for(int i=0;i

Run_Process_Name[i]=new char[10];

strcpy(Run_Process_Name[i],run->ProcessName);

run=run->next;

}

run=NULL;

int *Run_Process_CpuNeed=new int[count];

//映射表建立完毕

ShowRunningProcess_CalculateCpuNeed(Run_Process_CpuNeed,count);

Process *priorNode=NULL;

while(true){

//int time11=wait->ArriveTime;

if(wait&&NowTime>=wait->ArriveTime){

if(run==NULL){

run=wait;

priorNode=run;

}else{//连接到尾部

Process *temp=run;

while(temp->next!=priorNode){//寻找到前驱节点

temp=temp->next;

}

temp->next=wait;//将结点连接上链表

priorNode=wait;

//wait->next=run;

}

wait=wait->next;//释放一个结点

priorNode->next=run;//连接上头部形成循环链表

}

if(run){

run=run->next; //重新调度

cout<"<ProcessName<<" is Running"<

cout<<"NeedRescourse: A"<NeedRescourse[0]<<" B"<NeedRescourse[1]<<" c"<NeedRescourse[2]<<" is using."<

cout<<"cpu 调度下一个运行的进程。"<

NowTime+=RR;

//依据上面建设的映射按名取出所需运行的时间

int ALLNeedCpu;

for(int i=0;i

if(strcmp(Run_Process_Name[i],run->ProcessName)==0)

break;

}

ALLNeedCpu=Run_Process_CpuNeed[i];

ALLNeedCpu-=RR;//减去本次运行的时间

if(ALLNeedCpu>0){

Run_Process_CpuNeed[i]=ALLNeedCpu;//重新写回到数组中保持一致性

}else{ //此节点已经做完了请直接释放

if(run->next==run){

run=NULL;

}else{

Process *k=run;

while(k->next!=run){//寻找当前运行节点的前一个结点

k=k->next;

}

k->next=k->next->next;

run=k;

}

}

}// end if(run)

if(wait==NULL&&run==NULL)//没有等待CPU的进程了和没有正在运行的进程满足退出的要求 ->退出

break;

NowTime++;

}//while

system("pause");

LinkCopy();// //将受损的链表修复

}

void JOB::ShowRunningProcess_CalculateCpuNeed(int*Run_Process_CpuNeed,int count){

Process *temp=head1;

for(int i=0;i

int ALLNeedCpu=temp->NeedCpuTime;

if(temp->OpKind==IO){

if(temp->NeedTranDataNum%ONEDMANUM==0){

ALLNeedCpu+=(temp->NeedTranDataNum/ONEDMANUM)*(BEFOREDMA+AFTERDMA);

}else{

ALLNeedCpu+=(temp->NeedTranDataNum/ONEDMANUM+1)*(BEFOREDMA+AFTERDMA);

}

}else{

ALLNeedCpu+=temp->OpCpus;

}

Run_Process_CpuNeed[i]=ALLNeedCpu;

temp=temp->next;

}

}

void JOB::ShowProcessInfo(){

system("cls");

Process *temp=head1;

int count=0;

while(temp){

cout<<"------The "<

cout<<" Name: "<ProcessName<<'.'<

cout<<" ArriveTime: "<ArriveTime<<'.'<

cout<<" NeedCpuTime: "<NeedCpuTime<<'.'<

cout<<" NeedMem: "<NeedMem<<'.'<

cout<<" OpKind: "<OpKind<<'.'<

cout<<" NeedRescourse: "<<"A: "<NeedRescourse[0]<<",B: "<NeedRescourse[1] <<",C: "<NeedRescourse[2]<

temp=temp->next;

cout<<'\n';

count++;

}

cout<<"enter anykey return main() ."<

getchar();

getchar();

}

void JOB::DeedLock(){

system("cls");

Process *temp=head1;

int LocalA=0,LocalB=0,LocalC=0;

while(temp){

LocalA+=temp->NeedRescourse[0];

LocalB+=temp->NeedRescourse[1];

LocalB+=temp->NeedRescourse[2];

temp=temp->next;

}

操作系统课程设计

课程设计报告 2015~2016学年第一学期 操作系统综合实践课程设计 实习类别课程设计 学生姓名李旋 专业软件工程 学号130521105 指导教师崔广才、祝勇 学院计算机科学技术学院 二〇一六年一月

- 1 -

- 2 -

一、概述 一个目录文件是由目录项组成的。每个目录项包含16B,一个辅存磁盘块(512B)包含32个目录项。在目录项中,第1、2字节为相应文件的外存i节点号,是该文件的内部标识;后14B为文件名,是该文件的外部标识。所以,文件目录项记录了文件内、外部标识的对照关系。根据文件名可以找到辅存i节点号,由此便得到该文件的所有者、存取权、文件数据的地址健在等信息。UNIX 的存储介质以512B为单位划分为块,从0开始直到最大容量并顺序加以编号就成了一个文件卷,也叫文件系统。UNIX中的文件系统磁盘存储区分配图如下: 本次课程设计是要实现一个简单的模拟Linux文件系统。我们在内存中开辟一个虚拟磁盘空间(20MB)作为文件存储器,并将该虚拟文件系统保存到磁盘上(以一个文件的形式),以便下次可以再将它恢复到内存的虚拟磁盘空间中。文件存储空间的管理可采用位示图方法。 二、设计的基本概念和原理 2.1 设计任务 多用户、多级目录结构文件系统的设计与实现。可以实现下列几条命令login 用户登录 logout 退出当前用户 dir 列文件目录 creat 创建文件 delete 删除文件 open 打开文件 close 关闭文件 - 3 -

read 读文件 write 写文件 mkdir 创建目录 ch 改变文件目录 rd 删除目录树 format 格式化文件系统 Exit 退出文件系统 2.2设计要求 1) 多用户:usr1,usr2,usr3,……,usr8 (1-8个用户) 2) 多级目录:可有多级子目录; 3) 具有login (用户登录)4) 系统初始化(建文件卷、提供登录模块) 5) 文件的创建:create (用命令行来实现)6) 文件的打开:open 7) 文件的读:read8) 文件的写:write 9) 文件关闭:close10) 删除文件:delete 11) 创建目录(建立子目录):mkdir12) 改变当前目录:cd 13) 列出文件目录:dir14) 退出:logout 新增加的功能: 15) 删除目录树:rd 16) 格式化文件系统:format 2.3算法的总体思想 - 4 -

操作系统课程设计文件系统管理)

操作系统课程设计Array文件系统管理 学院计算机学院 专业计算机科学与技术 班级 姓名 学号 2013年1月8日 广东工业大学计算机学院制 文件系统管理 一、实验目的 模拟文件系统的实现的基本功能,了解文件系统的基本结构和文件系统的管理方法看,加深了解文件系统的内部功能的实现。通过高级语言编写和实现一个简单的文件系统,模拟文件管理的工作过程,从而对各种文件操作系统命令的实质内容和执行过程有比较深入的了解。 二、实验内容和要求 编程模拟一个简单的文件系统,实现文件系统的管理和控制功能。在用户程序中通过使用文件系统提供的create,open,read,write,close,delete等文件命令,对文件进行操作。 以下报告主要包括: 1.可行性分析 2.需求分析 3.概要设计

4.详细设计 5.测试 6.总结 三、可行性分析 1、技术可行性 对于图形编程还不了解,但是经过本学期的三次实验的练习,可以设计好命令操作界面。利用大二期间学习的数据结构可以模拟出此课程设计的要求。 2、经济可行性 课程设计作为本课程的练习及进一步加深理解。与经济无关,可以不考虑。(零花费,零收益) 3.法律可行性 自己编写的程序,仅为练习,不作其他用途,与外界没什么联系,可行。 四、需求分析 编写程序实现文件系统,主要有以下几点要求: 1、实现无穷级目录管理及文件管理基本操作 2、实现共享“别名” 3、加快了文件检索 五、概要设计 为了克服单级目录所存在的缺点,可以为每一位用户建立一个单独的用户文件目录UFD(User File Directory)。这些文件目录可以具有相似的结构,它由用户所有文件的文件控制块组成。此外,在系统中再建立一个主文件目录MFD (Master File Directory);在主文件目录中,每个用户目录文件都占有一个目

操作系统课程设计报告书

题目1 连续动态内存管理模拟实现 1.1 题目的主要研究内容及预期达到的目标 (1)针对操作系统中内存管理相关理论进行设计,编写程序并进行测试,该程序管理一块虚拟内存。重点分析三种连续动态内存分配算法,即首次适应算法、循环首次适应算法和最佳适应算法。 (2)实现内存分配和回收功能。 1.2 题目研究的工作基础或实验条件 (1)硬件环境:PC机 (2)软件环境:Windows XP,Visual C++ 6.0 1.3 设计思想 首次适应算法的实现:从空闲分区表的第一个表目起查找该表,把最先能够满足要求的空闲区分配给作业,这种方法的目的在于减少查找时间。为适应这种算法,空闲分区表中的空闲分区要按地址由低到高进行排序。该算法优先使用低址部分空闲区,在低址空间造成许多小的空闲区,在高址空间保留大的空闲区。 循环首次适应算法的实现:在分配内存空间时,不再每次从表头开始查找,而是从上次找到空闲区的下一个空闲开始查找,直到找到第一个能满足要求的的空闲区为止,并从中划出一块与请求大小相等的内存空间分配给作业。该算法能使内存中的空闲区分布得较均匀。 最佳适应算法的实现:从全部空闲区中找到能满足作业要求的、且最小的空闲分区,这种方法能使碎片尽量小。为适应此算法,空闲分区表中的空闲分区要按从小到大进行排序,从表头开始查找第一个满足要求的自由分配。 1.4 流程图 内存分配流程图,如图1-1所示。

图1-1 内存分配流程图内存回收流程图,如1-2所示。

图1-2 内存回收流程图 1.5 主要程序代码 (1)分配内存 void allocate(char z,float l) { int i,k; float ad; k=-1; for(i=0;i= l && free_table[i].flag == 1) if(k==-1 || free_table[i].length

操作系统课程设计-模拟文件系统

目录 第1章需求分析 (1) 第2章概要设计 (1) 2.1 系统的主要功能 (1) 2.2系统模块功能结构 (1) 2.3运行环境要求 (2) 2.4数据结构设计 (2) 第3章详细设计 (3) 3.1模块设计 (3) 3.2算法流程图 (3) 第4章系统源代码 (4) 第5章系统测试及调试 (4) 5.1运行结果及分析 (4) 5.2系统测试结论 (5) 第6章总结与体会 (6) 第7章参考文献 (6) 附录 (7)

第1章需求分析 通过模拟文件系统的实现,深入理解操作系统中文件系统的理论知识, 加深对教材中的重要算法的理解。同时通过编程实现这些算法,更好地掌握操作系统的原理及实现方法,提高综合运用各专业课知识的能力;掌握操作系统结构、实现机理和各种典型算法,系统地了解操作系统的设计和实现思路,并了解操作系统的发展动向和趋势。 模拟二级文件管理系统的课程设计目的是通过研究Linux的文件系统结构,模拟设计一个简单的二级文件系统,第一级为主目录文件,第二级为用户文件。 第2章概要设计 2.1 系统的主要功能 1) 系统运行时根据输入的用户数目创建主目录 2) 能够实现下列命令: Login 用户登录 Create 建立文件 Read 读取文件 Write写入文件 Delete 删除文件 Mkdir 建立目录

Cd 切换目录 Logout 退出登录 2.2系统模块功能结构 2.3运行环境要求 操作系统windows xp ,开发工具vc++6.0 2.4数据结构设计 用户结构:账号与密码结构 typedef struct users { char name[8]; char pwd[10]; }users;

操作系统课程设计报告

操作系统课程设计报告

东莞理工学院 操作系统课程设计报告 学院:计算机学院 专业班级: 13软件工程1班 提交时间: 2015/9/14 指导教师评阅意见: . 项目名称:进程与线程管理功能 一、设计目的 用语言来模拟进程和线程管理系统,加深对进程和线程的理解,掌握对进程和线程各种状态和管理的算法原理。

二、环境条件 系统: WindowsXP、VMWare、Ubuntu Linux 语言:C/C++ 开发工具:gcc/g++、Visual C++ 6.0 三、设计内容 1. 项目背景 计算机的硬件资源有限,为了提高内存的利用率和系统的吞吐量,就要根据某种算法来管理进程和线程的状态从而达到目的。 进程与线程管理功能完成基于优先级的抢占式线程调度功能,完成进程虚拟内存管理功能。 进程与线程管理功能 基本要求:完成基于优先级的抢占式线程调度功能,完成进程虚拟内存管理功能。 提高要求:(增加1项就予以加分) (1) 实现多种线程调度算法; (2)通过“公共信箱”进行通信的机制,规定每一封信的大小为128字节,实现两个用户进程之间通过这个“公共信箱”进行通信。 (3) 实现多用户进程并发的虚拟内存管理功能。

(4) 实现用户进程间通信功能,并用生产者/消费者问题测试进程间通信功能的正确性。 (5) 实现改进型Clock页面置换算法。 (6) 实现Cache功能,采用FIFO替换算法。 2. 扩展内容 实现多种线程调度算法:时间片轮转调度算法 四、人员分工 优先级调度算法:钟德新,莫友芝 时间片轮转调度算法:张德华,袁马龙 设计报告由小组队员共同完成。小组成员设计的代码分工如下:钟德新编写的代码:void Prinft(){ PCB *p; system("cls");//清屏 p=run; //运行队列 if(p!=NULL) { p->next=NULL; } cout<<"当前正在运行的进程:"<procname<<"\t\t"<pri<<"\t"<needOftime<<"\t\t"<runtime<<"\t\t"<state<next; } cout<

操作系统课程设计完整版内含代码

操作系统课程设计LRU页面调度算法 学号: 姓名: 学院: 专业: 班级: 指导老师: 日期:

目录 一、实验题目 (1) 二、课程设计的目的 (1) 三、设计内容 (1) 四、设计要求 (1) 五、设计思想 (1) 六、主要数据结构及其说明 (2) 七、硬件支持 (3) 八、源程序文件 (3) 九、程序运行结果 (7) 十、实验体会 (8)

一实验题目 LRU页面调度算法 二课程设计的目的 操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既动手又动脑,将课本上的理论知识和实际有机的结合一起,独立分析和解决实际问题的机会。 1.进一步巩固和复习操作系统的基础知识。 2. 培养学生结构化程序、模块化程序设计的方法和能力。 3.提高学生调试程序的技巧和软件设计的能力。 4.提高学生分析问题、解决问题以及综合利用C语言进行程序设计的能力。 三设计内容 程序应模拟实现LRU算法思想,对n个页面实现模拟调度。 四设计要求 1.不同的功能使用不同的函数实现(模块化),对每个函数的功能和调用接口要注释清楚。对程序其它部分也进行必要的注释。 2.对系统进行功能模块分析、画出总流程图和各模块流程图。 3.用户界面要求使用方便、简洁明了、美观大方、格式统一。所有功能可以反复使用,最好使用菜单。 4.通过命令行相应选项能直接进入某个相应菜单选项的功能模块。 5.所有程序需调试通过。 五设计思想 最近最久未使用(LRU)页调度算法是选择最近最久未使用的页面予以淘汰。 算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间,当所要访问的页面在内存块中时,就不淘汰页面,否则,淘汰页面中时间最长的,即淘汰最近最久未使用的页面。

操作系统课程设计报告

上海电力学院 计算机操作系统原理 课程设计报告 题目名称:编写程序模拟虚拟存储器管理 姓名:杜志豪.学号: 班级: 2012053班 . 同组姓名:孙嘉轶 课程设计时间:—— 评语: 成绩: 目录 一、设计内容及要求 (4) 1. 1 设计题目 (4) 1.2 使用算法分析: (4)

1. FIFO算法(先进先出淘汰算法) (4) 1. LRU算法(最久未使用淘汰算法) (5) 1. OPT算法(最佳淘汰算法) (5) 分工情况 (5) 二、详细设计 (6) 原理概述 (6) 主要数据结构(主要代码) (6) 算法流程图 (9) 主流程图 (9) Optimal算法流程图 (10) FIFO算法流程图 (10) LRU算法流程图 (11) .1源程序文件名 (11) . 2执行文件名 (11) 三、实验结果与分析 (11) Optimal页面置换算法结果与分析 (11) FIFO页面置换算法结果与分析 (16) LRU页面置换算法结果与分析 (20) 四、设计创新点 (24) 五、设计与总结 (27)

六、代码附录 (27) 课程设计题目 一、设计内容及要求 编写程序模拟虚拟存储器管理。假设以M页的进程分配了N

块内存(N

【精选】操作系统课程设计(文件系统管理)文件

评定等级 操作系统课程设计 文件系统管理 学院计算机学院 专业计算机科学与技术 班级 姓名 学号 2013年1月8日 广东工业大学计算机学院制

文件系统管理 一、实验目的 模拟文件系统的实现的基本功能,了解文件系统的基本结构和文件系统的管理方法看, 加深了解文件系统的内部功能的实现。通过高级语言编写和实现一个简单的文件系统,模拟文件管理的工作过程,从而对各种文件操作系统命令的实质内容和执行过程有比较深入的了 解。 二、实验内容和要求 编程模拟一个简单的文件系统,实现文件系统的管理和控制功能。在用户程序中通过使用文件系统提供的create,open,read,write,close,delete 等文件命令,对文件进行操作。以下报告主要包括: 1.可行性分析 2.需求分析 3.概要设计 4.详细设计 5.测试 6.总结 三、可行性分析 1、技术可行性 对于图形编程还不了解,但是经过本学期的三次实验的练习,可以设计好命令操作界面。利用大二期间学习的数据结构可以模拟出此课程设计的要求。 2、经济可行性 课程设计作为本课程的练习及进一步加深理解。与经济无关,可以不考虑。(零花费,零收益) 3.法律可行性 自己编写的程序,仅为练习,不作其他用途,与外界没什么联系,可行。 四、需求分析 编写程序实现文件系统,主要有以下几点要求: 1、实现无穷级目录管理及文件管理基本操作 2、实现共享“别名” 3、加快了文件检索 五、概要设计 为了克服单级目录所存在的缺点,可以为每一位用户建立一个单独的用户文件目录 UFD (User File Directory )。这些文件目录可以具有相似的结构,它由用户所有文件的文件 控制块组成。此外,在系统中再建立一个主文件目录MFD (Master File Directory );在主文件目录中,每个用户目录文件都占有一个目录项,其目录项中包括用户名和指向该用户目 录的指针。

操作系统课程设计报告

课程设计说明书 设计题目:操作系统课程设计 班级:信息学管理与信息系统2011级 学号: 2 姓名:克乾

山东科技大学2013年12 月11 日

课程设计任务书 学院信息科学与工程专业信息学管理与信息系统班级2011-2 克乾 一、课程设计题目:操作系统课程设计 二、课程设计主要参考资料 (1)Abraham Silberschatz & Peter Baer Galvin & Greg Gagne. Operating System Concepts(第七版影印版). 高等教育. 2007.3. (2)c++面向对象程序设计电子工业 (3)计算机操作系统(第三版)电子科技大学 三、课程设计应解决的主要问题: (1)CPU调度算法的模拟实现 (2)死锁相关算法的实现 (3)磁盘调度算法的实现 四、课程设计相关附件(如:图纸、软件等): (1)程序源代码 (2) 五、任务发出日期:2013-10-1 课程设计完成日期:2014-1-1

指导教师签字:

指导教师对课程设计的评语成绩: 指导教师签字: 年月日

设计1 CPU调度算法的模拟实现一、设计目的 利用C++编写CPU调度算法,实现先来先服务调度算法FCFS、优先级调度算法PS、短作业优先调度算法SJF、时间片轮转调度算法RR的运行过程和实现的结果,针对模拟进程,利用编写的CPU调度算法对需要运行的进程进行调度。进行算法评价,计算平均周转时间和平均等待时间。 二、设计要求 针对模拟进程,利用CPU调度算法进行调度,最后要进行算法评价,计算平均周转时间和平均等待时间,并且输出调度结果和输出算法评价指标。 调度所需的进程参数由输入产生(手工输入或者随机数产生)。 三、设计说明 时间片轮转算法需要输入相应的时间片,所以独立编写一个程序,系统主体结构如下:

操作系统课程设计报告

; 一、概述 课程设计目的、意义: 课程设计目的使学生熟悉文件管理系统的设计方法;加深对所学各种文件操作的了解及其操作方法的特点。通过模拟文件系统的实现,深入理解操作系统中文件系统的理论知识, 加深对教材中的重要算法的理解。同时通过编程实现这些算法,更好地掌握操作系统的原理及实现方法,提高综合运用各专业课知识的能力。 主要任务: 模拟文件系统设计是设计和实现一个简单的文件系统。内容包括: 1.建立文件存储介质的管理机制 2.建立目录(采用一级目录结构) 3.文件系统功能(显示目录、创建、删除、打开、关闭、读、写) ~ 4.文件操作接口(显示目录、创建、删除、打开、关闭、读、写) 二、系统设计 课程设计的系统设计: 本系统模拟一个文件管理系统,要完成对文件的基本操作,文件的基本操作有文件、文件夹的打开、新建、删除和读取写入文件,创建更改目录,列出目录内容等信息。系统建立了文件目录树,存储文件系统中的所有文

件。对于用户名下的文件,用文件目录树的分枝来存贮。采用命令行操作界面很直观,也方便用户进行操作,用户只要按照操作界面所显示的命令来操作就行了。 整体设计框架: 系统初始化界面是由创建用户存储空间,管理文件,退出系统三个模块组成。用户创建由创建用户存储空间,进入目录,删除用户存储空间,显示所有用户存储空间,等模块组成。然后各个模块再由一些小模块组成。其中创建文件,打开关闭文件,读写文件等文件操作模块包括在进入目录模块里面。 三、系统实现 课程设计主要内容的实现程序代码: 《 #include <> #include <> #include <> typedef struct file{ char name[10]; struct file *next; }File; typedef struct content{ ! char name[10]; File *file;

操作系统课程设计报告

东莞理工学院 操作系统课程设计报告学院:计算机学院 专业班级:13软件工程1班 提交时间:2015/9/14 指导教师评阅意见: . 项目名称:进程与线程管理功能 一、设计目的 用语言来模拟进程和线程管理系统,加深对进程和线程的理解,掌握对进程和线程各种状态和管理的算法原理。 二、环境条件 系统:WindowsXP、VMWare、Ubuntu Linux 语言:C/C++ 开发工具:gcc/g++、Visual C++ 6.0 三、设计内容 1. 项目背景

计算机的硬件资源有限,为了提高内存的利用率和系统的吞吐量,就要根据某种算法来管理进程和线程的状态从而达到目的。 进程与线程管理功能完成基于优先级的抢占式线程调度功能,完成进程虚拟内存管理功能。 进程与线程管理功能 基本要求:完成基于优先级的抢占式线程调度功能,完成进程虚拟内存管理功能。 提高要求:(增加1项就予以加分) (1) 实现多种线程调度算法; (2)通过“公共信箱”进行通信的机制,规定每一封信的大小为128字节,实现两个用户进程之间通过这个“公共信箱”进行通信。 (3) 实现多用户进程并发的虚拟内存管理功能。 (4) 实现用户进程间通信功能,并用生产者/消费者问题测试进程间通信功能的正确性。 (5) 实现改进型Clock页面置换算法。 (6) 实现Cache功能,采用FIFO替换算法。 2. 扩展内容 实现多种线程调度算法:时间片轮转调度算法 四、人员分工 优先级调度算法:钟德新,莫友芝 时间片轮转调度算法:张德华,袁马龙 设计报告由小组队员共同完成。小组成员设计的代码分工如下: 钟德新编写的代码:void Prinft(){ PCB *p; system("cls");//清屏 p=run; //运行队列 if(p!=NULL) { p->next=NULL; } cout<<"当前正在运行的进程:"<procname<<"\t\t"<pri<<"\t"<needOftime<<"\t\t"<runtime<<"\t\t"<state<next; } cout<procname<<"\t\t"<pri<<"\t"<needOftime<<"\t\t"<runtime<<"\t\t"<state<next; } cout<

操作系统课程设计

湖南科技大学计算机科学与工程学院 操作系统课程设计报告 ******** *** 目录 实验一 Windows 进程管理 实验二 Linux 进程管理 实验三 互斥与同步 实验四 银行家算法的模拟与实现 实验五 内存管理 指导老师: *** 完成时间: **** ** **

实验六磁盘调度 实验七进程间通信 实验一 Windows进程管理 一、实验目的 1 )学会使用VC编写基本的Win3 2 Consol Application (控制台应用程序)。 2)2)通过创建进程、观察正在运行的进程和终止进程的程序设计和调试操作,进一步熟 悉操作系统的进程概念,理解Windows进程的"一生”。 3)3)通过阅读和分析实验程序,学习创建进程、观察进程、终止进程以及父子进程同步 的基本程序设计方法。 二、实验内容和步骤 (1)编写基本的 Win32 Consol Application 步骤1:登录进入 Windows系统,启动VC++ 6.0。 步骤2:在“ FILE”菜单中单击“ NEW”子菜单,在“ projects ”选项卡中选择 “Win32 ConsolApplication ”,然后在“ Project name 处输入工程名,在“Location ”处输入工程目录。创建一个新的控制台应用程序工程。 步骤3:在“ FILE”菜单中单击“ NEW”子菜单,在“ Files ”选项卡中选择“ C++ Source File ” ,然后在“ File ”处输入C/C++源程序的文件名。 步骤4:将清单1-1所示的程序清单复制到新创建的C/C++源程序中。编译成可执行文件。 步骤5 :在“开始”菜单中单击“程序” -“附件”-“命令提示符”命令,进入Windows“命令提示符”窗口,然后进入工程目录中的 debug子目录,执行编译好的可执行程序,列出运行结果(如果运行不成功,则可能的原因是什么?) 如果运行不成功可能是路径有问题或者没有通过编译。

操作系统课程设计二级文件系统

操作系统课程设计报告 专业:计算机信息处理 学号:09103408 姓名:纪旻材 提交日期:2011-12-28

【设计目的】 1. 课程设计目的是通过一个简单多用户文件系统的设计,加深理解文件系统的内部功能和内部实现。 2. 结合数据结构、程序设计、计算机原理等课程的知识,设计一个二级文件系统,进一步理解操作系统。 3. 通过对实际问题的分析、设计、编程实现,提高学生实际应用、编程的能力 【设计内容】 1、delete 删除文件 2、open 打开文件 3、close 关闭文件 4、write 写文件 【实验环境】 Windows7系统

Visual studio 2010 【相关知识综述】 本文件系统采用两级目录,其中第一级对应于用户账号,第二级对应于用户帐号下的文件。另外,为了简便文件系统未考虑文件共享,文件系统安全以及管道文件与设备文件等特殊内容。 首先应确定文件系统的数据结构:主目录、子目录及活动文件等。主目录和子目录都以文件的形式存放于磁盘,这样便于查找和修改。用户创建的文件,可以编号存储于磁盘上。如:file0,file1,file2…并以编号作为物理地址,在目录中进行登记。 【设计思路】 1 主要数据结构 #define MAXNAME 25 /*the largest length of mfdname,ufdname,filename*/ #define MAXCHILD 50 /*the largest child每个用户名下最多有50个文件*/ #define MAX (MAXCHILD*MAXCHILD) /*the size of fpaddrno*/ typedef struct/*the structure of OSFILE定义主文件*/

操作系统课程设计报告

东莞理工学院 操作系统课程设计报告 学院:计算机学院 专业班级:13软件工程1班 提交时间:2015/9/14 指导教师评阅意见: . 项目名称:进程与线程管理功能 一、设计目的 用语言来模拟进程和线程管理系统,加深对进程和线程的理解,掌握对进程和线程各种状态和管理的算法原理。 二、环境条件

系统:WindowsXP、VMWare、Ubuntu Linux 语言:C/C++ 开发工具:gcc/g++、Visual C++ 6.0 三、设计内容 1. 项目背景 计算机的硬件资源有限,为了提高内存的利用率和系统的吞吐量,就要根据某种算法来管理进程和线程的状态从而达到目的。 进程与线程管理功能完成基于优先级的抢占式线程调度功能,完成进程虚拟内存管理功能。 进程与线程管理功能 基本要求:完成基于优先级的抢占式线程调度功能,完成进程虚拟内存管理功能。 提高要求:(增加1项就予以加分) (1) 实现多种线程调度算法; (2)通过“公共信箱”进行通信的机制,规定每一封信的大小为128字节,实现两个用户进程之间通过这个“公共信箱”进行通信。 (3) 实现多用户进程并发的虚拟内存管理功能。 (4) 实现用户进程间通信功能,并用生产者/消费者问题测试进程间通信功能的正确性。 (5) 实现改进型Clock页面置换算法。 (6) 实现Cache功能,采用FIFO替换算法。

2. 扩展内容 实现多种线程调度算法:时间片轮转调度算法 四、人员分工 优先级调度算法:钟德新,莫友芝 时间片轮转调度算法:张德华,袁马龙 设计报告由小组队员共同完成。小组成员设计的代码分工如下:钟德新编写的代码:void Prinft(){ PCB *p; system("cls");//清屏 p=run; //运行队列 if(p!=NULL) { p->next=NULL; } cout<<"当前正在运行的进程:"<procname<<"\t\t"<pri<<"\t"<needOftime<<"\t\t"<runtime<<"\t\t"<state<next; } cout<procname<<"\t\t"<pri<<"\t"<needOftime<<"\t\t"<runtime<<"\t\t"<state<next; } cout<procname<<"\t\t"<pri<<"\t"<needOftime<<"\t\t"<runtime<<"\t\t"<state<

操作系统(一个小型操作系统的设计与实现)课程设计

南通大学计算机科学与技术学院操作系统课程设计报告 专业: 学生姓名: 学号: 时间:

操作系统模拟算法课程设计报告 设计要求 将本学期三次的实验集成实现: A.处理机管理; B.存储器管理; C.虚拟存储器的缺页调度。 设计流程图 主流程图 开始的图形界面 处理机管理存储器管理缺页调度 先来先服务时 间 片 轮 转 首 次 适 应 法 最 佳 适 应 法 先 进 先 出 L R U 算 法

A.处理机调度 1)先来先服务FCFS N Y 先来先服务算法流程 开始 初始化进程控制块,让进程控制块按进程到达先后顺序让进程排队 调度数组中首个进程,并让数组中的下一位移到首位 计算并打印进程的完成时刻、周转时间、带权周转时间 其中:周转时间 = 完成时间 - 到达时间 带权周转时间=周转时间/服务时间 更改计时器的当前时间,即下一刻进程的开始时间 当前时间=前一进程的完成时间+其服务时间 数组为空 结束

2)时间片轮转法 开始 输入进程总数 指针所指的进程是 否结束 输入各进程信息 输出为就绪状态的进程的信息 更改正在运行的进程的已运行时间 跳过已结束的程序 结束 N 指向下一个进程 Y 如果存在下一个进程的话 Y N 输出此时为就绪状态的进程的信息 时间片轮转算法流程图

B.存储器管理(可变式分区管理) 1)首次适应法 分配流程图 申请xkb内存 由链头找到第一个空闲区 分区大小≥xkb? 大于 分区大小=分区大小-xkb,修改下一个空闲区的后向指针内容为(后向指针)+xkb;修改上一个空闲区的前向指针为(前向指针)+xkb 将该空闲区从链中摘除:修改下一个空闲区的后向地址=该空闲区后向地址,修改上一个空闲区的前向指针为该空闲区的前向指针 等于 小于延链查找下 一个空闲区 到链尾 了? 作业等待 返回是 否 登记已分配表 返回分配给进程的内存首地址 开始

操作系统课程设计(文件系统)

操作系统课程设计 班级: 姓名: 学号: 使用语言:C++ 指导老师: 学院:

一、系统要求 1、实验目的 通过一个简单多用户文件系统的设计,加深理解文件系统的内部功能及内部实现。 2、实验内容 为linux系统设计一个简单的二级文件系统。要求做到以下几点: (1)可以实现下列几条命令(至少4条); login 用户登陆 dir 列文件目录 create 创建文件 delete 删除文件 open 打开文件 close 关闭文件 read 读文件 write 写文件 (2)列目录时要列出文件名、物理地址、保护码和文件长度; (3)源文件可以进行读写保护。 二、系统分析 1、设计思想 本文件为二级文件系统,即要实现对文件的增删改查,同时又具备登陆系统、注册用户的功能,各个用户之间的文件系统互不干扰。 本文件系统采用两级目录,其中第一级对应于用户账号,第二级对应于用户帐号下的文件。另外,为了简便文件系统未考虑文件共享,文件系统安全以及管道文件与设备文件等特殊内容。 系统采用结构体来存储用户、文件目录、文件数据内容: 0 48*5 48*5+44*50 48*5+44*50+264*200 每个分区都是由结构体组成,每个个去的结构体的个数由格式化系统是决定。整个系统的编码构成主要分为:

Allstruct.h 定义了每个分区的结构体; Mysys.h 声明了对系统操作的各种方法; Myuserfile.h 声明了对文件操作的各种方法; Mymain.cpp 整个系统的主函数,操作入口; Mysys.cpp 包含了mysys.h,实现了操作系统的各种方法;Myuserfile.cpp 包含了myuserfile.h,实现了操作文件的各种方法; 2、主要数据结构 Allstruct.h文件的内容: struct s_user //用户区结构体 { long isuse; //是否使用 char name[20]; //用户名 char psd[20]; //密码 long address; //目录地址 }; struct s_list //目录结构体 { long isuse; //是否使用 char name[20]; //文件名字 long myaddress; //本条目录地址 long pointaddress; //指向的文件的地址 long isfile; //是否锁定 long pointsize; //目标文件的大小 long nextaddress; //下条目录的地址 }; struct s_file //文件结构体 { long isuse; //是否使用 char content[256]; //文件内容 long next; //下个文件块地址 };

操作系统课程设计报告

操作系统课程设计实验报告 实验名称:进程控制 姓名/学号: 一、实验目的 学习、理解和掌握Linux与windows的进行控制系统调用的功能,熟悉主要的几个系统调用命令的格式和如何利用系统调用命令进行编程。通过学习,理解如何创建一个进程、改变进程执行的程序、进程和线程终止以及父子进程的同步等,从而提高对进程和线程控制系统调用的编程能力。 二、实验内容 设计并实现Unix的“time”命令。“mytime”命令通过命令行参数接受要运行的程序,创建一个独立的进程来运行该程序,并记录程序运行的时间。 三、实验环境 CPU: Inter ×2 2.10GHz RAM: 3.00GB Windows 7 旗舰版 Linux Ubuntu 10.04 编译: VS2010 四、程序设计与实现 4.1进程控制系统的调用 4.1.1 windows进程控制调用程序中使用的数据结构及主要符号说明 SYSTEMTIME starttime,endtime; //进程开始时间和结束时间 PROCESS_INFORMATION pi //该结构返回有关新进程及 //其主线程的信息 STARTUPINFO si //该结构用于指定新进程的主窗口特性4.1.2 linux进程控制调用程序中使用的数据结构及主要符号说明 struct timeval starttime,endtime //进程开始时间和结束时间 pid_t pid //进程标志符

4.2 程序流程图 图1 windows进程控制调用图2 linux进程控制调用程序运行流程图程序运行流程图 五、实验结果和分析 5.1 windows实验结果和分析

操作系统课程设计

计算机科学技术学院 操作系统原理课程设计报告 题目:进程管理系统 专业: 班级: 姓名: 学号: 指导老师: 年月日

《操作系统原理》课程设计任务书 一、课程设计题目(任选一个题目) 1.模拟进程管理 2.模拟处理机调度 3.模拟存储器管理 4.模拟文件系统 5.模拟磁盘调度 二、设计目的和要求 1.设计目的 《操作系统原理》课程设计是网络工程专业实践性环节之一,是学习完《操作系统原理》课程后进行的一次较全面的综合练习。其目的在于加深对操作系统的理论、方法和基础知识的理解,掌握操作系统结构、实现机理和各种典型算法,系统地了解操作系统的设计和实现思路,培养学生的系统设计能力,并了解操作系统的发展动向和趋势。 2.基本要求: (1)选择课程设计题目中的一个课题,独立完成。 (2)良好的沟通和合作能力 (3)充分运用前序课所学的软件工程、程序设计、数据结构等相关知识 (4)充分运用调试和排错技术 (5)简单测试驱动模块和桩模块的编写 (6)查阅相关资料,自学具体课题中涉及到的新知识。 (7)课题完成后必须按要求提交课程设计报告,格式规范,内容详实。 三、设计内容及步骤 1.根据设计题目的要求,充分地分析和理解问题,明确问题要求做什么。

2.根据实现的功能,划分出合理的模块,明确模块间的关系。 3.编程实现所设计的模块。 4.程序调试与测试。采用自底向上,分模块进行,即先调试低层函数。能够熟练掌握调试工具的各种功能,设计测试数据确定疑点,通过修改程序来证实它或绕过它。调试正确后,认真整理源程序及其注释,形成格式和风格良好的源程序清单和结果; 5.结果分析。程序运行结果包括正确的输入及其输出结果和含有错误的输入及其输出结果。 6.编写课程设计报告; 设计报告要求:A4纸,详细设计部分主要叙述本人的工作内容 设计报告的格式: (1)封面(题目、指导教师、专业、班级、姓名、学号) (2)设计任务书 (3)目录 (4)需求分析 (5)概要设计 (6)详细设计(含主要代码) (7)调试分析、测试结果 (8)用户使用说明 (9)附录或参考资料 四、进度安排 设计在学期的第15、16周进行,时间安排如下:

操作系统课程设计模拟文件系统

操作系统课程设计模拟文 件系统 Newly compiled on November 23, 2020

目录第1章需求分析 (1) 第2章概要设计 (1) 系统的主要功能 (1) 系统模块功能结构 (1) 运行环境要求 (2) 数据结构设计 (2) 第3章详细设计 (3) 模块设计 (3) 算法流程图 (3) 第4章系统源代码 (4) 第5章系统测试及调试 (4) 运行结果及分析 (4) 系统测试结论 (5) 第6章总结与体会 (6) 第7章参考文献 (6) 附录 (7) 第1章需求分析 通过模拟文件系统的实现,深入理解操作系统中文件系统的理论知识, 加深对教材中的重要算法的理解。同时通过编程实现这些算法,更好地掌握操作系统的原理及实现方法,提高综合运用各专业课知识的能力;掌握操作系统结构、实现机理和各种典型算法,系统地了解操作系统的设计和实现思路,并了解操作系统的发展动向和趋势。

模拟二级文件管理系统的课程设计目的是通过研究Linux的文件系统结构,模拟设计一个简单的二级文件系统,第一级为主目录文件,第二级为用户文件。 第2章概要设计 系统的主要功能 1) 系统运行时根据输入的用户数目创建主目录 2) 能够实现下列命令: Login 用户登录 Create 建立文件 Read 读取文件 Write 写入文件 Delete 删除文件 Mkdir 建立目录 Cd 切换目录 Logout 退出登录 系统模块功能结构 运行环境要求 操作系统windows xp ,开发工具vc++ 数据结构设计 用户结构:账号与密码结构 typedef struct users { char name[8]; char pwd[10]; }users;

计算机操作系统课程设计

计算机操作系统课程设计 班级:计091-1 姓名: 学号: 使用语言:C++ 指导老师: 学院:

一、系统要求 1、实验目的 通过一个简单多用户文件系统的设计,加深理解文件系统的内部功能及内部实现。 2、实验内容 为linux系统设计一个简单的二级文件系统。要求做到以下几点: (1)可以实现下列几条命令(至少4条); login 用户登陆 dir 列文件目录 create 创建文件 delete 删除文件 open 打开文件 close 关闭文件 read 读文件 write 写文件 (2)列目录时要列出文件名、物理地址、保护码和文件长度; (3)源文件可以进行读写保护。

二、系统分析 1、设计思想 本文件为二级文件系统,即要实现对文件的增删改查,同时又具备登陆系统、注册用户的功能,各个用户之间的文件系统互不干扰。 本文件系统采用两级目录,其中第一级对应于用户账号,第二级对应于用户帐号下的文件。另外,为了简便文件系统未考虑文件共享,文件系统安全以及管道文件与设备文件等特殊内容。 系统采用结构体来存储用户、文件目录、文件数据内容: 0 48*5 48*5+44*50 48*5+44*50+264*200 每个分区都是由结构体组成,每个个去的结构体的个数由格式化系统是决定。

整个系统的编码构成主要分为: Allstruct.h 定义了每个分区的结构体; Mysys.h 声明了对系统操作的各种方法;Myuserfile.h 声明了对文件操作的各种方法; Mymain.cpp 整个系统的主函数,操作入口; Mysys.cpp 包含了mysys.h,实现了操作系统的各种方法;Myuserfile.cpp 包含了myuserfile.h,实现了操作文件的各种方法; 2、主要数据结构 Allstruct.h文件的内容: struct s_user //用户区结构体 { long isuse; //是否使用 char name[20]; //用户名 char psd[20]; //密码 long address; //目录地址 };

相关文档
相关文档 最新文档