文档库 最新最全的文档下载
当前位置:文档库 › 文科数学导数测试题

文科数学导数测试题

文科数学导数测试题
文科数学导数测试题

导数练习

满分100分 2014.2.23 一.选择题(每题5分)

1.在函数变化率的定义中,自变量的增量Δx 满足( )

A .Δx <0

B .Δx >0

C .Δx =0

D .Δx ≠0 2.函数在某一点的导数是( )

A .在该点的函数的增量与自变量的增量的比

B .一个函数

C .一个常数,不是变数

D .函数在这一点到它附近一点之间的平均变化率

3、y = )

A .23x

B .21

3x C .12- D 4、2y x =的斜率等于2的切线方程是( )

A .210x y -+=

B .210x y -+=或210x y --=

C .210x y --=

D .20x y -=

5、在曲线2y x =上的切线的倾斜角为4

π的点是( ) A .()0,0 B .()2,4 C .11,416?? ??? D .11,24?? ???

6、函数2cos y x -=的导数是( )

A .2cos sin x x -

B .4sin 2cos x x -

C .22cos x -

D .22sin x -

7、设()0sin f x x =,()()10f x f x '=,()()21f x f x '=, ,()()1n n f x f x +'=,n ∈N ,则()2005f x =( )

A .sin x

B .sin x -

C .cos x

D .cos x -

8、点P 在曲线323

y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( )

A .0,2π??????

B .30,,24πππ????????????

C .3,4ππ??????

D .3,24ππ?? ???

9. 下列求导运算正确的是 ( )

A .(x+211)1x x +

=' B .(log 2x)′=2ln 1x C .(3x )′=3x log 3e D . (x 2cosx)′=-2xsinx

10.设函数()f x 在定义域内可导,且图像如右图,则下图

可能是导函数'()f x 的图像的是( )

二.填空题(每题5分)

11.f (x 0)=0,f ′(x 0)=4,则lim Δx →0 f (x 0+2Δx )-f (x 0)Δx

=________. 12.设x 0∈(a ,b ),y =f (x )在x 0处可导是y =f (x )在(a ,b )内可导的________条件.

13、函数lg y x =在点()1,0处的切线方程是__________________________.

14、函数sin cos 2cos x x y x -=在点03

x π=处的导数等于______________. 三.解答题(共40分)

15.一物体作自由落体运动,已知s =s (t )=12

gt 2. (1)计算t 从3秒到3.1秒、3.01秒,两段内的平均速度;

(2)求t =3秒时的瞬时速度.(用导数的定义解题,不可以用导数的计算公式解题)

16、求曲线

y =在点18,4?? ???处的切线方程.

17、求下列函数的导数.(每小题5分) ()

113y x =;

()2y =

()331

y x =;

()4y =

()5()()22332y x x =+-;

()62311y x x x x ??=++ ??

?;

()72

sin x y x

=.

(8)24x y x x e =+

(9)ln cos x

y x =

(10)y=tan x

高中数学导数及微积分练习题

1.求 导:(1)函数 y= 2cos x x 的导数为 -------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3 )---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A).5 4 (B).5 2 (C).5 1 (D). 5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点 )0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为 ( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,

底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值. 9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和 )1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线 )(x f y =的切线,求此切线方程.

高考真题理科数学导数

2012年高考真题理科数学解析汇编:导数与积分 一、选择题 1 .(2012年高考(新课标理))已知函数1 ()ln(1)f x x x = +-;则()y f x =的图像大致为 2 .(2012年高考(浙江理))设a >0,b >0. ( ) A .若2223a b a b +=+,则a >b B .若2223a b a b +=+,则a b D .若2223a b a b -=-,则a

5 .(2012年高考(山东理))设0a >且1a ≠,则“函数()x f x a =在R 上是减函数 ”,是 “函数3 ()(2)g x a x =-在R 上是增函数”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 6 .(2012年高考(湖北理))已知二次函数()y f x =的图象如图所示,则它与x 轴 所围图形的面积为 ( ) A . 2π 5 B . 43 C . 32 D . π2 7 .(2012年高考(福建理))如图所示,在边长为1的正方形OABC 中任取一点 P,则点P 恰好取自阴影部分的概率为 ( ) A . 14 B . 15 C . 16 D . 17 8 .(2012年高考(大纲理))已知函数3 3y x x c =-+的图像与x 轴恰有两个 公共点,则c = ( ) A .2-或2 B .9-或3 C .1-或1 D .3-或1 二、填空题 9 .(2012年高考(上海理))已知函数 )(x f y =的图像是折线段ABC ,若中 A (0,0), B (21,5), C (1,0). 函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为_______ . 10.(2012年高考(山东理))设0a >.若曲线y x = 与直线,0x a y ==所围成封闭图形 的面积为2 a ,则a =______. 11.(2012年高考(江西理))计算定积分 1 21 (sin )x x dx -+=? ___________. 12.(2012年高考(广东理))曲线33y x x =-+在点()1,3处的切线方程为 ___________________. 三、解答题 13.(2012年高考(天津理))已知函数 ()=ln (+)f x x x a -的最小值为0,其中>0a . (Ⅰ)求a 的值; (Ⅱ)若对任意的[0,+)x ∈∞,有2 ()f x kx ≤成立,求实数k 的最小值; 1-y x O 第3题图 1 1

2020年高考文科数学《导数的综合应用》题型归纳与训练

a - a (- ),( , +∞) 单调递增, 在 (- ( 2020 年高考文科数学《导数的综合应用》题型归纳与训练 【题型归纳】 题型一 含参数的分类讨论 例1 已知函数 f ( x ) = ax 3 - 12 x ,导函数为 f '( x) , (1)求函数 f ( x ) 的单调区间; (2)若 f '(1)= -6, 求函数f ( x ) 在[—1,3]上的最大值和最小值。 【答案】略 【解析】(I ) f '( x ) = 3ax 2 - 12 = 3(ax 2 - 4) ,(下面要解不等式 3(ax 2 - 4) > 0 ,到了分类讨论的时机,分 类标准是零) 当 a ≤ 0时, f '( x ) < 0, f ( x )在(-∞, +∞) 单调递减; 当 a > 0时,当x 变化时, f '( x ), f ( x ) 的变化如下表: x (-∞, - 2 ) 2 2 2 , ) a a 2 a ( 2 a , +∞) f '( x ) + 0 — + f ( x ) 极大值 极小值 此时, f ( x )在(-∞, - 2 2 6 a 2 2 , ) 单调递减; a a (II )由 f '(1) = 3a -12 = -6, 得a = 2. 由(I )知, f ( x )在(-1, 2) 单调递减 ,在( 2 ,3)单调递增。 【易错点】搞不清分类讨论的时机,分类讨论不彻底 【思维点拨】分类讨论的难度是两个, 1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理, 由于参数的存在,到了不能一概而论的时候,自然地进入分类讨论阶段;(2)分类讨论的标准,要做到不 重复一遗漏。还要注意一点的是,最后注意将结果进行合理的整合。 题型二 已知单调性求参数取值范围问题 例 1 已知函数 f ( x) = 1 3 x 3 + x 2 + ax - 5 , 若函数在[1,+∞) 上是单调增函数,求 a 的取值范围

高中数学导数经典100题

题401:省峨山彝族自治县第一中学2018届高三2月份月考理科 已知函数()ln f x ax x =+,其中a 为常数,e 为自然对数的底数. (1)若()f x 在区间(0,]e 上的最大值为3-,求a 的值; (2)当1a =-时,判断方程ln 1|()|2x f x x = +是否有实根?若无实根请说明理由,若有实根请给出根的个数. 题402:2018年普通高等学校招生全国统一考试仿真卷-(理六) 已知()ln()f x x m mx =+- (1)求()f x 的单调区间; (2)设1m >,12,x x 为函数()f x 的两个零点,求证:120x x +< 题403:省实验中学2018届高三上学期第六次月考数学(文) 已知函数2()ln (0)f x x a x a =-> (1)讨论函数()f x 在(,)a +∞上的单调性; (2)证明:322ln x x x x -≥且322ln 16200x x x x --+> 题404:西北师大附中2017届高三校第二次诊断考试试题数学(理科) 已知函数21()ln (1)..2 f x a x x a x a R =+-+∈ (1)求函数()f x 的单调区间; (2)若()0f x ≥对定义域的任意x 恒成立,数a 的取值围; (3)证明:对于任意正整数,,m n 不等式 111...ln(1)ln(2)ln()() n m m m n m m n +++>++++恒成立.

题405:一中2017-2018学年度高三年级第五次月考 数学(理)试 已知函数3()ln(1)ln(1)(3)()f x x x k x x k R =++---∈ (1)当3k =时,求曲线()y f x =在原点处的切线方程; (2)若()0f x >对(0,1)x ∈恒成立,求k 的取值围. 题406:第一中学2018届高三上学期期末考试数学(理) 已知函数()ln 1,a f x x a R x =+-∈ (1)若函数()f x 的最小值为0,求a 的值; (2)证明:(ln 1)sin 0x e x x +-> 题407:2017—2018学年度衡中七调理科数学 已知函数1()x f x e a -=+,函数()ln ,g x ax x a R =+∈ (1)求函数()y g x =的单调区间; (2)若不等式()()1f x g x ≥+在区间[1,)+∞恒成立,数a 的取值围 (3)若(1,)x ∈+∞,求证不等式12ln 1x e x x -->-+

函数与导数历年高考真题

函数与导数高考真题 1.2log 510+log 50.25= A 、0 B 、1 C 、2 D 、4 2.2 2 (1cos )x dx π π-+?等于( ) A.π B.2 C.π-2 D.π+2 3.设f(x)为定义在R 上的奇函数,当x ≥0时,f(x)=2x +2x+b(b 为常数),则f(-1)= (A) 3 (B) 1 (C)-1 (D)-3 4.设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( ) (A)13 (B)2 (C) 132 (D)213 75.已知函数3()2x f x +=,1()f x -是()f x 的反函数,若16mn =(m n ∈+R ,),则11()()f m f n --+的值为( ) A .2- B .1 C .4 D .10 6.设正数a,b 满足4)(22lim =-+→b ax x x , 则=++--+∞ →n n n n n b a ab a 211 1lim ( ) A .0 B . 41 C .21 D .1 7.已知函数y =13x x -++的最大值为M ,最小值为m ,则m M 的值为 (A)14 (B)12 (C)22 (D)32 8.已知函数y =x 2-3x+c 的图像与x 恰有两个公共点,则c = (A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1 9.已知以4T =为周期的函数21,(1,1]()12,(1,3] m x x f x x x ?-∈-?=?--∈??,其中0m >。若方程 3()f x x =恰有5个实数解,则m 的取值范围为( ) A .158(,)33 B .15(,7)3 C .48(,)33 D .4(,7)3 10.已知函数2()22(4)1f x mx m x =--+,()g x mx =,若对于任一实数x ,()f x 与 ()g x 至少有一个为正数,则实数m 的取值范围是 A . (0,2) B .(0,8) C .(2,8) D . (,0)-∞

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高中数学导数练习题(有答案)

导数练习题(含答案) 【编著】黄勇权 一、求下函数的导数 (1)f (x )=2x 2+3x+2 (2)f (x )=3sinx+7x 2 (3)f (x )=lnx+2x (4)f (x )=2x +6x (5)f (x )=4cosx -7 (6)f (x )=7e x +9x (7)f (x )=x 3+4x 2+6 (8)f (x )=2sinx -4cosx (9)f (x )=log2x (10)f (x )= x 1 (11)f (x )=lnx+3e x (12)f (x )=2x x (13)f (x )=sinx 2 (14)f (x )=ln (2x 2+6x ) (15)f (x )=x 1x 3x 2++ (16)f (x )=xlnx+9x (17)f (x )= x sinx lnx + (18)f (x )=tanx (19)f (x )=x x e 1e 1-+ (20) f (x )=(x 2-x )3 【答案】 一、求下函数的导数 (1)f /=4x+3 (2)f /=3cos+14x (3)f /=x 1+2 (4)f /=2x ln2+6 (5)f /= -4sinx (6)f /=7e x (7)f /=3x 2+8x (8)f /=2cosx+4sinx

(9)因为f (x )=log2x =2ln lnx =lnx 2 ln 1? 所以:f /=(lnx 2ln 1?)/ =(2ln 1)?(lnx )/ =2ln 1?x 1 =ln2 x 1? (10)因为:f (x )=x 1 f /=2x x 1x 1) ()()('?-?'= x x 1210?- = x x 21- = 2x 2x - (11)f /= x e 3x 1+ (12)f (x )= 2x x =23x - f /=(2 3-)25x -= 3 x 2x 3- (13)f /=(sinx 2)/?(x 2)/=cosx 2?(2x )=2x ?cosx 2 (14)f /=[ln (2x 2+6x )]/?(2x 2+6x)/ = x 6x 212+? (4x+6) = x 3x 3x 22++ (15)f (x )=x 1x 3x 2++ = x+3+x 1 f /=(x+3+x 1)/= 1+0 -2x 1 =22x 1-x (16)f /=(x )/(lnx )+(x )(lnx )/+9 =lnx+x 1x ?+9 =lnx+10

高考数学导数题型归纳

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:分离变量法: ∵ 当0x =时, 2 ()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2 ()30g x x mx =--<恒成立 等价于233 x m x x x ->=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 解法三:变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)0230 11(2)0230 F x x x F x x ?->--+>?????-<-+>??? 例2),10(32 R b a b x a ∈<<+- ],2不等式()f x a '≤恒成立,求a 的取值范围.

高中数学文科导数练习题

数学导数练习(文) 一、1. 一个物体的运动方程为S=1+t+t^2其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )A 7米/秒 B 6米/秒 C 5米/秒 D 8米/秒 2. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( ) A.1 B.2 C.-1 D. 0 3 ()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则 ()f x 与()g x 满足( )A ()f x =2()g x B ()f x -()g x 为常数函数 C ()f x =()0g x = D ()f x +()g x 为常数函数 4. 函数3y x x =+的递增区间是( )A )1,(-∞ B )1,1(- C ),(+∞-∞ D ),1(+∞ 5.若函数f(x)在区间(a ,b )内函数的导数为正,且f(b)≤0,则函数f(x)在(a , b )内有( )A. f(x) 〉0 B.f(x)〈 0 C.f(x) = 0 D.无法确定 6.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 7.曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( ) A (1,0) B (2,8) C (1,0)和(1,4)-- D (2,8)和(1,4)-- 8.函数313y x x =+- 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3 C.极小值-1,极大值3 D. 极小值-2,极大值2 9 对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A (0)(2)2(1)f f f +< B (0)(2)2(1)f f f +≤ C (0)(2)2(1)f f f +≥ D (0)(2)2(1)f f f +> 10.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在 ),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内 有极小值点( ) A. 1个 B.2个 C.3个 D.4个 二、11.函数3 2 y x x x =--的单调区间为___________________________________. 12.已知函数3 ()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 . 13.曲线x x y 43 -=在点(1,3)- 处的切线倾斜角为__________. 14. 曲线3 x y =在点()1,1处的切线与x 轴、直线2=x 所围成的三角形的面积为 __________。 15. 已知曲线3 1433 y x = + ,在点(2,4)P 的切线方程是______________ a b x y ) (x f y '=O

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高中数学导数及微积分练习题

1.求导:(1)函数y= 2cos x x 的导数为-------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x ) 2 ------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3)---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A). 54 (B).52 (C).51 (D).5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点)0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1 ()1()()0()1 2f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22 =与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3 x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1 ,则=a _________ 。 8.已知抛物线2y x b x c =++在点(1 2),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值.

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

高考题汇编2010-全国高考数学真题--第21题导数

2017-2019年全国高考数学真题--第21题导数 2018年:设函数2 ()1x f x e x ax =---。 (1)若0a =, 求()f x 的单调区间; (2)若当0x ≥时()0f x ≥, 求a 的取值范围 2019年:已知函数ln ()1a x b f x x x = ++, 曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=. (I )求,a b 的值; (II )如果当0x >, 且1x ≠时, ln ()1x k f x x x >+-, 求k 的取值范围. 2019年: 已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-. (Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥2 2 1)(, 求b a )1(+的最大值.

2019: 一卷:已知函数()f x =2 x ax b ++, ()g x =()x e cx d +, 若曲线()y f x =和 曲线()y g x =都过点P (0, 2), 且在点P 处有相同的切线42y x =+ (Ⅰ)求a , b , c , d 的值; (Ⅱ)若x ≥-2时, ()f x ≤()kg x , 求k 的取值范围. 2019一卷:设函数1 ()ln x x be f x ae x x -=+, 曲线()y f x =在点(1, (1)f 处的切线为 (1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >. 2015一卷:已知函数3 1 ()4 f x x ax =++ , ()ln g x x =-. (Ⅰ)当a 为何值时, x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m , n 中的最小值, 设函数{}()min (),()(0)=>h x f x g x x , 讨论()h x 零点的个数.

(完整版)高二数学选修2-2导数单元测试题(有答案)

导数复习 一.选择题 (1) 函数13)(23+-=x x x f 是减函数的区间为 ( ) A .),2(+∞ B .)2,(-∞ C .)0,(-∞ D .(0,2) (2)曲线3231y x x =-+在点(1,-1)处的切线方程为( ) A .34y x =- B 。32y x =-+ C 。43y x =-+ D 。45y x =- a (3) 函数y =a x 2 +1的图象与直线y =x 相切,则a = ( ) A . 18 B .41 C .2 1 D .1 (4) 函数,93)(2 3-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( ) A .2 B .3 C .4 D .5 (5) 在函数x x y 83-=的图象上,其切线的倾斜角小于4 π 的点中,坐标为整数的点的 个数是 ( ) A .3 B .2 C .1 D .0 (6)函数3()1f x ax x =++有极值的充要条件是 ( ) A .0a > B .0a ≥ C .0a < D .0a ≤ (7)函数3()34f x x x =- ([]0,1x ∈的最大值是( ) A . 1 2 B . -1 C .0 D .1 (8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( ) A 、0 B 、1002 C 、200 D 、100! (9)曲线313y x x =+在点413?? ???,处的切线与坐标轴围成的三角形面积为( ) A.19 B.29 C.13 D.23 .10设函数()1 x a f x x -= -,集合M={|()0}x f x <,P=' {|()0}x f x >,若 M P,则实数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) 11.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 12函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个 C .3个D . 4个 13. y =e sin x cos(sin x ),则y ′(0)等于( ) A.0 B.1 C.-1 D.2 14.经过原点且与曲线y =5 9++x x 相切的方程是( ) A.x +y =0或25 x +y =0 B.x -y =0或25 x +y =0 C.x +y =0或 25 x -y =0 D.x -y =0或 25 x -y =0 15.设f (x )可导,且f ′(0)=0,又x x f x )(lim 0 '→=-1,则 f (0)( ) A.可能不是f (x )的极值 B.一定是f (x )的极值 C.一定是f (x )的极小值 D.等于0 16.设函数f n (x )=n 2x 2(1-x )n (n 为正整数),则f n (x )在[0,1]上的最大值为( ) A.0 B.1 C.n n )221(+- D.1)2 ( 4++n n n 17、函数y=(x 2-1)3+1在x=-1处( ) A 、 有极大值 B 、无极值 C 、有极小值 D 、无法确定极值情况 18.f(x)=ax 3+3x 2+2,f ’(-1)=4,则a=( ) A 、3 10 B 、3 13 C 、3 16 D 、3 19 19.过抛物线y=x 2 上的点M (4 1,21)的切线的倾斜角是( ) A 、300 B 、450 C 、600 D 、900 20.函数f(x)=x 3-6bx+3b 在(0,1)内有极小值,则实数b 的取值范围是( ) a b x y ) (x f y ?=O

相关文档 最新文档