文档库 最新最全的文档下载
当前位置:文档库 › 地质工程测量中GPS快速静态法的应用分析

地质工程测量中GPS快速静态法的应用分析

地质工程测量中GPS快速静态法的应用分析
地质工程测量中GPS快速静态法的应用分析

·139·

社会的发展与进步,地质矿产勘察的范围也在逐渐扩大。然而,在进行工程建设过程中,地质工程测量作为其重要的组成部分,其所测量的数据准确度关系到整个建筑工程的质量。GPS 快速静态法作为一种全新的地质工程测量技术,在具体的应用过程中不仅能合理的解决传统地质数据测量法存在的弊端性问题,而且极大提高地质工程测量数据信息的可靠度与精确度,值得进行广泛的推广。

1 简要介绍GPS 快速静态法含义与几种常见方法

1.1 GPS 快速静态法含义

所谓的GPS 快速静态法也被称之为全球性定位系统,其是目前一种最为新型的定位导航系统,能够在全区域范围内提供出全天候的导航数据信息,并且在实现为测定区域目标提供出定位信息,不间断的进行数据传输,确保所采集的数据信息具有一定的实时性。从目前我们国家工程的应用现状上看,与动态GPS 技术相比,应用GPS 快速静态法能够更好动态技术的弊端性问题,符合地质工程测量的相关呢要求。1.2 常用的GPS 快速静态法

第一种,两次设站法。在静态定位短基线测量过程中,相关的测量人员必须要确保有着充足的测量时间,究其原因主要是由于在进行长时间的观测,卫星所观测到的几何图形会发生明显性的变化,使其在相关的数据方程计算过程中能够获取准确性的数据参数状态,测量人员能够依据所选择状态参数,确定最终的模糊度以及基线向量。在两次应用设站法后,测量人员仅仅需要在每个特定点进行一段时间的观测,在经过两个到三个小时之后,每个待定点必须要有同样的数据观测时间。

第二种,go and stop 法。这种方法的主要应用原理是在保持都GPS 卫星连续进行跟踪后,能够确定相位载波观测值中是否含有同样的未知数,并且在数据处理过程中,必须要进行整观测点未知数的确定,并且在随后的数据研究中为了更好的对位置数据的判断与研究,可以保持持续性的对卫星进行跟踪,当抵达新的观测站抵达信息后,就不需要确定相应的整数未知数。采用go and stop 这种测量方法具有明显的作用,观测人员抵达到新的观测点之后,仅仅需要进行两到三分钟的观测时间,

就能准确的确定数据基线向量。

第三种,操作分析法。通常情况下,在地质工程测量过程中应用GPS 快速静态定位法,能够依据单基准站相关的作业方式进行合理的控制,举例来说,在一定的观测时间内,可以在某一测量站上固定一台接收机,保持时刻的进行卫星的分跟踪,保障其他接收机能够在以基准站为中心的一定范围进行操作,提高整个工作的质量。

2 地质工程测量中GPS 快速静态法具体应用分

2.1 GPS 快速静态法应用优势

在地质工程测量过程中应用GPS 快速静态法具有明显的优势所在,与传统的GPS 测量技术相比,采用GPS 快速静态法能够极大的缩短地质工程测量所需的时间。应用GPS 快速静态法其在每个地质工程测量点只需要进行几十分钟的观测,就能获得所需的数据信息,不仅能够缩短测量时间,而且还能确保数据测量的准确度,使得地质工程测量数据工作效率大幅度提高。2.2 GPS 快速静态不同测量方法与存在问题

在地质工程测量过程中所采用的GPS 快速静态法主要分为两种类别,即单基点法与双基点法。所谓的单基点法主要指的是进行一个固定站设置,并且配置两台仪器便能高效、快速完成测量工作,然而,单基点测量方法存在一定的弊端性问题,测量的数据信息精确度不高,存在着较大的误差性问题。所谓的双基点测量方法主要指的是进行两个固定站的设置,需要至少三台测量仪器才能完成地质工程测量工作,在采用双基点法所获得的地质工程测量数据信息具有较高的可靠度与准确度,但是其弊端性问题性测量所需仪器多,整体工作效率低。

2.3 解决GPS 快速静态法缺陷问题的方法

在地质工程测量过程中采用GPS 快速静态法,虽然能够在一定程度有效的GPS 动态测量方式存在的不足问题,在高效测量的基础上,确保所测量的地质工程数据信息的可靠性与精确度,但是GPS 快速静态法自身也存在一定的弊端。为了能够解决GPS 快速静态法在地质工程测量过程中的弊端性问题,具体可以从以下几个方面做起: (下转第202页)

地质工程测量中GPS快速静态法的应用分析

杨 松

(贵州省地矿局一〇三地质大队,贵州 铜仁 554300)

摘 要:随着科学技术水平的不断发展与进步,在进行地质工程测量过程中,必须要合理的应用GPS快速静

态法,提高整个地质工程数据测量工作效率。将通过对GPS快速静态法含义与几种常见方法进行简要介绍,进而对地质工程测量中GPS快速静态法具体应用进行阐述,以供参考。

关键词:地质工程;数据测量;GPS快速静态法;应用

中图分类号:TU198;P228.4 文献标识码:B 文章编号:1004-275X(2018)01-139-02

实验报告GPS静态测量

实验四GPS静态测量 一、实验目的 实验的目的是使学生了解采用GPS定位技术建立工程控制网的过程,使所学理论知识与实践相结合,巩固和加深对新知识的理解,增强学生的动手能力,培养学生解决问题、分析问题的能力。通过学习,应达到如下要求: 1、熟练掌握GPS接收机的使用方法,外业观测的记录要求。选点、埋石的要求。 2、合理分配时段、掌握星历预报对时段的要求。PDOP值的大小对观测精度的影响,图形结构的设计及外业工作。外业观测时手机或对讲机的合理应用。 3、掌握GPS控制测量数据处理处理的流程,能独立完成基线解算及网平差 二、实验地点: 城市学院校区内,实验学时:4小时 三、实验前的准备工作 1、实验内容介绍:对实验的任务和意义作好充分了解。 2、使用的仪器及物品:GPS接收机(含电池)、基座、脚架若干台,作业调度表,外业观测手簿,小钢尺,铅笔,安装有传输软件和数据处理软件的计算机,数据传输线若干根,便携式存储器。 3、搜集资料 ①广泛收集测区及其附近已有的控制测量成果和地形图资料 a.控制测量资料包括成果表、点之记、展点图、路线图、计算说明和技术总结等。收集资料时要查明施测年代、作业单位、依据规范、坐标系统和高程基准、施测等级和成果的精度评定。 b.收集的地形图资料包括测区范围内及周边地区各种比例尺地形图和专业用图,主要查明地图的比例尺、施测年代、作业单位、依据规范、坐标系统、高程系统和成图质量等。 c.如果收集到的控制资料的坐标系统、高程系统不一致,则应收集、整理这些不同系统间的换算关系。 (注:本实验采用地科系2013年5月建立的校园控制网资料) ②收集有关GPS测量定位的技术要求 通过参考测量规范,收集有关的测量技术要求。GPS测量规范包括: a.《全球定位系统GPS测量规范》GB/T 18314-2009 b.《工程测量规范》 GB 50026-2007

GPS静态控制测量方案

兰州市水源地建设工程项目(第11-1标段) GPS静态测量方案 编制: 审核: 审批: 中国建筑第六工程局有限公司 兰州市水源地建设工程项目(第11-1标段)项目部 2015年12月

目录 3 1.工程概况............................................................................................................. 4 2.编制依据............................................................................................................. 3.适用范围............................................................................................................. 4 4.测量人员的组成及仪器设备 (5) 5 5.平面控制测量..................................................................................................... 7 6.高程控制测量..................................................................................................... 7 7.测量资料管理及上报......................................................................................... 7 8.质量保证措施..................................................................................................... 9.总结..................................................................................................................... 8 8 10.附录...................................................................................................................

静态GPS控制测量使用技术方法

静态GPS控制测量使用技术方法 1控制点的布设 为了达到GPS测量高精度、高效益的目的,减少不必要的耗费,在测量中遵循这样的原则:在保证质量的前提下,尽可能地提高效率、降低成本。所以对GPS测量各阶段的工作,都要精心设计,精心组织和实施。建议用户在测量实施前,对整个GPS测量工作进行合理的总体设计。 总体设计,是指对GPS网进行优化设计,主要是:确定精度指标,网的图形设计,网中基线边长度的确定及网的基准设计。在设计中用户可以参照有关规范灵活地处理,下面将结合国内现有的一些资料对GPS测量的总体设计简单地介绍一下。 1、确定精度标准 在GPS网总体设计中,精度指标是比较重要的参数,它的数值将直接影响GPS网的布设方案、观测数据的处理以及作业的时间和经费。在实际设计工作中,用户可根据所作控制的实际需要和可能,合理地制定。既不能制定过低而影响网的精度,也不必要盲目追求过高的精度造成不必要的支出。 2、选点 选点即观测站位置的选择。在GPS测量中并不要求观测站之间相互通视,网的图形选择也比较灵活,因此选点比经典控制测量简便得多。但为了保证观测工作的顺利进行和可靠地保持测量结果,用户注意使观测站位置具有以下的条件: ①确保GPS接收机上方的天空开阔GPS测量主要利用接收机所接收到的卫星信号,而且接收机上空越开阔,则观测到的卫星数目越多。一般应该保证接收机所在平面15°以上的范围内没有建筑物或者大树的遮挡。 图5-1 高度截止角 ②周围没有反射面,如大面积的水域,或对电磁波反射(或吸收)强烈的物体(如玻璃墙,树木等),不致引起多路径效应。 ③远离强电磁场的干扰。 GPS接收机接收卫星广播的微波信号,微波信号都会受到电磁场的影响而产生噪声,降低信噪比,影响观测成果。所以GPS控制点最好离开高压线、微波站或者产生强电磁干扰的场所。邻近不应有强电磁辐射源,如无线电台、电视发射天线、高压输电线等,以免干扰GPS 卫星信号。通常,在测站周围约 200m 的范围内不能有大功率无线电发射源(如电视台、电台、微波站等);在 50m 内不能有高压输电线和微波无线电信号传递通道。 ④观测站最好选在交通便利的地方以利于其它测量手段联测和扩展; ⑤地面基础稳固,易于点的保存。

GPS静态控制测量网平差报告

FJ -3 工程测量技术交流群18874248 省道S 229南坑至源头段 二级公路改建工程 GPS 静态控制测量 网平差报告 萍 乡 公 路 勘 察 设 计 院 二○一一年九月 目 录 一、 GPS 控制点成果表…………………………………………1 二、 GPS 控制点网示意图………………………………………1 三、 GPS 控制网平差报告……………………………………1~4

一、G PS控制点成果表 二、GPS控制点网示意图 三、GPS控制网平差报告 1 坐标系统 1.1 坐标系统名称 Beijing54 1.2 基准参数

1.3 投影参数 M0 =1.00000000 投影比率 H = 0.0000 投影高 Bm =0投影面的平均纬度 B0 =0:00:00.00N 原点纬度 L0 =113:50:00.00E 中央子午线 N0 =0.0000 北向加常数 E0 =500000.0000 东向加常数 回到顶部 2 三维无约束平差2.1 平差参数 2.2 基线向量及改正数 2.3 τ(Tau)检验表 2.4 τ(Tau)检验直方图

2.5 自由网平差坐标 回到顶部 3 二维约束平差 3.1 平差参数 3.2 平面距离平差值 3.3 平面坐标 ***** 回到顶部

4 高程拟合 4.1 平差参数 4.2 高程拟合坐标 240.7246 回到顶部 5 基线闭合差 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G1->G2.242A 99.9 0.0077 -1046.7333 -648.5635 534.7004 1342.4566 G1->G3.242A 99.9 0.0068 -3110.1745 -2426.1123 1829.3052 4348.0529 G2->G3.242A 99.9 0.0062 -2063.4456 -1777.5444 1294.6074 3015.5398 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.76ppm EX = 0.0043 EY = -0.0043 EZ = -0.0026 8706.0493 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G1->G4.242B 65.6 0.0072 -5107.6816 -3742.5441 2584.4937 6839.1999 G1->G2.242A 99.9 0.0077 -1046.7333 -648.5635 534.7004 1342.4566 G2->G4.242B 99.9 0.0072 -4060.9524 -3093.9755 2049.7944 5501.4248 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.48ppm EX = -0.0041 EY = 0.0051 EZ = 0.0010 13683.0814 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G1->GD1.242X 99.9 0.0087 507.9850 -1545.3781 3267.2106 3649.7818 G1->G2.242A 99.9 0.0077 -1046.7333 -648.5635 534.7004 1342.4566 G2->GD1.242X 99.9 0.0065 1554.7134 -896.8104 2732.5118 3269.2543 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.80ppm EX = -0.0048 EY = 0.0042 EZ = 0.0017 8261.4927 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G3->G4.242B 99.9 0.0063 -1997.5067 -1316.4322 755.1870 2508.6519 G1->G3.242A 99.9 0.0068 -3110.1745 -2426.1123 1829.3052 4348.0529 G1->G4.242B 65.6 0.0072 -5107.6816 -3742.5441 2584.4937 6839.1999 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.12ppm EX = -0.0003 EY = 0.0004 EZ = 0.0015 13695.9047 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G3->GD1.242X 99.9 0.0071 3618.1569 880.7382 1437.9069 3991.7835 G1->G3.242A 99.9 0.0068 -3110.1745 -2426.1123 1829.3052 4348.0529 G1->GD1.242X 99.9 0.0087 507.9850 -1545.3781 3267.2106 3649.7818 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.42ppm EX = 0.0026 EY = -0.0040 EZ = -0.0015 11989.6182 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G4->GD1.242X 99.9 0.0073 5615.6650 2197.1667 682.7190 6068.7182 G1->G4.242B 65.6 0.0072 -5107.6816 -3742.5441 2584.4937 6839.1999 G1->GD1.242X 99.9 0.0087 507.9850 -1545.3781 3267.2106 3649.7818 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.16ppm EX = 0.0015 EY = -0.0007 EZ = -0.0022 16557.6999

gps静态测量技术总结

gps静态测量技术总结 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 《gps静态测量技术总结》是一篇好的范文,好的范文应该跟大家分享,这里给大家转摘到XX。篇一:GPS静态测量与数字化测图技术总结 GPS静态测量与数字化测图技术总结 班级:测绘12-2班学号:31218082**姓名:* * 2015年7月8日 GPS静态数据处理技术总结 一、测区概述 雁山区位于桂林市南部,全境多石山和丘陵。本次实习测区主要范围为桂林理工大学雁山校区与广西师范大学雁山校区周边,整个测区大致位于东经110°16’06”- 110°18’58”,北纬25°03’05”- 25°07’35”之间。测区范围内山区

较多,道路复杂,房屋众多,植被虽然较茂密,但是平坦空地也不少,布点位置相对地域开阔,便于进行GPS观测。 二、技术依据 1、《GPS与数字化测图实习指导书》; 2、《技术设计书》; 3、《全球定位系统城市测量技术规程》(CJJ 73-1997); 4、《全球定位系统(GPS)测量规范》(GB/T 18314-2001)。 三、坐标系的选择 GPS网的无约束平差平面坐标系统选用WGS-84坐标系,3°带高斯克吕格投影,中央子午线精度为111°,测区投影分带为6°带的第19带,3°带的第38带。四、起算数据如下表 五、仪器设备和软件 GPS控制测量采用南方GPS接收机和中海达GPS接收机,其静态相对定位精度为:静态基线±(5mm +1ppmD);高程±(10mm+2ppmD)。 这些GPS测量系统配备有星历预报软件、后处理解算软件,完全能满足GPS

控制测量数据处理的要求。 XX南方数据转换软件为南方GPS 后处理程序,基线结算及平差软件为中海达HGO数据处理软件,能够基线向量处理、GPS网平差软件、多种GPS数据格式转换等功能,完全能满足GPS控制测量数据处理的要求。 六、GPS静态测量方案GPS流程图: 开始 选点布网 数据采集 工具:数据传输软件(功能模块)结果:记录在接收机中的原始数据数据传输 工具:数据传输软件(功能传输模块) 结果:记录在计算机中 的原始数据 格式转换工具:格式转换软件(功能模块) 结果:标准格式数据

GPS静态测量概念

《GPS定位原理及应用》授课教案 第八章GPS测量的设计与实施 8.1 GPS测量的技术设计 教学内容:本节主要介绍GPS测量技术设计的一般要求和设计指标。 教学重点: 1.介绍GPS测量技术设计的依据; 2.介绍GPS测量的标准; 3.介绍GPS测量的图形设计。 教学难点:GPS的图形设计。 教学方法:课堂教学为主,充分利用多媒体教学方法。 教学要求: 学会局部性的GPS控制网的图形设计,掌握GPS测量技术设计书的编写。 8.1.1 GPS网技术设计的依据 1.GPS测量规范(规程) (1)《全球定位系统(GPS)测量规范》 (2)《全球定位系统城市测量技术规程》 (3)各行业部门的其他GPS测量规程或细则 2.测量任务书 8.1.2 GPS网的精度, 密度设计 1.GPS测量精度标准及分类 (1)GPS测量精度分类 对于各类GPS网的精度设计主要取决于网的用途。用于地壳形变及国家基本大地测量的GPS控制网可按表8-1分级。

用于城市或工程的GPS控制网可按表8-2分级。 (2)GPS测量的精度标准 GPS测量的精度标准通常用网中相邻点之间的距离中误差表示,其形式为: σ(8-1) 2) 2 (bd = a+ 式中:σ——距离中误差(毫米); ɑ——固定误差(mm); b——比例误差系数(ppm); d——相邻点之间的距离(km)。 实际生产中,应根据测区大小、GPS网的用途,来设计网的等级和精度标准。2.GPS点的密度标准 制定GPS网的密度标准,主要考虑任务要求和服务对象。密度可参照表8-3的规定执行。 8.1.3 GPS网的基准设计 1.基准设计的定义: 在GPS网的技术设计中,必须明确GPS网的成果所采用的 坐标系统和起算数据的工作,称为GPS网的基准设计。GPS网的基准包括位置基准、方位基准和尺度基准。 2.基准设计应考虑的几个问题: (1)应在地面坐标系中选定起算数据和联测原有地方控制点若干个,用以转换坐标。

GPS做静态测量

G P S做静态测量 静态差分GPS(Static differential GPS)是由两个(含)以上接收仪,进行较长时间(通常为半小时以上)的测量,其包含了一组接收仪间的决定。 伪距差分原理 伪距差分是目前用途最广的一种技术。几乎所有的商用差分GPS均采用这种技术。国际海事委员会推荐的RTCM SC-104也采用了这种技术。 在基准站上的接收机要求得它至可见卫星的距离,并将此计算出的距离与含有误差的测量值加以比较。利用一个α-β将此差值滤波并求出其偏差。然后将所有卫星的测距误差传输给用户,用户利用此测距误差来改正测量的伪距。最后,用户利用改正后的伪距来解出本身的位置,就可消去公共误差,提高。 随着GPS技术的进步和接收机的迅速发展,GPS在测量定位领域已得到了较为广泛的应用。但是,针对不同的领域和用户的不同要求,需要采用的具体是不一样的。一般来说,GPS测量模式可分为静态测量和动态测量两种模式,而静态测量模式又分常规静态测量模式和快速静态测量模式,动态测量模式分准动态测量模式(后处理动态,走走停停)和测量模式,实时动态测量模式分DGPS和RTK 方式。下面分别介绍如下: 1、常规静态测量 这种模式采用两台(或两台以上)GPS接收机,分别安置在一条或数条基线的两端,同步观测4颗以上卫星,每时段根据基线长度和测量等级观测45分钟以上的时间。这种模式一般可以达到5mm十1ppm的。常规静态测量常用于建立全球性或国家级大地,建立监测网、建立长距离检校基线、进行岛屿与大陆联测、定位及精密工程控制网建立等。 2、快速静态测量 这种模式是在一个已知测站上安置一台GPS接收机作为基准站,连续跟踪所有可见卫星。接收机依次到各待测测站,每测站观测数分钟。这种模式常用于控制网的建立及其加密、、等。需要注意的是这种方法要求在观测时段内确保有5颗以上卫星可供观测;流动点与相距应不超过20km。 3、准动态测量 这种模式是在一个已知测站上安置一台GPS接收机作为基准站,连续跟踪所有可见卫星。移动站接收机在进行初始化后依次到各待测测站,每测站观测几个数据。这种方法不同于快速静态,除了观测时间不一样外,它要求移动站在搬站过程中不能失锁,并且需要先在已知点或用其它方式进行初始化(采用有OTF 功能的软件处理时例外)。

GPS静态测量原理 测量111 李博周

辽宁林业职业技术学院 林学系 辽宁林业职业技术学院 毕业设计 学院辽宁林业职业技术学院 所属系部林学系 专业名称工程测量技术 学制 3年 年级 2011级 姓名李博周 指导教师王旭

GPS 静态测量原理 摘要 GPS定位的基本原理是以GPS卫星至用户接收机天线之间的距离(或距离差)为观测量,根据已知的卫星瞬时坐标,利用空间距离后方交会,确定用户接收机天线所对应的观测站的位置。GPS静态定位指接收机在定位过程中位置静止不动,包含绝对定位和相对定位两种方式。无论是静态绝对定位还是静态相对定位,所依据的观测量都是卫星到观测站的伪距,根据观测量的不同,静态定位又可分为测码伪距静态定位和测相伪距静态定位。基于载波相位测量的静态相对定位,是目前精度最高的一种方式。 关键词:GPS、后方交会、静态定位、伪距、精度

目录 GPS简介 (1) 1 静态定位概述 (2) 2 静态绝对定位原理 (3) 2.1 伪距观测方程的线性化 (3) 2.2 伪距法绝对定位的解算 (3) 2.3 用载波相位观测值进行静态绝对定位 (4) 3 静态相对定位原理 (5) 3.1观测量的线性组合 (5) 3.2观测方程的线性化及平差模型 (5) 4 整周未知数的确定方法 (7) 4.1经典静态相对定位法确定整周未知数 (7) 4.2 交换天线法确定整周未知数 (8) 4.3 P码双频技术确定整周未知数 (8) 5 周跳分析 (10) 5.1利用单差观测值的高次差探测与修复周跳 (10) 5.2利用双差观测值的高次差探测与修复周跳 (10) 5.3利用平差后的残差探测与修复周跳 (11) 致谢 (12) 参考文献 (13)

1.GPS静态控制测量报告

大戛高速公路项目(第四工段) 导线复测总结报告 编制: 审核: 审批: 云南建投大戛高速公路第四工段项目部 2016年8月 目录

1.工程概况 (3) 2.编制依据 (4) 3.适用范围 (4) 4.测量人员的组成及仪器设备 (4) 5.平面控制测量 (5) 6.高程控制测量 (7) 7.测量资料管理及上报 (7) 8.质量保证措施 (7) 9.总结 (8) 10.附录 (8)

1.工程概况 工程概况 大戛高速公路四工段位于云南省玉溪市新平县,工段起于三工段K33+528路基段,经红星村等村落,止于五工段K44+555莫洛黑隧道进口。主线起讫里程为K33+528~K44+555,设计路线全长。? 四工段主要工程为桥梁7座、隧道5座、路基;? 桥梁工程有: 扒拉黑箐1#桥(桥长640米) 扒拉黑箐2#桥(桥长米) 大黑箐大桥(桥长480米) 斗迭社莫大桥(桥长720米) 六十二大箐大桥(桥长374米) 红星大桥(桥长150米) 莫洛黑大桥(桥长794米) 隧道工程: 哈玛珠隧道(隧长616米) 迭社莫隧道(隧长202米) 红星1#隧道(隧长648米) 红星2#隧道(隧长1098米) 白尺达隧道(隧长1008米) 路基工程:米 复测工作内容 对大戛高速公路四工段内设计单位提供的导线控制点进行复测。

大戛高速公路四段原设计控制点表(附表) 2.编制依据 《工程测量规范》(GB 50026-2007); 《全球定位系统(GPS)测量规范》(GB/T18314-2009); 《公路勘测规范》(JTC/T C10—2007); 《公路勘测细则》(JTC/TC10-2007)。 3.适用范围 适用于大戛高速公路四工段K33+528~K44+5550里程段内的施工放样工作。 4.测量人员的组成及仪器设备 主要测量人员配备

GPS静态【控制专区】测量技术设计指南

GPS静态控制测量实施指南 一、综述 GPS网建立过程分3个阶段:设计准备、施工作业、数据处理1.设计准备 该阶段的主要工作项目:项目规划、方案设计、施工设计、测绘资料收集、选点埋石、仪器检测。 1.1项目规划 ①位置及范围:测区的地理位置、覆盖范围及控制网的控制 面积 ②用途及精度等级:控制网的具体用途、所要求达到的精度 或等级。(各级GPS网采用中误差作为精度指标,以2倍中误差作为 极限误差。) C级网用途:三等大地控制网、区域、城市及工程测量的基本控制网; D 级网用途:四等大地控制网; E 级网用途:中小城市、城镇及测图、地籍、土地信息、建筑施工 等。 (由于本基坑工程跨距较长,基坑深距大,暂定C、D级测量精度 GPS测量相邻点间基线长度的精度用下面公式表示:

σ为基线向量的弦长中误差,单位mm,a为固定误差,单位mm,b为比例误差系数,单位1 X 10-6 ,d为相邻点间距离,单位为km。 城市GPS测量精度指标:(本工程选用四等) GPS高程拟合板块: D、E级网点按四等水准测量方法进行高程联测, GPS点需要高程联测时,可采用使GPS点与水准点重合,平原、微丘地形联测点的数量不宜少于6个,必须大于3个,联测点的间距不宜大于20km,且均匀分布;重丘、山岭地形联测点的数量不宜少于10个。 各级GPS控制网的高程联测应不低于四等水准测量的精度。 当GPS控制网点间距离小于20km时,可不考虑对流层和电离层的修正;当大于20KM时,每时段应于始、中、终个观测一次气象元素,并采用标准模型加入对流层和电离层的修正。 为GPS控制网点的正常高,先利用已联测高程的GPS点正常高和经GPS控制网平差得到的大地高,求其高程异常值,然后采用拟合或插值等方法求其他高程异常值和正常高。 ③点位分布及数量:控制网点的分布、数量及密度要求。 (GPS网点应均匀分布,相邻点间距离最大不宜超过该网平均点间距的2倍。依据城市测量规范三等基线平均距离为5km,四等为2km,鉴于平时土方开挖收方测量需要5km左右设置一控制观测点。

静态GPS测量基本原理

§1.1静态GPS测量概述 GPS测量工作与经典大地测量工作相类似,按其性质可分为外业和内业两大部分。其中:外业工作主要包括选点(即观测站址的选择)、建立观测标志、野外观测作业以及成果质量检核等;内业工作主要包括GPS测量的技术设计、测后数据处理以及技术总结等。如果按照GPS测量实施的工作程序,则大体可分为这样几个阶段:技术设计、选点与建立标志、外业观测、成果检核与处理。 GPS测量是一项技术复杂、要求严格、耗费较大的工作,对这项工作总的原则是,在满足用户要求的情况下,尽可能地减少经费、时间和人力的消耗。因此,对其各阶段的工作都要精心设计和实施。 §1.2作业模式 GPS测量的作业模式是指利用GPS定位技术,确定观测站之间相对位置所采用的作业方式。它主要由GPS接收设备的软件和硬件来决定。不同的作业模式其作业的方法和观测时间亦有所不同,因此亦有不同的应用范围。HD8200X静态机主要是用作控制测量用,采取的是静态载波相位相对定位模式。下面简单介绍HD8200X静态机的测量模式。 静态相对定位模式: 一、作业方法: 采用两台(或两台以上)中海达HD8200X静态机,分别安置在一条(或数条)基线的端点,根据基线长度和要求的精度,按HD8200X静态机外业的要求同步观测四颗以上的卫星数时段,时段从30分钟至几个小时不等。 二、定位精度: 基线测量的精度可达±(5mm+1×10-6D),D为基线长度,以公里计。 三、作业要求: 采取这种作业模式所观测的独立基线边,应构成闭合图形(如三角形、多边形),以利于观测成果的检核,增强网的强度,提高成果的可靠性和精确性。四、适用范围: 建立国家大地控制网(二等或二等以下); 建立精密工程控制网,如桥梁测量、隧道测量等; 建立各种加密控制网,如城市测量、图根点测量、道路测量、勘界测量等。 观测中至少跟踪四颗卫星,同时基线边长一般不要超过15公里。 五、作业范围: 控制测量及其加密;工程测量、勘界测量;地籍测量及碎部测量等。 §1.3 GPS网的技术设计 GPS网的技术设计是GPS测量工作实施的第一步,是一项基础性工作。这项工作应根据GPS网的用途和用户的要求来进行,其主要内容包括精度指标的确定,GPS网的图形设计和GPS网的基准设计。

GPS静态控制测量外业操作指南教学提纲

G P S静态控制测量外 业操作指南

GPS控制测量外业作业要求及技术指南 一:外业观测作业人员操作内容 安置接收机天线(严格对中整平、定向、量取仪器高)、设置接收机中的参数(如观测模式、截止高度角、和采样间隔等;如不设参数,接收机一般就采用缺省值),以及开机、关机等工作,其他工作由接收机自动完成。 二:操作流程:【选点与埋石——GPS接收机的检查——观测方案设计——观测作业——外业观测成果质量检核】 1.选点准备: 根据收集的测区内及周边现有平面和高程控制点以及测区地形图等,依据项目任务书或合同书以及相关规范的要求在图上进行设计,标绘处计划设站的区域。 1.1选点的基本要求 基本要符合规范(全球定位系统GPS测量规范GB/T18314- 2009)的相关要求: A)测站四周视野开阔,高度角15°以上不允许存在成片的障碍物

B)远离大功率无线电发射源,以免损坏接收机天线,高压电线50米至少,大功率无线发射源至少200米。 C)测站远离房屋、围墙、广告牌、山坡及大面积平静水面(湖泊、池塘)等信号反射物,以免出现严重的多路径 效应。 D)点位应位于地质条件良好、点位稳定、易于保护的地方,并尽可能顾及交通条件。 1.2选点作业 A)测量人员应按照在图上选择的初步位置以及对点位的基本要求,在实地最终选定点位,并做好相应的标记。 B)利用旧点时,应对旧点的稳定性、可靠性和完好性进行检查,符合要求时方可利用。 C)点名以该点位所在地命名,无法区分时,可在点名后加注(一)、(二)。 D)新旧点重合时,应沿用旧点名,一般不应更改。 E)选点工作完成后,应按规范要求的形式绘制GPS网选点图,可以用相机或手机拍照片。 提交的资料:①点之记②GPS网选点图 1.3 埋石 C、D、E及GPS点在满足标石稳定、易于长期保存的前提下, 均可根据具体情况选用。

GPS做静态测量

GPS做静态测量 静态差分GPS(Static differential GPS)是由两个(含)以上接收仪,进行较长时间(通常为半小时以上)的测量,其包含了一组接收仪间基线向量的决定。 伪距差分原理 伪距差分是目前用途最广的一种技术。几乎所有的商用差分GPS接收机均采用这种技术。国际海事无线电委员会推荐的RTCM SC-104也采用了这种技术。 在基准站上的接收机要求得它至可见卫星的距离,并将此计算出的距离与含有误差的测量值加以比较。利用一个α-β滤波器将此差值滤波并求出其偏差。然后将所有卫星的测距误差传输给用户,用户利用此测距误差来改正测量的伪距。最后,用户利用改正后的伪距来解出本身的位置,就可消去公共误差,提高定位精度。 随着GPS技术的进步和接收机的迅速发展,GPS在测量定位领域已得到了较为广泛的应用。但是,针对不同的领域和用户的不同要求,需要采用的具体测量方法是不一样的。一般来说,GPS测量模式可分为静态测量和动态测量两种模式,而静态测量模式又分常规静态测量模式和快速静态测量模式,动态测量模式分准动态测量模式(后处理动态,走走停停)和实时动态测量模式,实时动态测量模式分DGPS和RTK方式。下面分别介绍如下: 1、常规静态测量 这种模式采用两台(或两台以上)GPS接收机,分别安置在一条或数条基线的两端,同步观测4颗以上卫星,每时段根据基线长度和测量等级观测45分钟以上的时间。这种模式一般可以达到5mm十1ppm的相对定位精度。常规静态测量常用于建立全球性或国家级大地控制网,建立地壳运动监测网、建立长距离检校基线、进行岛屿与大陆联测、钻井定位及精密工程控制网建立等。 2、快速静态测量 这种模式是在一个已知测站上安置一台GPS接收机作为基准站,连续跟踪所有可见卫星。移动站接收机依次到各待测测站,每测站观测数分钟。这种模式常用于控制网的建立及其加密、工程测量、地籍测量等。需要注意的是这种方法要求在观测时段内确保有5颗以上卫星可供观测;流动点与基准点相距应不超过20km。 3、准动态测量 这种模式是在一个已知测站上安置一台GPS接收机作为基准站,连续跟踪所有可见卫星。移动站接收机在进行初始化后依次到各待测测站,每测站观测几个历元数据。这种方法不同于快速静态,除了观测时间不一样外,它要求移动站在搬站过程中不能失锁,并且需要先在已知点或用其它方式进行初始化(采用有OTF功能的软件处理时例外)。

GPS静态测量实习报告

GPS静态测量实习报告 姓名:姚佩超 专业:测绘工程 学号: 20101350022 实习内容: GPS静态测量实习 实习时间: 2013.06.09——2013.06.30 指导老师:赵好好王永弟孙景领 组别: 2010级测绘工程(1)班2组 南京信息工程大学遥感学院 2013年7月1日星期一

目录 一、实习目的 (2) 二、实习准备和组织安排 (2) 实习地点: (2) 实习仪器: (2) 实习分组: (3) 三、测区概况 (4) 四、施测过程 (4) 测前 (4) 测中 (5) 测后 (5) 六、实习成果 (5) 1 项目属性 (6) 1.1 坐标系统 (6) 1.2 解算数据 (6) 2 观测文件 (7) 3 基线解算 (8) 3.1 基线成果 (8) 3.2 重复基线检查 (11) 3.3 同步环检查 (12) 3.4 异步环检查 (14) 4 平差结果 (16)

4.1 WGS84自由网平差结果 (16) 七、实习心得 (19) 八、附录 (20) 技术规范: (20) 一、实习目的 (1)、运用所学习的基础理论知识与课内实验已掌握的基本技能,利用现有仪器设备及资料进行综合训练,对GPS静态作业流程进行熟悉,巩固课堂教学知识,加深对GPS静态测量基本理论的理解,能够用有关理论指导作业实践,做到理论与实践相统一,提高学生分析问题、解决问题的能力,从而对GPS测量的基本内容得到一次实际的应用,使所学知识进一步巩固、深化。 (2)、通过实际的操作掌握和熟练GPS测量的操作流程,数据处理过程,掌握GPS机静态处理过程。对学生进行GPS测量的基本技能

GPS静态控制测量外业操作指南

GPS控制测量外业作业要求及技术指南 一:外业观测作业人员操作内容 安置接收机天线(严格对中整平、定向、量取仪器高)、设置接收机中的参数(如观测模式、截止高度角、和采样间隔等;如不设参数,接收机一般就采用缺省值),以及开机、关机等工作,其他工作由接收机自动完成。 二:操作流程:【选点与埋石一一GPS接收机的检查一一观测方案设计一一观测作业一一外业观测成果质量检核】 1.选点准备: 根据收集的测区内及周边现有平面和高程控制点以及测区地形图等,依据项目任务书或合同书以及相关规范的要求在图上进行设计,标绘处计划设站的区域。 1.1 选点的基本要求 基本要符合规范(全球定位系统GPS测量规范GB/T18314-2009)的相关要求:A)测站四周视野开阔,高度角15°以上不允许存在成片的障碍物 电线50米至少,大功率无线发射源至少200米。 C)测站远离房屋、围墙、广告牌、山坡及大面积平静水面 (湖泊、池塘)等信号反射物,以免出现严重的多路径效应。 D)点位应位于地质条件良好、点位稳定、易于保护的地方, 并尽可能顾及

交通条件。 1.2 选点作业 A)测量人员应按照在图上选择的初步位置以及对点位的基本 要求,在实地最终选定点位,并做好相应的标记。 B)利用旧点时,应对旧点的稳定性、可靠性和完好性进行检 查,符合要求时方可利用。 C)点名以该点位所在地命名,无法区分时,可在点名后加注 (一)、(二)。 D)新旧点重合时,应沿用旧点名,一般不应更改。 E)选点工作完成后,应按规范要求的形式绘制GPS网选点图, 可以用相机或手机拍照片。 提交的资料:①点之记②GPS网选点图 1.3埋石 C D E及GPS点在满足标石稳定、易于长期保存的前提下, 均可根据具体情况选用。 提交的资料:标石建造的照片 2.仪器的验检: 2.1 一般视检 GPS接收机及其天线的外观是否良好,是否有挤压摩擦造成的伤痕,仪器、天线等设备的型号是否正确。 各种零部件及附件、配件等是否齐全完好,是否与主体匹配。需紧固的部件是否有松动。

浅谈GPS静态测量、RTK及CORS的基本原理

浅谈GPS静态测量、RTK及CORS的基本原理 发表时间:2018-05-17T14:50:08.577Z 来源:《防护工程》2018年第1期作者:唐占友[导读] 在具体的实践过程中,它的应用方式也是多种多样的。我们相信,还有更多的方法技术等待我们去探索、应用。辽宁城建设计院有限公司辽宁省抚顺市 113000 摘要:GPS测量技术以其高精度、高效率、便捷的优势在专业测绘领域中得到较为广泛的应用,本文阐述了GPS技术在测绘工程中的3种基本工作方式及其原理,并对这3种工作方式在应用中的差异进行了简要说明。关键词:GPS静态测量 GPS-RTK CORS 引言GPS是英文Global Positioning System的缩写,其中文简称为“全球定位系统”。GPS是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统,其主要目的是为陆、海、空三大领域提供实时、全天候和全球性的导航服务。经过20多年的研究,耗资300亿美元,到1994年3月,全球覆盖率高达98%的24颗GPS卫星星座布设完成。 由于和传统测量技术相比,GPS技术受通视条件、能见度、气候、季节等各种客观因素的影响要小得多,在许多传统测量技术无法到达的地区,GPS技术基本上都能轻松地进行快速、高精度的测量作业。因此,GPS技术在测量技术领域拥有无法比拟的优越性。 1、GPS静态测量的基本原理GPS静态定位包括静态绝对定位和静态相对定位。 1.1 静态绝对定位(测码伪距定位)静态绝对定位是在接收机处于绝对静止状态下,确定测站的三维地心坐标。定位所依据的观测量是根据相关测距原理测定的卫星至测站间的伪距。由于定位只需要一台接收机,速度快、灵活方便,且无多值性问题等优点,广泛用于低精度测量和导航。 1.2 静态相对定位(测相伪距定位)静态绝对定位由于受到卫星轨道误差,接收机钟不同步误差,信号传播误差等影响,精度较低。而静态相对定位采用载波相位观测技术,削弱了上述定位误差的影响。精度达到10-6-10-7.是目前GPS测量精度最高的一种方法。广泛应用与大地测量,精密工程测量和地球动力学研究。我们所说的静态测量一般指的就是静态相对定位。在进行GPS静态测量时,认为GPS接收机的天线在整个观测过程中的位置是静止的,在数据处理时,将接收机天线的位置作为一个不随时间改变的量,通过接收到的卫星数据的变化来求得待定点的坐标。在测量中,GPS静态测量的具体观测模式是多台接收机在不同的测站上进行静止同步观测,时间由40分钟到十几小时不等。由于此方法效率相对较低,由此衍生了GPS快速静态测量法,该方法是基于FARA算法的定位方法,与确定整周未知数常规方法相比,所需要的观测时间大大缩短,当两站相距10km以内,则仅仅需要几分钟的观测数据,就可以求得整周未知数,且精度与常规静态相对定位精度大致相当。对于一般工程对测量精度的要求,GPS快速静态测量法完全可以满足工程的需要。因此,GPS快速静态测量法得到了广泛的应用。 2、RTK技术的基本原理RTK是英文Real Time Kinematic的缩写,翻译成中文为实时动态测量技术。RTK技术的基本原理是,取点位精度较高的首级控制点作为基准点, 安置一台接收机作为参考站对卫星进行连续观测,流动站上的接收机在接收卫星信号的同时,通过无线电传输设备接收基准站上的观测数据,随机计算机根据相对定位的原理实时计算显示出流动站的三维坐标和测量精度。这样用户就可以实时监测待测点的数据观测质量和基线解算结果的收敛情况,根据待测点的精度指标,确定观测时间,从而减少冗余观测,提高工作效率。RTK系统的组成。RTK系统主要由基准站接收机、数据链及移动接收机三部分组成。它是利用2台以上GPS接收机同时接收卫星信号,其中一台安置在已知坐标点上作为基准站,另一台用来测定移动站(未知点)的坐标。基准站根据该点的准确坐标求出其他卫星的距离改正数并将这一改正数发给移动站,移动站根据这一改正数来改正其定位结果,从而大大提高定位精度。它能够实时地提供测站点指定坐标系中的三维定位结果,并达到厘米级精度。 3、CORS的基本原理当前,利用多基站网络RTK技术建立的连续运行卫星定位参考系统(Continuous Operational Reference System,缩写为CORS)已成为城市GPS应用的发展热点之一。CORS系统由基准站网、数据处理中心、数据传输系统、定位导航数据播发系统、用户应用系统五个部分组成,各基准站与监控分析中心间通过数据传输系统连接成一体,形成专用网络。CORS系统可以定义为一个或若干个固定的、连续运行的GPS参考站,利用现代计算机、数据通信和互联网技术组成的网络,实时地向不同类型、不同需求、不同层次的用户自动地提供经过检验的不同类型的GPS观测值、各种改正数、状态信息以及其他有关GPS服务项目的系统。与传统的GPS作业相比连续运行参考站具有作用范围广、精度高、野外单机作业等众多优点。 4、GPS静态定位、RTK及CORS在工程应用中的差异虽然GPS静态定位、RTK及CORS在工程测量中都有应用,但是它们的侧重点又有所不同。GPS静态定位测量法的精度要明显高于其它二者,主要应用于各级控制网的布设。RTK及CORS主要应用于控制网下面的加密测量,相对于GPS静态定位测量法位置的固定不变, RTK及CORS则显得灵活多变。RTK和CORS相比较而言, RTK需要架设基准站,同时需要提供发射电台及蓄电池,因此,同样数量的接收机,CORS的工作效率明显要高于RTK,而且在野外作业的时候,CORS需要的设备少,相对来说更加方便。然而,由于CORS网布设的局限性,在某些测区内CORS的信号很差,从而给外业测量作业带来一定的影响。结束语最初设计GPS的主要目的是导航、收集情报等军事目的。但后来的应用开发表明,GPS不仅可以达到上述目的,而且用GPS卫星信号能够进行厘米级至毫米级的静态定位,米级至亚米级精度的动态定位。在测绘领域,GPS定位技术已经应用于建立高精度的大地测量控制网,测定地球动态参数,在精密工程的变形监测方面也发挥着及其重要的作用。GPS技术的发展,带动了测绘技术的进步。在具体的实践过程中,它的应用方式也是多种多样的。我们相信,还有更多的方法技术等待我们去探索、应用。参考文献

相关文档