文档库 最新最全的文档下载
当前位置:文档库 › 初值的选取对迭代法的影响实验报告

初值的选取对迭代法的影响实验报告

初值的选取对迭代法的影响实验报告
初值的选取对迭代法的影响实验报告

初值的选取对迭代法的影响

实验目的:通过具体的数值实验,体会选取不同的初值对同一迭代法的影响。

实验内容:用牛顿迭代法求方程013=--x x 在x =1.5附近的根。 实验要求:

(1)对牛顿迭代公式: 1

31

2

31

----=+k k k k k x x x x x ,编写程序进行实验,分别取00=x ,5.10=x 迭代10次,观察比较其计算值,并分析原因。 (2)用MATLAB 内部函数solve 直接求出方程的所有根,并与(1)的结果进行比较。 试验过程:

①首先保存牛顿切线法的MATLAB 程序为M 文件,命名为newtonqx.m. function

[k,xk,yk,piancha,xdpiancha]=newtonqx(x0,tol,ftol,gxmax) x(1)=x0; for i=1: gxmax

x(i+1)=x(i)-fnq(x(i))/(dfnq(x(i))+eps); piancha=abs(x(i+1)-x(i));

xdpiancha= piancha/( abs(x(i+1))+eps); i=i+1; xk=x(i);yk=fnq(x(i)); [(i-1) xk yk piancha xdpiancha] if (abs(yk)

return ; end end

if i>gxmax

disp('请注意:迭代次数超过给定的最大值gxmax 。') k=i-1; xk=x(i);[(i-1) xk yk piancha xdpiancha] return ; end

[(i-1),xk,yk,piancha,xdpiancha]'; ②建立名为fnq.m 的M 文件 function y=fnq(x) y=x^3-x-1; ③建立名为dfnq.m 的M 文件 function y=dfnq(x) y=3*x^2-1;

a .当初始值取00x =时,迭代次数为10,要求精度为310ε-=,在MATLAB 工作窗口输入程序为

[k,xk,yk,piancha,xdpiancha]=newtonqx(0,1e-3,1e-3,10) 运行后输出结果如表1-1

表1-1

由以上可知初始值取00x =时,迭代次数为10时,迭代次数超过给定的最大值gxmax 。根的近似值xk=-0.4049,函数值yk=-0.6615,偏差 piancha=0.5375和相对偏差xdpiancha=1.3272。

b .当初始值0 1.5x =,迭代次数为10,要求精度为310ε-=,在MATLAB 工作窗口输入程序为

[k,xk,yk,piancha,xdpiancha]=newtonqx(1.5,1e-3,1e-3,10) 运行后输出结果如表1-1

表1-2

由以上可知初始值取0 1.5x =时,迭代次数为10时,迭代次数k=3。根的近似值xk= 1.3247,函数值yk= 9.2438e-007,偏差piancha= 4.8222e-004和相对偏差xdpiancha=3.6402e-004。

c.用solve 函数直接计算方程013=--x x 的所有根,在MATLAB 工作窗口输入程序

solve('x^3-x-1');roots([1 -1 -1]) 运行后输出结果为 ans=-0.6180 1.6180 实验结果分析:

比较初始值分别为0x =0和1.5的两组结果,在0x =0处迭代10次,迭代次数超过给定的最大值gxmax ,得到根的近似值xk=-0.4049,函数值yk=-0.6615。在0=1.5x 处迭代3次就得到根的近似值,根的近似值xk= 1.3247,函数值yk= 9.2438e-007。由此可见牛顿迭代法在初始值接近于近似根处的迭代速度要比远离近似根初始值的迭代速度快很多,而且近似值和函数近似值要精确很多,所以在进行牛顿迭代法进行根的近似求解时,初始值的选择非常重要。

用MATLAB 内部函数solve 直接求出方程的所有根,得到ans=-0.6180和1.6180,与(1)的结果进行比较时可以发现其两个根分别和初始值和近似根差别很大时和接近近似根的两个值相差不大。虽然用MATLAB 内部函数solve 直接求出方程的根的方法比较快,但是其计算结果和用迭代法求方程的根的方法相比存在一定的误差,即没有迭代法求解方程时精确值高。

用SOR迭代法

一、数值求解如下正方形域上的Poisson 方程边值问 二、2222(,)2,0,1 (0,)(1,)(1),01(,0)(,1)0, 01u u f x y x y x y u y u y y y y u x u x x ??? ??-+==<

插值法数值上机实验报告

插值法数值上机实验报告 实验题目: 利用下列条件做插值逼近,并与R (x) 的图像比较 考虑函数:R x y=1 1+x2 (1)用等距节点X i=?5+i,i=0,1,...,10.给出它的10次Newton插值多项式的图像; π),i=0,1,...,20.给出它的20次Lagrange插值多项式(2)用节点X i=5cos(2i+1 42 的图像; (3)用等距节点X i=?5+i,i=0,1,...,10.给出它的分段线性插值函数的图像;(4)用等距节点X i=?5+i,i=0,1,...,10.给出它的三次自然样条插值函数的图像; (5)用等距节点X i=?5+i,i=0,1,...,10.给出它的分段三次Hermite插值函数的图像; 实验图像结果:

实验结果分析: 1.为了验证Range现象,我还特意做了10次牛顿插值多项式和20次牛顿插值多项式的对比图像,结果如下图(图对称,只截取一半) 可以看出,Range现象在高次时变得更加明显。这也是由于高次多项式在端点处的最值随次数的变大很明显。可以料定高次多项式在两侧端点处剧烈震荡,在更小的间距内急剧上升然后下降,Range现象非常明显。

2.分析实验(2)的结果,我们会惊讶地发现,由于取21个点逼近,原本预料的Range现象会很明显,但这里却和f(x)拟合的很好。(即下图中Lagrange p(x)的图像)。可是上图中取均匀节点的20次牛顿多项式逼近的效果在端点处却很差。料想是由于节点X i=5cos2i+1 42 π ,i=0,1,...,20 取得很好。由书上第五章的 知识,对于函数y=1 1+x ,y 1 2对应的cherbyshev多项式的根恰好为X i= 5cos2i+1 42 π ,i=0,1,...,20 。由于所学限制,未能深入分析。 (3)比较三次样条插值图像和Hermit插值图像对原函数图像的逼近情形。见下图:

等厚干涉牛顿环实验报告材料97459

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一.实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二.实验仪器 读数显微镜钠光灯牛顿环仪

三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 2222222)(r d Rd R r d R R ++-=+-= 由于r R >>,可以略去d 2得

R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1,0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环半径r m 和r n 的平方差来计算曲率半径R 。因为 λMR r m =2 λnR r n =2 两式相减可得 λ)(22n m R r r n m -=-

牛顿环实验报告

北京师范大学珠海分校大学物理实验报告 实验名称:牛顿环实验测量 学院工程技术学院 专业测控技术与仪器 学号 1218060075 姓名钟建洲 同组实验者 1218060067余浪威 1218010100杨孟雄 2013 年 1 月 17日

实验名称 牛顿环实验测量 一、实验目的 1.观察牛顿环干涉现象条纹特征; 2.学习用光的干涉做微小长度的测量; 3.利用牛顿环干涉测量平凸透镜的曲率半径; 4.通过实验掌握移测显微镜的使用方法 二、实验原理 在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点 o 附近就形成一层空 气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和下表面反射的光束在膜上表面相遇相干,形成以 o 为圆心的明暗相间的环状干涉图样,称为牛顿环。如果已知入射光波长,并测得第 k 级 暗环的半径 r k ,则可求得透镜的曲率半径 R 。但 实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。第m 环与第n 环 用直径 D m 、 D n 。 () λ n m n D m D R +-= 42 2此为计算 R 用的公式,它与附加厚度、

圆心位置、绝对级次无关,克服了由这些因素带来的系统误差,并且D m 、 D n 可以是弦长。 三、实验内容与步骤 用牛顿环测量透镜曲率半径 (1).按图布置好实验器材,使用单色扩展光源,将牛顿环装置放在读数显微镜工作台毛玻璃中央,并使显微镜筒正对牛顿环装置中心。 (2).调节读数显微镜。 1.调节目镜,使分划板上的十字刻度线清晰可见,并转动目镜,使十字刻度线的横线与显微镜筒的移动方向平行。 2.调节45度反射镜,使显微镜视觉中亮度最大,这时基本上满足入射光垂直于待测量透镜的要求。 1.转动手轮A,使显微镜平移到标尺中部,并调节调焦手轮B,使物镜接近牛顿环装置表面。 2.对显微镜调焦。缓慢地转动调焦手轮B,使显微镜筒由下而上移动进行调焦,直到从目镜中清楚地看到牛顿环干涉条纹且无视差为止;然后移动牛顿环装置,使目镜中十字刻度线交点与牛顿环中心重合 (1).观察条纹的特征。 观察各级条纹的粗细是否一致,其间距有无差异,并做出解释。观察牛顿环中心是亮斑还是暗斑? (2).测量暗环的直径 转动读数显微镜的读数鼓轮,同时在目镜中观察,使十字刻度线由牛顿环中心缓慢地向一侧移动到43环;然后再回到第42环。自42环起,单方向移动十字刻度,每移3环读数一——直到测量完成另一侧的第42环。并将所测量的第42环到第15环各直径的左右两边的读数记录在表格内。 四、数据处理与结果 1.求透镜的曲率半径。 测出第15环到第42环暗环的直径,取m-n=15,用逐差法求出暗环的直径平方 差的平均值,按算出透镜的曲率半径的平均值R。 R1=(d422-d272)/[4(42-27]λ= 895.85 mm R2=(d392-d242)/[4(39-24]λ= 896.97 mm R3=(d362-d212)/(4(36-21)λ= 887.94mm R4=(d332-d182)/(4(33-18)λ= 893.30mm

数值分析实验报告记录

数值分析实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

数值分析实验报告 (第二章) 实验题目: 分别用二分法、牛顿迭代法、割线法、史蒂芬森迭代法求方程 的根,观察不同初始值下的收敛性,并给出结论。 问题分析: 题目有以下几点要求: 1.不同的迭代法计算根,并比较收敛性。 2.选定不同的初始值,比较收敛性。 实验原理: 各个迭代法简述 二分法:取有根区间的重点,确定新的有根区间的区间长度仅为区间长度的一版。对压缩了的有根区间重复以上过程,又得到新的有根区间,其区间长度为的一半,如此反复,……,可得一系列有根区间,区间收敛到一个点即为根。 牛顿迭代法:不动点迭代法的一种特例,具有局部二次收敛的特性。迭代格式为 割线法:是牛顿法的改进,具有超线性收敛的特性,收敛阶为1.618. 迭代格式为 史蒂芬森迭代法:采用不动点迭代进行预估校正。至少是平方收敛的。迭代格式为 这里可采用牛顿迭代法的迭代函数。 实验内容:

1.写出该问题的函数代码如下: function py= f(x) syms k; y=(k^2+1)*(k-1)^5; yy=diff(y,k); py(1)=subs(y,k,x); py(2)=subs(yy,k,x); end 2.分别写出各个迭代法的迭代函数代码如下: 二分法: function y=dichotomie(a,b,e) i=2; m(1)=a; while abs(a-b)>e t=(a+b)/2; s1=f(a); s2=f(b); s3=f(t); if s1(1)*s3(1)<=0 b=t; else a=t; end m(i)=t; i=i+1; end y=[t,i+1,m]; end 牛顿迭代法: function y=NewtonIterative(x,e) i=2; en=2*e;m(1)=x; while abs(en)>=e s=f(x); t=x-s(1)/s(2); en=t-x; x=t; m(i)=t; i=i+1; end y=[x,i+1,m]; end 牛顿割线法: function y=Secant(x1,x2,e) i=3; m(1)=x1,m(2)=x2; while abs(x2-x1)>=e s1=f(x1); s2=f(x2); t=x2-(x2-x1)*s2(1)/(s2(1)-s1( 1)); x1=x2; x2=t; m(i)=t; i=i+1; end

牛顿插值法试验报告

. 牛顿插值法一、实验目的:学会牛顿插值法,并应用算法于实际问题。 x?x)f(二、实验内容:给定函数,已知: 4832401.2)?.?1449138f(2.f.f(20)?1.414214(2.1) 549193.)?1f(2.4516575(f2.3)?1. 三、实验要求:以此作为函数2.15插值多项式在处的值,用牛顿插值法求4 次Newton( 1)2.15?N(2.15)。在MATLAB中用内部函数ezplot绘制出的近似值4次Newton插值多项式的函数图形。 (2)在MATLAB中用内部函数ezplot可直接绘制出以上函数的图形,并与作出的4次Newton插值多项式的图形进行比较。 四、实验过程: 1、编写主函数。打开Editor编辑器,输入Newton插值法主程序语句: function [y,L]=newdscg(X,Y,x) n=length(X); z=x; A=zeros(n,n);A(:,1)=Y';s=0.0; p=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end end C=A(n,n); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); L(k,:)=poly2sym(C); 0 / 3 . %%%%%%%%%%%%%%%%%% t=[2,2.1,2.2,2.3,2.4]; fx=sqrt(t); wucha=fx-Y; 以文件名newdscg.m保存。 2、运行程序。 (1)在MATLAB命令窗口输入: >> X=[2,2.1,2.2,2.3,2.4]; Y =[1.414214,1.449138,1.483240,1.516575,1.549193]; x=2.15;[y,P]=newdscg(X,Y,x) 回车得到:

SOR迭代法超松弛因子选取

《计算方法》实验报告(二) 实验名称:SOR 迭代法松弛因子的选取 班级: 数学1402班 姓名: 高艺萌 学号:14404210 一、 实验目的 通过本实验学习线性方程组的SOR 迭代解法以及SOR 迭代法的编程与应用。对比分析不同条件下的超松弛因子w 的取值大小会对方程组的解造成影响,通过这个实验我们可以了解的w 不同取值会对方程组的解产生的影响。培养编程与上机调试能力。 二、 实验题目 用逐次超松弛(SOR )迭代法求解方程组b Ax =,其中 ?????????? ????????????=????????????????????????????????????????????=555555122-12-122-112-122-112-122-112-122-12-12201918321 x x x x x x A (1)给定迭代误差,选取不同的超松弛因子1>ω进行计算,观察得到的近似解向量并分析计算结果,给出你的结论; (2)给定迭代误差,选取不同的超松弛因子1<ω进行计算,观察得到的近似解向量并分析计算结果,给出你的结论; 三、 实验原理 1.逐次超松弛迭代法可以看作Gauss-Seidel 迭代法的加速, b D Ux D Lx D x k k k 1)(1)1(1)1(--+-+++= 2.SOR 迭代计算格式 b D L wD I w x U wD I w L wD x k k 111)(111)1()(])1[()-1(------+-++-= 其中,w 叫松弛因子,当w>1时叫超松弛,0

数值分析实验报告-插值、三次样条(教育教学)

实验报告:牛顿差值多项式&三次样条 问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数2 1()25f x x 作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。 实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。应用所编程序解决实际算例。 实验要求: 1. 认真分析问题,深刻理解相关理论知识并能熟练应用; 2. 编写相关程序并进行实验; 3. 调试程序,得到最终结果; 4. 分析解释实验结果; 5. 按照要求完成实验报告。 实验原理: 详见《数值分析 第5版》第二章相关内容。 实验内容: (1)牛顿插值多项式 1.1 当n=10时: 在Matlab 下编写代码完成计算和画图。结果如下: 代码: clear all clc x1=-1:0.2:1; y1=1./(1+25.*x1.^2); n=length(x1); f=y1(:); for j=2:n for i=n:-1:j f(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1)); end end syms F x p ; F(1)=1;p(1)=y1(1); for i=2:n F(i)=F(i-1)*(x-x1(i-1)); p(i)=f(i)*F(i);

end syms P P=sum(p); P10=vpa(expand(P),5); x0=-1:0.001:1; y0=subs(P,x,x0); y2=subs(1/(1+25*x^2),x,x0); plot(x0,y0,x0,y2) grid on xlabel('x') ylabel('y') P10即我们所求的牛顿插值多项式,其结果为:P10(x)=-220.94*x^10+494.91*x^8-9.5065e-14*x^7-381.43*x^6-8.504e-14*x^5+123.36*x^4+2.0202e-1 4*x^3-16.855*x^2-6.6594e-16*x+1.0 并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。 Fig.1 牛顿插值多项式(n=10)函数和原函数图形 从图形中我们可以明显的观察出插值函数在两端点处发生了剧烈的波动,产生了极大的误差,即龙格现象,当n=20时,这一现象将更加明显。 1.2 当n=20时: 对n=10的代码进行修改就可以得到n=20时的代码。将“x1=-1:0.2:1;”改为“x1=-1:0.1:1;”即可。运行程序,我们得到n=20时的牛顿插值多项式,结果为:P20(x)= 260188.0*x^20 - 1.0121e6*x^18 + 2.6193e-12*x^17 + 1.6392e6*x^16 + 2.248e-11*x^15 - 1.4429e6*x^14 - 4.6331e-11*x^13 + 757299.0*x^12 + 1.7687e-11*x^11 - 245255.0*x^10 + 2.1019e-11*x^9 + 49318.0*x^8 + 3.5903e-12*x^7 - 6119.2*x^6 - 1.5935e-12*x^5 + 470.85*x^4 + 1.3597e-14*x^3 - 24.143*x^2 - 1.738e-14*x + 1.0 同样的,这里得到了该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.2)。

牛顿环测量曲率半径实验报告

实验名称:牛顿环测量曲率半径实验 1.实验目的: 1 观察等厚干涉现象,理解等厚干涉的原理和特点 2 学习用牛顿环测定透镜曲率半径 3 正确使用读数显微镜,学习用逐差法处理数据 2.实验仪器: 读数显微镜,钠光灯,牛顿环,入射光调节架 3.实验原理 图1 如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光 程差等于膜厚度e的两倍,即

此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为 (1) 当?满足条件 (2) 时,发生相长干涉,出现第K级亮纹,而当 (3) 时,发生相消干涉,出现第k级暗纹。因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。 如图所示,设第k级条纹的半径为,对应的膜厚度为,则 (4) 在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R >> e k, e k 2相对于2Re k 是一个小量,可以忽略,所以上式可以简化为 (5) 如果r k是第k级暗条纹的半径,由式(1)和(3)可得 (6)代入式(5)得透镜曲率半径的计算公式

解线性方程组基本迭代法实验(ca)

Lab .解线性方程组的基本迭代法实验 【实验目的和要求】 1.使学生深入理解Jacobi 迭代法、Gauss-Seidel 迭代法和SOR 迭代法; 2.通过对Jacobi 迭代法、Gauss-Seidel 迭代法和SOR 迭代法的程序设计,以提高学生程序设计的能力; 3.应用编写的程序解决具体问题,掌握三种基本迭代法的使用,通过结果的分析了解每一种迭代法的特点。 【实验内容】 1.根据Matlab 语言特点,描述Jacobi 迭代法、Gauss-Seidel 迭代法和SOR 迭代法。 2.编写Jacobi 迭代法、Gauss-Seidel 迭代法和SOR 迭代法的M 文件。 3.给定2020?∈R A 为五对角矩阵 ??????????????? ???????????????? ?---- -------- ------ 32 141213214 141213214141213214 141213 2141213 (1)选取不同的初始向量)0(x 及右端面项向量b ,给定迭代误差要求,分别用编写Jacobi 迭代 法和Gauss-Seidel 迭代法程序求解,观察得到的序列是否收敛?若收敛,通过迭代次数分析 计算结果并得出你的结论。 (2)用编写的SOR 迭代法程序,对于(1)所选取的初始向量) 0(x 及右端面项向量b 进行求解,松驰系数ω取1<ω<2的不同值,在5 )1()(10-+≤-k k x x 时停止迭代,通过迭代次数分析计算结果 并得出你的结论。 【实验仪器与软件】 1.CPU 主频在1GHz 以上,内存在128Mb 以上的PC ; 2.Matlab 6.0及以上版本。 实验讲评:

牛顿环实验报告

等厚干涉——牛顿环 【实验目的】 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; (3)学会使用读数显微镜测距。 【实验原理】 在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点附近就形成一层空气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和 下表面反射的光束在膜上表面相遇相干,形成以接触点为圆心的明暗相间的环状干涉图样,称为牛顿环,其光路示意图如图。 如果已知入射光波长,并测得第k 级暗环的半径 k r ,则可求得透镜 的曲率半径R 。但实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。用直径 m D 、n D ,有 λ)(42 2n m D D R n m --= 此为计算R 用的公式,它与附加厚光程差、圆心位置、绝对级次无关,克服了由这些因素带来的系统误差,并且 m D 、n D 可以是弦长。 【实验仪器】 JCD3型读数显微镜,牛顿环,钠光灯,凸透镜(包括三爪式透镜夹和固定滑座)。 【实验内容】 1、调整测量装置 按光学实验常用仪器的读数显微镜使用说明进行调整。调整时注意: (1)调节450玻片,使显微镜视场中亮度最大,这时,基本上满足入射光垂直于透镜的要求(下部反光镜不要让反射光到上面去)。 (2)因反射光干涉条纹产生在空气薄膜的上表面,显微镜应对上表面调焦才能找到清

晰的干涉图像。 (3)调焦时,显微镜筒应自下而上缓慢地上升,直到看清楚干涉条纹时为止,往下移动显微镜筒时,眼睛一定要离开目镜侧视,防止镜筒压坏牛顿环。 (4)牛顿环三个压紧螺丝不能压得很紧,两个表面要用擦镜纸擦拭干净。 2、观察牛顿环的干涉图样 (1)调整牛顿环仪的三个调节螺丝,在自然光照射下能观察到牛顿环的干涉图样,并将干涉条纹的中心移到牛顿环仪的中心附近。调节螺丝不能太紧,以免中心暗斑太大,甚至损坏牛顿环仪。 (2)把牛顿环仪置于显微镜的正下方,使单色光源与读数显微镜上45角的反射透明玻璃片等高,旋转反射透明玻璃,直至从目镜中能看到明亮均匀的光照。 (3)调节读数显微镜的目镜,使十字叉丝清晰;自下而上调节物镜直至观察到清晰的干涉图样。移动牛顿环仪,使中心暗斑(或亮斑)位于视域中心,调节目镜系统,使叉丝横丝与读数显微镜的标尺平行,消除视差。平移读数显微镜,观察待测的各环左右是否都在读数显微镜的读数范围之内。 3、测量牛顿环的直径 (1)选取要测量的m和n(各5环),如取m为55,50,45,40,35,n为30,25,20,15,10。 (2)转动鼓轮。先使镜筒向左移动,顺序数到55环,再向右转到50 环,使叉丝尽量对准干涉条纹的中心,记录读数。然后继续转动测微鼓轮,使叉丝依次与45,40,35,30,25,20,15,10,环对准,顺次记下读数;再继续转动测微鼓轮,使叉丝依次与圆心右10,15,20,25,30,35,40,45,50,55环对准,也顺次记下各环的读数。注意在一次测量过程中,测微鼓轮应沿一个方向旋转,中途不得反转,以免引起回程差。 4、算出各级牛顿环直径的平方值后,用逐差法处理所得数据,求出 直径平方差的平均值代入公式求出透镜的曲率半径,并算出误差。.注意: (1)近中心的圆环的宽度变化很大,不易测准,故从K=lO左右开始比较好; (2)m-n应取大一些,如取m-n=25左右,每间隔5条读一个数。 (3)应从O数到最大一圈,再多数5圈后退回5圈,开始读第一个数据。 (4)因为暗纹容易对准,所以对准暗纹较合适。,

SOR迭代法求解线性方程组

实验三:用SOR 迭代法求解线性方程组 ?????? ? ??=??????? ????????? ??----------74.012.018.168.072.012.006.016.012.001.103.014.006.003.088.001.016.014.001.076.04321x x x x 取初始点T x )0,0,0,0()0(=,松弛因子05.1=ω,精度要求610-=ε。 1,建立SOR.m 函数文件,此函数文件可调用,程序源码如下: function [x,n]=SOR(A,b,x0,w,eps,M) if nargin==4 eps= 1.0e-6;%精度要求 M = 200; elseif nargin<4 error; return elseif nargin ==5 M = 200; end if(w<=0 || w>=2) error; return; end D=diag(diag(A)); %求A 的对角矩阵 L=-tril(A,-1); %求A 的下三角阵 U=-triu(A,1); %求A 的上三角阵 B=inv(D-L*w)*((1-w)*D+w*U); f=w*inv((D-L*w))*b; x=B*x0+f; n=1; %迭代次数 while norm(x-x0)>=eps x0=x; x =B*x0+f; n=n+1; if(n>=M) disp('Warning: 迭代次数太多,可能不收敛!'); return; end end

2,输入矩阵。并根据要求调用函数,运行结果如下图所示: 即经过7次迭代算出结果,且求得: 1.27151.28440.48581.2843x ?? ? ?= ? ???

matlab(迭代法-牛顿插值)Word版

实验报告内容: 一:不动点迭代法解方程 二:牛顿插值法的MATLAB实现 完成日期:2012年6月21日星期四 数学实验报告一 日期:2012-6-21

所以,确定初值为x0=1 二:不断迭代 算法: 第一步:将f(x0)赋值给x1 第二步:确定x1-x0的绝对值大小,若小于给定的误差值,则将x1当做方程的解,否则回到第一步 编写计算机程序: clear f=inline('0.5*sin(x)+0.4'); x0=1; x1=f(x0); k=1; while abs(x1-x0)>=1.0e-6 x0=x1; x1=f(x0); k=k+1; fprintf('k=%.0f,x0=%.9f,x1=%.9f\n',k,x0,x1) end 显示结果如下: k=2,x0=0.820735492,x1=0.765823700 k=3,x0=0.765823700,x1=0.746565483 k=4,x0=0.746565483,x1=0.739560873

k=6,x0=0.736981783,x1=0.736027993 k=7,x0=0.736027993,x1=0.735674699 k=8,x0=0.735674699,x1=0.735543758 k=9,x0=0.735543758,x1=0.735495216 k=10,x0=0.735495216,x1=0.735477220 k=11,x0=0.735477220,x1=0.735470548 k=12,x0=0.735470548,x1=0.735468074 k=13,x0=0.735468074,x1=0.735467157 >>。。。 以下是程序运行截图:

数值实验报告

数值实验报告五 班级:2017级学号:**** 姓名:*** 2017.12.5 1.数值实验问题 试用雅可比迭代法,高斯-赛德尔迭代法,超松驰迭代计算线性方程组: 取=(0,0,0,松弛因子分别取w=0.1t,1要求达到精度 。试通过数值计算得出不同的松弛因子所需要的迭代次数和收敛最快的松弛因子,并指出哪些松弛因子使得迭代发散。 2.数值方法 A=, L=-, U=-, D=diag() (1)雅可比迭代公式:

D. (2)高斯-赛德尔迭代法公式: (3)超松驰迭代方法公式: 其中w为松弛因子。 3.数值结果 如下表

最后四组,测得其在前10次内迭代所产生的结果,其中每一列为一

次迭代结果,分别如图: SOR-1.6 SOR-1.7 SOR-1.8 SOR-1.9 由于计算数据限制,其前五十列数据基本为空,所以取51到60列

由此看出,最后四组数据是发散的,数据结果不稳定,不收敛。所以最后四组得不到所需数据。 4.讨论 本次实验,分别用雅可比迭代公式,高斯-赛德尔迭代公式,超松驰迭代公式计算了此线性方程组。其中,雅可比和高斯迭代能够很好的进行运算,而超松驰迭代方法中,若松弛因子取得不够恰当,则会导致整个运算失败,得不到所需的结果,迭代不收敛,发散。此外,在进行初始值的赋值中,我是对每个矩阵都进行了赋值操作,而更简便的是,调用matlab中存在的函数,对矩阵进行运算,从而简化操作和代码,也使程序适用性更广。 程序代码: 1.雅可比迭代 function [x]=yakebi(D,L,U,b,j) format long B=D\(L+U);

等厚干涉牛顿环实验报告

等厚干涉——牛顿环等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在 一块光学玻璃平板(平镜)上构成的,如图。平凸透 镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光

束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 =(1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中K 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2(4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或

数值分析实验报告-Sor法分析

数值分析实验报告 一、 实验目的 1、会使用Sor 法求解一个线性方程组 2、熟悉matlab 语言并结合原理编程求方程组 3、改变ω的值观察实验结果 4、会分析实验结果 二、实验题目 编制Sor 迭代格式程序进行求解一个线性方程组的迭代计算情况,运行中要选用不同的松弛因子ω进行尝试 三、 实验原理 Jacobi 迭代和seidel 迭代对具体的线性方程组来说,逼近*x 的速度是固定不变的,遇到收敛很慢的情况时就显得很不实用。 Sor 法是一seidel 迭代为基础,并在迭代中引入参数ω以增加迭代选择的灵活性,具体为: ! 用seidel 迭代算出的,)()1()()1(k k J k k J x x x x x -=?++相减得到差向量与再用参数ω乘之再加上 )1()()()1()1()()()1(++++-=?+=k J k k k k k k x x x x x x x x ωωω,即的下一步迭代作为,由seidel 迭代的公式可以得到Sor 法的迭代格式为 n i x a x a b a x x k j n i j ij k j i j ij i ii k i k i ,2,1),()1()(1)1(11)()1( =--+-=∑∑+=+-=+ω ω 式中ω称为松弛因子。 四、 实验内容 用matlab 编程得到Sor 法求线性方程组的算法为: function [x,n]=SOR(A,b,x0,w,eps,M) if nargin==4

eps= ; M = 200; elseif nargin<4 error return : elseif nargin ==5 M = 200; end if(w<=0 || w>=2) error; return; end D=diag(diag(A)); %求A的对角矩阵L=-tril(A,-1); %求A的下三角阵( U=-triu(A,1); %求A的上三角阵B=inv(D-L*w)*((1-w)*D+w*U); f=w*inv((D-L*w))*b; x=B*x0+f; n=1; %迭代次数 while norm(x-x0)>=eps x0=x; x =B*x0+f; n=n+1; if(n>=M) (

数值分析课程实验报告-拉格朗日和牛顿插值法

《数值分析》课程实验报告 用拉格朗日和牛顿插值法求解函数值 算法名称用拉格朗日和牛顿插值法求函数值 学科专业xxxxx 作者姓名xxxx 作者学号xxxxx 作者班级xxxxxx xxx大学 二〇一五年十二月

《数值分析》课程实验报告

得到的近似值为。 拉格朗日插值模型简单,结构紧凑,是经典的插值法。但是由于拉格朗日的插值多项式和每个节点都有关,当改变节点个数时,需要重新计算。且当增大插值阶数时容易出现龙格现象。 2.牛顿插值法 在命令窗口输入: x=[ ]; y=[ ]; xt=; [yt,N]=NewtInterp(x,y,xt) z=::2; yz=subs(N,'t',z); figure; plot(z,sqrt(z),'--r',z,yz,'-b') hold on plot(x,y,'marker','+') hold on plot(xt,yt,'marker','o') h=legend('$\sqrt{x}$','牛顿','$(x_k,y_k)$','$x=$'); set(h,'Interpreter','latex') xlabel('x') ylabel('y') 得到结果及图像如下: yt = N = - *t^4 + *t^3 - *t^2 + *t +

得到√的近似值为,插值函数为 N =- *t^4 + *t^3 - *t^2 + *t + , 其计算精度是相当高的。 Lagrange插值法和Newton插值法解决实际问题中关于只提供复杂的离散数据的函数求值问题,通过将所考察的函数简单化,构造关于离散数据实际函数f(x)的近似函数P(x),从而可以计算未知点出的函数值,是插值法的基本思路。 实际上Lagrange插值法和Newton插值法是同一种方法的两种变形,其构造拟合函数的思路是相同的,而实验中两个实际问题用两种算法计算出结果是相同的。

数学实验“线性方程组的J-迭代,GS-迭代,SOR-迭代解法”实验报告(内含matlab程序代码)

西京学院数学软件实验任务书 课程名称数学软件实验班级数0901 学号0912020107 姓名李亚强 实验课题线性方程组的J-迭代,GS-迭代,SOR-迭代方法。 实验目的 熟悉线性方程组的J-迭代,GS-迭代,SOR-迭代方法。 实验要求运用Matlab/C/C++/Java/Maple/Mathematica等其中一种语言完成。 实验内容线性方程组的J-迭代;线性方程组的GS-迭代;线性方程组的SOR-迭代。 成绩教师

实验四实验报告 一、实验名称:线性方程组的J-迭代,GS-迭代,SOR-迭代。 二、实验目的:熟悉线性方程组的J-迭代,GS-迭代,SOR-迭代,SSOR-迭代方法,编程实现雅可比方法和高斯-赛德尔方法求解非线 性方程组121231 235210 64182514 x x x x x x x x +=?? ++=??++=-?的根,提高matlab 编程能力。 三、实验要求:已知线性方程矩阵,利用迭代思想编程求解线性方程组的解。 四、实验原理: 1、雅可比迭代法(J-迭代法): 线性方程组b X A =*,可以转变为: 迭代公式(0)(1)() k 0,1,2,....k k J X X B X f +???=+=?? 其中b M f U L M A M I B J 111),(---=+=-=,称J B 为求解 b X A =*的雅可比迭代法的迭代矩阵。以下给出雅可比迭代的 分量计算公式,令),....,() ()(2)(1)(k n k k k X X X X =,由雅可比迭代公式 有 b X U L MX k k ++=+) () 1()(,既有i n i j k i ij i j k i ij k i ij b X a X a X a +- -=∑∑+=-=+1 )(1 1 )() 1(, 于

c编的sor迭代法解线性方程组的程序

c编的sor迭代法解线性方程组的程序 2010-12-15 20:33 #include #include double norm(double *x,double *y,int n) { int i=0; double s=0; for(i=0;i

相关文档
相关文档 最新文档