文档库 最新最全的文档下载
当前位置:文档库 › 实训指导-PLC任务工单(三、变频器多段速操作)

实训指导-PLC任务工单(三、变频器多段速操作)

实训指导-PLC任务工单(三、变频器多段速操作)

实训指导—PLC任务工单

PLC变频器接线图

PLC变频器接线图 一、引言 风机、泵类等由电机拖动的设备,其耗电量占据了我厂总用电量的绝大多数,从目前我厂此类设备的运行情况来看,在节能方面有巨大的潜力可以挖掘。根据工艺流程特点和需要,我厂区各装置中泵类设计使用上,一般在同一工艺点中均采用两台同容量泵(一主泵、一备用泵)。为了节能和自 控的目的,目前针对机泵一开一备的方式可以有两种解决方案:将主机加装变频器;或将主机和备机同时加装变频器。但是,上述两种方案都存在不同的弊端,前一种方案当备机运行时将不能实现节能和自控(备机运行时间基本等同与主机);后一种方案则造成设备的闲置浪费(两台变频器在同 一时间内只有一台运行)。 二、解决方案 我们假设一下,如果能够用一台变频器带动两台电动机运行,并用控制设备对其操作进行控制,这样一来,即可发挥变频器的优势,又可以节省资金的投入。变频器的技术已经比较成熟,基本型的变频器都有一拖二甚至更高的功能,但是使用常规电器搭建控制部分则非常困难,同时因大量使用继电器、时间继电器又将造成控制部分的可靠度降低和故障率的升高,因此很少有这样的设计方案。可编程控制器

(PLC)是近年来发展极为迅速,应用面极广,它具有功能齐全、使用方便、维护容易、通用性强、可靠性高、性能价格比高等优点,已在工业控制的各个领域得到了极为广泛的应用,成为实现工业自动化的一种强有力工具。 本设计正是基于以上背景,在原有设备的基础上添加一台PLC,利用PLC控制,实现变频器一拖二控制电机改造,用一台变频器带动两台电机调节转速,实现一机多用,最大限度的提高设备利用率,挖掘增效潜力。既提高了自动化水平,又节约电能,一举两得。 本方案采用OMRON公司的CPM1A型PLC,输出形式继电器,并结合适当的外围设备搭建控制变频器的控制系统,具有使用可靠性高、响应速度快、动作准确、功能可扩展性强、外围设备少、成本低、抗干扰能力强等特点。所以本文考虑设备数量及应用场合,选择CPM1A。因为它具有可靠性高、体积小、扩展方便,使用灵活的特点。选其型号为CPM1A-30CDR-A。I/O点为30点;电源类型为AC型,范围100V~240V;输出方式为继电器输出型。性能如下:2048程序存储器;2048数据存储器;18点输入,12点输出;可扩展3个模块;对于大型控制工程,18点输入不能满足点数要求时,可以通过I/O扩展模块进行行输入点数的扩展。CPM1A最多可扩展到54个输入点。若要增加PLC电源的可靠性,我们可以选择CPM1A-30CDR-D型机,功能同上,

PLC和变频器配合使用时注意事项

PLC和变频器配合使用时注意事项 当利用变频器构成自动控制系统进行控制时,很多情况下是采用plc和变频器相配合使用,例如我厂二催化的自动吹灰系统。PLC可提供控制信号和指令的通断信号。一个PLC系统由三部分组成,即中央处理单元、输入输出模块和编程单元。本文介绍变频器和PLC进行配合时所需注意的事项。 1.开关指令信号的输入 变频器的输入信号中包括对运行/停止、正转/反转、微动等运行状态进行操作的开关型指令信号。变频器通常利用继电器接点或具有继电器接点开关特性的元器件(如晶体管)与PLC)相连,得到运行状态指令,如图1所示。 图1运行信号的连接方式 在使用继电器接点时,常常因为接触不良而带来误动作;使用晶体管进行连接时,则需考虑晶体管本身的电压、电流容量等因素,保证系统的可靠性。

在设计变频器的输入信号电路时还应该注意,当输入信号电路连接不当时有时也会造成变频器的误动作。例如,当输入信号电路采用继电器等感性负载时,继电器开闭产生的浪涌电流带来的噪音有可能引起变频器的误动作,应尽量避免。图2与图3给出了正确与错误的接线例子。 图2变频器输入信号接入方式 图3输入信号的错误接法 当输入开关信号进入变频器时,有时会发生外部电源和变频器控制电源(DC24V)之间的串扰。正确的连接是利用PLC电源,将外部晶体管的集电极经过二极管接到PLC。如图4所示。

图4输入信号防干扰的接法 2.数值信号的输入 变频器中也存在一些数值型(如频率、电压等)指令信号的输入,可分为数字输入和模拟输入两种。数字输入多采用变频器面板上的键盘操作和串行接口来给定;模拟输入则通过接线端子由外部给定,通常通过0~10V/5V的电压信号或0/4~20mA的电流信号输入。由于接口电路因输入信号而异,因此必须根据变频器的输入阻抗选择PLC 的输出模块。图5为PLC与变频器之间的信号连接图。 当变频器和PLC的电压信号范围不同时,如变频器的输入信号为0~10V,而PLC的输出电压信号范围为0~5V时;或PLC的一侧的输出信号电压范围为0~10V而变频器的输入电压信号范围为0~5V时,由于变频器和晶体管的允许电压、电流等因素的限制,需用串联的方式接入限流电阻及分压方式,以保证进行开闭时不超过PLC和变频器相应的容量。此外,在连线时还应注意将布线分开,保证主电路一侧的噪音不传到控制电路。 通常变频器也通过接线端子向外部输出相应的监测模拟信号。电信号的范围通常为0~10V/5V及0/4~20mA电流信号。无论哪种情况,都应注意:PLC一侧的输入阻抗的大小要保证电路中电压和电流

关于PLC与变频器的结合使用

关于P L C与变频器的结合使用 目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,这里面经常会用到PLC与变频器的结合使用,当利用变频器构成自动控制系统进行控制时,很多情况下是采用PLC 和变频器相配合使用,例如我厂二催化的自动吹灰系统。PLC可提供控制信号和指令的通断信号。一个PLC系统由三部分组成,即中央处理单元、输入输出模块和编程单元。本文介绍变频器和PLC进行配合时所需注意的事项。 1.开关指令信号的输入 变频器的输入信号中包括对运行/停止、正转/反转、微动等运行状态进行操作的开关型指令信号。变频器通常利用继电器接点或具有继电器接点开关特性的元器件(如晶体管)与PLC)相连,得到运行状态指令,如图1所示。 在使用继电器接点时,常常因为接触不良而带来误动作;使用晶体管进行连接时,则需考虑晶体管本身的电压、电流容量等因素,保证系统的可靠性。 在设计变频器的输入信号电路时还应该注意,当输入信号电路连接不当时有时也会造成变频器的误动作。例如,当输入信号电路采用继电器等感性负载时,继电器开闭产生的浪涌电流带来的噪音有可能引起变频器的误动作,应尽量避免。图2与图3给出了正确与错误的接线例子。 当输入开关信号进入变频器时,有时会发生外部电源和变频器控制电源(DC24V)之间的串扰。正确的连接是利用PLC电源,将外部晶体管的集电极经过二极管接到PLC。如图4所示。 2.数值信号的输入 输入信号防干扰的接法 变频器中也存在一些数值型(如频率、电压等)指令信号的输入,可分为数字输入和模拟输入两种。数字输入多采用变频器面板上的键盘操作和串行接口来给定;模拟输入则通过接线端子由外部给定,通常通过0~10V/5V的电压信号或0/4~20mA的电流信号输入。由于接口电路因输入信号而异,因此必须根据变频器的输入阻抗选择PLC的输出模块。图5为PLC与变频器之间的信号连接图。 当变频器和PLC的电压信号范围不同时,如变频器的输入信号为0~10V,而PLC的输出电压信号范围为0~5V时;或PLC的一侧的输出信号电压范围为0~10V而变频器的输入电压信号范围为0~5V时,由于变频器和晶体管的允许电压、电流等因素的限制,需用串联的方式接入限流电阻及分压方式,以保证进行开闭时不超过PLC和变频器相应的容量。此外,在连线时还应注意将布线分开,保证主电路一侧的噪音不传到控制电路。

变频器与PLC通讯连接方式!民熔【图文详解】

变频器与plc连接方式一般有以下几种方式 ①利用PLC的模拟量输出模块控制变频器PLC的模拟量输出模块输出0~5V电压信号或4~20mA电流信号,作为变频器的模拟量输入信号,控制变频器的输出频率。这种控制方式接线简单,但需要选择与变频器输入阻抗匹配的PLC输出模块,且PLC的模拟量输出模块价格较为昂贵,此外还需采取分压措施使变频器适应PLC的电压信号范围,在连接时注意将布线分开,保证主电路一侧的噪声不传至控制电路。 ②利用PLC的开关量输出控制变频器。PLC的开关输出量一般可以与变频器的开关量输入端直接相连。这种控制方式的接线简单,抗干扰能力强。利用PLC的开关量输出可以控制变频器的启动/停止、正/反转、点动、转速和加减时间等,能实现较为复杂的控制要求,但只能有级调速。

使用继电器触点进行连接时,有时存在因接触不良而误操作现象。使用晶体管进行连接时,则需要考虑晶体管自身的电压、电流容量等因素,保证系统的可靠性。另外,在设计变频器的输入信号电路时,还应该注意到输入信号电路连接不当,有时也会造成变频器的误动作。例如,当输入信号电路采用继电器等感性负载,继电器开闭时,产生的浪涌电流带来的噪声有可能引起变频器的误动作,应尽量避免。 ③PLC与RS-485通信接口的连接。所有的标准民熔变频器都有一个RS-485串行接口(有的也提供RS-232接口),采用双线连接,其设计标准适用于工业环境的应用对象。单一的RS-485链路最多可以连接30台变频器,而且根据各变频器的地址或采用广播信息,都可以找到需要通信的变频器。链路中需要有一个主控制器(主站),而各个变频器则是从属的控制对象(从站) 民熔RS485连接 Plc和变频器通讯方式

plc与变频器连接时应注意的问题

plc与变频器连接时应注意的问题 本文介绍了可编程控制器与变频器的连接和连接时应注意的问题,以免导致可编程控制器或变频器的误动作或损坏。 引言 可编程控制器(PLC)是一种数字运算与操作的控制装置。PLC作为传统继电器的替代产品,广泛应用于工业控制的各个领域。由于PLC可以用软件来改变控制过程,并有体积小,组装灵活,编程简单,抗干扰能力强及可靠性高等特点,特别适用于恶劣环境下运行。 当利用变频器构成自动控制系统进行控制时,很多情况下是采用PLC和变频器相配合使用,例如我厂二催化的自动吹灰系统。PLC可提供控制信号和指令的通断信号。一个PLC系统由三部分组成,即中央处理单元、输入输出模块和编程单元。本文介绍变频器和PLC进行配合时所需注意的事项。 1.开关指令信号的输入 变频器的输入信号中包括对运行/停止、正转/反转、微动等运行状态进行操作的开关型指令信号。变频器通常利用继电器接点或具有继电器接点开关特性的元器件(如晶体管)与PLC)相连,得到运行状态指令,如图1所示。 在使用继电器接点时,常常因为接触不良而带来误动作;使用晶体管进行连接时,则需考虑晶体管本身的电压、电流容量等因素,保证系统的可靠性。 在设计变频器的输入信号电路时还应该注意,当输入信号电路连接不当时有时也会造成变频器的误动作。例如,当输入信号电路采用继电器等感性负载时,继电器开闭产生的浪涌电流带来的噪音有可能引起变频器的误动作,应尽量避免。图2与图3给出了正确与错误的接线例子。 当输入开关信号进入变频器时,有时会发生外部电源和变频器控制电源(DC24V)之间的串扰。正确的连接是利用PLC电源,将外部晶体管的集电极经过二极管接到PLC。如图4所示。 2.数值信号的输入 图1 运行信号的连接方式

西门子PLC与变频器之间的总线的连接

西门子PLC与变频器之间的总线的连接 (1) 系统配置 该系统以西门子公司和ABB公司的相关产品来实现全数字交流调速系统在Profibus-DP网中的通讯及控制原理。附图为该系统的Profibus-DP网的网络配置图,其中PLC为西门子公司的SIMATIC S7-315-2DP,变频器为ACS600系列,NPBA-12为与变频器配套的通讯适配器。编程软件为STEP7 V5.2软件,用于对S7-300 PLC编程和对Profibus-DP网进行组态和通讯配置。上位机画面操作采用WinCC5.1进行画面编程和操作,与PLC通讯采用以太网通讯方式。 (2) 通讯协议 在本系统中,S7-300 PLC作为主站,变频器作为从站时,主站向变频器传送运行指令,同时接受变频器反馈的运行状态及故障报警状态的信号。变频器与NPBA-12通讯适配器模块相连,接入Profibus-DP网中作为从站,接受从主站SIMATIC S7-315-2DP 来的控制。NPBA-12通讯适配器模块将从Profibus-DP网中接收到的过程数据存入双向RAM中,的每一个字都被编址,在变频器端的双向RAM可通过被编址参数排序,向变频器写入控制字、设置值或读出实际值、诊断信息等参量。变频器现场总线控制系统若从软件角度看,其核心内容是现场总线的通讯协议。Profibus-DP通讯协议的数据电报结构分为协议头、网络数据和

协议层。网络数据即PPO包括参数值PKW及过程数据PZD。参数值PKW是变频器运行时要定义的一些功能码;过程数据PZD是变频器运行过程中要输入/输出的一些数据值,如频率给定值、速度反馈值、电流反馈值等。 Profibus-DP共有两类型的网络PPO:一类是无PKW而有2个字或6个字的PZD;另一类是有PKW且还有2个字、6个字或10个字的PZD。将网络数据这样分类定义的目的,是为了完成不同的任务,即PKW的传输与PZD的传输互不影响,均各自独立工作,从而使变频器能够按照上一级自动化系统的指令运行。 3、STEP7项目系统组态及通讯编程 (1) 使用STEP7V5.2组态软件,进入Hardware Configure完成S7-300 PLC硬件组态;

PLC与变频器的结合使用

P L C与变频器的结合使 用 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

关于P L C与变频器的结合使用目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,这里面经常会用到PLC与变频器的结合使用,当利用变频器构成自动控制系统进行控制时,很多情况下是采用PLC和变频器相配合使用,例如我厂二催化的自动吹灰系统。PLC可提供控制信号和指令的通断信号。一个PLC系统由三部分组成,即中央处理单元、输入输出模块和编程单元。本文介绍变频器和PLC进行配合时所需注意的事项。 1.开关指令信号的输入 变频器的输入信号中包括对运行/停止、正转/反转、微动等运行状态进行操作的开关型指令信号。变频器通常利用继电器接点或具有继电器接点开关特性的元器件(如晶体管)与PLC)相连,得到运行状态指令,如图1所示。 在使用继电器接点时,常常因为接触不良而带来误动作;使用晶体管进行连接时,则需考虑晶体管本身的电压、电流容量等因素,保证系统的可靠性。 在设计变频器的输入信号电路时还应该注意,当输入信号电路连接不当时有时也会造成变频器的误动作。例如,当输入信号电路采用继电器等感性负载时,继电器开闭产生的浪涌电流带来的噪音有可能引起变频器的误动作,应尽量避免。图2与图3给出了正确与错误的接线例子。

当输入开关信号进入变频器时,有时会发生外部电源和变频器控制电源(DC24V)之间的串扰。正确的连接是利用PLC电源,将外部晶体管的集电极经过二极管接到PLC。如图4所示。 2.数值信号的输入 输入信号防干扰的接法 变频器中也存在一些数值型(如频率、电压等)指令信号的输入,可分为数字输入和模拟输入两种。数字输入多采用变频器面板上的键盘操作和串行接口来给定;模拟输入则通过接线端子由外部给定,通常通过0~10V/5V的电压信号或0/4~20mA的电流信号输入。由于接口电路因输入信号而异,因此必须根据变频器的输入阻抗选择PLC的输出模块。图5为PLC与变频器之间的信号连接图。 当变频器和PLC的电压信号范围不同时,如变频器的输入信号为0~10V,而PLC的输出电压信号范围为0~5V时;或PLC的一侧的输出信号电压范围为0~10V而变频器的输入电压信号范围为0~5V时,由于变频器和晶体管的允许电压、电流等因素的限制,需用串联的方式接入限流电阻及分压方式,以保证进行开闭时不超过PLC和变频器相应的容量。此外,在连线时还应注意将布线分开,保证主电路一侧的噪音不传到控制电路。 通常变频器也通过接线端子向外部输出相应的监测模拟信号。电信号的范围通常为0~10V/5V及0/4~20mA电流信号。无论哪种情况,都应注意:PLC一侧的输入阻抗的大小要保证电路中电压和电流不超过电路的允许值,以保证系统

plc和变频器通讯接线图详解

plc与变频器两者是一种包含与被包含的关系,PLC与变频器都可以完成一些特定的指令,用来控制电机马达,PLC是一种程序输入执行硬件,变频器则是其中之一,但是PLC的涵盖范围又比变频器大,还可以用来控制更多的东西,应用领域更广,性能更强大,当然PLC的 控制精度也更大。 变频器无法进行编程,改变电源的频率、电压等参数,它的输出频率可以设为固定值, 也可以由PLC动态控制。 plc是可以编程序的,用来控制电气元件或完成功能、通信等任务。 PLC与变频器之间通信需要遵循通用的串行接口协议(USS),按照串行总线的主从通信原 理来确定访问的方法。总线上可以连接一个主站和最多31个从站,主站根据通信报文中的地址字符来选择要传输数据的从站,在主站没有要求它进行通信时,从站本身不能首先发送数据,各个从站之间也不能直接进行信息的传输。 一、PLC基本结构图 PLC可编程控制器的存储器可以分为系统程序存储器、用户程序存储器及工作数据存储 器等三种。 1、系统程序存储器 系统程序存储器用来存放由可编程控制器生产厂家编写的系统程序,并固化在ROM内,用户不能直接更改。系统程序质量的好坏,很大程度上决定了PLC的性能,其内容主要包括 三部分:第一部分为系统管理程序,它主要控制可编程控制器的运行,使整个可编程控制器 按部就班地工作,第二部分为用户指令解释程序,通过用户指令解释程序,将可编程控制器 的编程语言变为机器语言指令,再由CPU执行这些指令;第三部分为标准程序模块与系统调用程序。 2、用户程序存储器 根据控制要求而编制的应用程序称为用户程序。用户程序存储器用来存放用户针对具体 控制任务,用规定的可编程控制器编程语言编写的各种用户程序。目前较先进的可编程控制 器采用可随时读写的快闪存储器作为用户程序存储器,快闪存储器不需后备电池,掉电视数 据也不会丢失。 3、工作数据存储器 工作数据存储器用来存储工作数据,既用户程序中使用的ON/OFF状态、数值数据等。 在工作数据区中开辟有元件映像寄存器和数据表。其中元件映像寄存器用来存储开关量、输

plc控制变频器调速

基 于 PLC 控 制 变 频 器 调 速 实 验 报 告 电控学院 电气

实训目的:本次实验针对电气工程及其自动化专业。通过综合实验,使学生对所学过的可编程控制器在电动机变频调速控制中的应用有一个系统的认识,并运用自己学过的知识,自己设计变频调速控制系统。要求用PLC控制变频器,通过光电编码器反馈速度信号达到电动机调速的精确控制,自己设计,自己编程,最后进行硬件、软件联机的综合调试,实现自己的设计思想。在整个试验过程中,摆脱以往由教师设计,检查处理故障的传统做法,由学生完全自己动手,互相查找处理故障,培养学生动手能力。学生实验应做到以下几点: 1. 通过电动机变频调速控制系统实验,进一步了解可编程控制器在电动机变频调速控制中的应用。 2. 通过系统设计,进一步了解PLC、变频器及编码器之间的配合关系。 3. 通过实验线路的设计,实际操作,使理论与实际相结合,增加感性认识,使书本知识更加巩固。 4. 培养动手能力,增强对可编程控制器运用的能力。 5. 培养分析,查找故障的能力。 6. 增加对可编程控制器外围电路的认识。 实训主要器件:欧姆龙CPM2AH-40CDR可编程控制器(PLC),欧瑞F1000-G系列变频器,三相异步电机 第一部分采样 转速的采样采用的是欧姆龙的光电编码器,结合PLC的高速计数器端子,实现高精度的采样。。 编码器是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是1还是0;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是1还是0,通过1和0的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。 欧姆龙(OMRON)编码器是用来测量转速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到

PLC控制变频器的几种方法

在工业自动化控制系统中,最为常见的是PLC和变频器的组合应用,并且产生了多种多样的PLC控制变频器的方法,其中采用RS-485通讯方式实施控制的方案得到广泛的应用:因为它抗干扰能力强、传输速率高、传输距离远且造价低廉。但是,RS-485的通讯必须解决数据编码、求取校验和、成帧、发送数据、接收数据的奇偶校验、超时处理和出错重发等一系列技术问题,一条简单的变频器操作指令,有时要编写数十条PLC梯形图指令才能实现,编程工作量大而且繁琐,令设计者望而生畏。 本文介绍一种非常简便的三菱FX系列PLC通讯方式控制变频器的方法:它只需在PLC主机上安装一块RS-485通讯板或挂接一块RS-485通讯模块;在PLC的面板下嵌入一块造价仅仅数百元的“功能扩展存储盒”,编写4条极其简单的PLC梯形图指令,即可实现8台变频器参数的读取、写入、各种运行的监视和控制,通讯距离可达50m或500m。这种方法非常简捷便利,极易掌握。本文以三菱产品为范例,将这种“采用扩展存储器通讯控制变频器”的简便方法作一简单介绍。 2、三菱PLC采用扩展存储器通讯控制变频器的系统配置 2.1 系统硬件组成 FX2N系列PLC(产品版本V 3.00以上)1台(软件采用FX-PCS/WIN-C V 3.00版); FX2N-485-BD通讯模板1块(最长通讯距离50m); 或FX0N-485ADP通讯模块1块+FX2N-CNV-BD板1块(最长通讯距离500m); FX2N-ROM-E1功能扩展存储盒1块(安装在PLC本体内); 带RS485通讯口的三菱变频器8台(S500系列、E500系列、F500系列、F700系列、A500系列、V500系列等,可以相互混用,总数量不超过8台;三菱所有系列变频器的通讯参数编号、命令代码和数据代码相同。); RJ45电缆(5芯带屏蔽); 终端阻抗器(终端电阻)100Ω; 选件:人机界面(如F930GOT等小型触摸屏)1台。 2.2 硬件安装方法 (1) 用网线专用压接钳将电缆的一头和RJ45水晶头进行压接;另一头则按图1~图3的方法连接FX2N-485-BD通讯模板,未使用的2个P5S端头不接。 (2) 揭开PLC主机左边的面板盖, 将FX2N-485-BD通讯模板和FX2N-ROM-E1功能扩展存储器安装后盖上面板。 (3) 将RJ45电缆分别连接变频器的PU口,网络末端变频器的接受信号端RDA、RDB之间连接一只100Ω终端电阻,以消除由于信号传送速度、传递距离等原因,有可能受到反射的影响而造成的通讯障碍。 2.3 变频器通讯参数设置 为了正确地建立通讯,必须在变频器设置与通讯有关的参数如“站号”、“通讯速率”、“停止位长/字长”、“奇偶校验”等等。变频器内的Pr.117~Pr.124参数用于设置通讯参数。参数设定采用操作面板或变频器设置软件FR-SW1-SETUP-WE在PU口进行。 2.4 变频器设定项目和指令代码举例 2.5 变频器数据代码表举例 2.6 PLC编程方法及示例 (1) 通讯方式 PLC与变频器之间采用主从方式进行通讯,PLC为主机,变频器为从机。1个网络中只有一台主机,主机通过站号区分不同的从机。它们采用半双工双向通讯,从机只有在收到主机的读写命令后才发送数据。 (2) 变频器控制的PLC指令规格

PLC与变频器连接的简便方法

1、引言 在工业自动化控制系统中,最为常见的是PLC和变频器的组合应用,并且产生了多种多样的PLC控制变频器的方法,其中采用RS-485通讯方式实施控制的方案得到广泛的应用:因为它抗干扰能力强、传输速率高、传输距离远且造价低廉。但是,RS-485的通讯必须解决数据编码、求取校验和、成帧、发送数据、接收数据的奇偶校验、超时处理和出错重发等一系列技术问题,一条简单的变频器操作指令,有时要编写数十条PLC梯形图指令才能实现,编程工作量大而且繁琐,令设计者望而生畏。 本文介绍一种非常简便的三菱FX系列PLC通讯方式控制变频器的方法:它只需在PLC主机上安装一块RS-485通讯板或挂接一块RS-485通讯模块;在PLC的面板下嵌入一块造价仅仅数百元的“功能扩展存储盒”,编写4条极其简单的PLC 梯形图指令,即可实现8台变频器参数的读取、写入、各种运行的监视和控制,通

讯距离可达50m或500m。这种方法非常简捷便利,极易掌握。本文以三菱产品为范例,将这种“采用扩展存储器通讯控制变频器”的简便方法作一简单介绍。 2、三菱PLC采用扩展存储器通讯控制变频器的系统配置 2.1 系统硬件组成 FX2N系列PLC(产品版本V 3.00以上)1 台(软件采用FX-PCS/WIN-C V 3.00版);FX2N-485-BD通讯模板1块(最长通讯距离50m); 或FX0N-485ADP通讯模块1块 +FX2N-CNV-BD板1块(最长通讯距离 500m); FX2N-ROM-E1功能扩展存储盒1块(安装在PLC本体内); 带RS485通讯口的三菱变频器8台(S500系列、E500系列、F500系列、F700系列、A500系列、V500系列等,可以相互混用,总数量不超过8台;三菱所有系列变频器的通讯参数编号、命令代码和数据代码相同。);

PLC与变频器的连接方式

PLC与变频器的连接方式 有多种方式: 1)通过开关量输出输入信号方式: 就是将PLC的开关量输出信号连接到变频器的输入端子上 用开关量信号开控制启动、停止、正转、反转、调速(多段速) 还可以用PLC的模拟量输出信号(0-10V或4-20mA)控制转速 2)用通信方式 大部分变频器都有通信接口(大多是RS485接口) 可以使用PLC的RS485(RS232是需要加转换器)与变频器的RS485接口通过 通信方式控制启动、停止、正转、反转、调速 还可以通过这种方式修改变频器的参数 PLC控制变频器的方式呢有很多种,最常见的呢就是两种。 第一、硬接线的方式。变频器自带的DI,DO,AI,AO口子与PLC的DI,DO,AI,AO通过线连接起来。实现方法大体就是通过编程控制PLC的DO模块输出,为变频器提供一对干触点(无源触点),再用这对干触点来驱动变频器的启动,停止或者电动等。然后PLC的AO模块输出4-20mA等模拟信号连接到变频器的AI口子实现一个模拟给定控制变频器输出频率达到调速的目的。变频器的DO口子可以输出一些如运行、故障等状态信号接入PLC的DI模块,当然也有变频器的AO口子输出如变频器的频率、温度、电流等4-20mA模拟信号进入PLC的AI 模块; 第二、通讯的方式。而通讯的方式呢现在最常见的是Profibus-DP的方式。这需要变频器支持这种通讯方式,一般是需要附加订一个DP通讯板(硬件)安装在变频器上面,当然也有通讯板外置然后通过光纤与变频器的控制单元连接的如ABB的NPBA-12通讯模块。PLC与变

频器之间连接好DP通讯线缆,其他不需要任何硬连接的线了。那么接下来的工作就是通过PLC编程来控制变频器,了。 PLC控制变频器的启动和停止: 用PLC的数字量输出点,如果PLC是继电器输出,可以直接接变频器的启动信号端子。如果是电压输出,可以通过继电器转换为无源触点后接启动信号端子。这样控制PLC的输出与否即可启动/停止变频器。 PLC控制变频器的频率: 一般有两种方法 1。模拟量控制,可以用模拟量输入和输出模块,根据变频器的具体要求选择0-10V电压或4-20mA电流输出,控制变频器的频率,变频器的频率反馈根据要求可以选择模拟量输入进行采集(也可以不采集,开环控制)。 2。串行总线通信控制,高档的变频器有通信接口,像uss,profibus DP,simolink等,可以通过PLC的通信端口(或通信模块)给定频率值,变频器和PLC间相互通信。 综上,利用总线通信的方式可以以一个通信端口(或配备通信模块组件)的方式控制总线上所有的变频器(在总线地址范围内)。而利用模拟量输出模块控制则必须每个通道对应一台变频器。两种方法都可以,要看具体的应用。

三菱FX2NPLC利用485BD与三菱变频器通讯的实例

三菱FX2NPLC利用485BD与三菱变频器通讯的实例 一、硬件接线 1、FX2N-485 BD与三菱FR-A540变频器的通讯接线图 2、用电缆按如下通讯流程图把电脑、PLC、变频器连接起来 二、按下表设定好变频器的参数 注:变频器设参数一定要放在第一步来做,另外设定好参数后要断电再上电复位方式进行变频器的复位,如不进行复位,通讯不能进行。 三、在电脑中利用专用软件编写梯形图 四、程序解释(重点为PLC串行通信指令与格式、传送数据的格式与定义) 1、M8161=1,表示为8位处理模式。 2、通过[MOV H009F D8120]来确定PLC的通信格式,H009F是十六进制的数, 如转换成二制的数与表达的意义见下表

3、 上一语句也可改用[MOV H0C96 D8120]来确定PLC 的通信格式,H0C96 也是十六进制的数,如转换成二制的数与表达的意义见下表 4、 [RS D200 K9 D500 K5]语句的意思: (1) R S 指令是PLC 进行发送和接收串行数据的指令,数据的格式可以通过 特殊数据寄存器D8120设定,并要与变频器的数据格式类型完全对应; 通过PLC 传送指令把通讯数据装到D200开始的连续单元中。 (2) 发送数据的首地址是D200,发送的字节数为9字节;接收数据首地址 是D500,接收的字节数为5字节。 (3) 变频器通讯协议的格式A ‘的含义 格式A ‘ 1 2 3 4 5 6 7 8 9 10 11 字符数 由于*5等待时间 通过变频器参数 Pr.123=20 来设定,所以可以少一字节;加上*4表达的意思是是否采用CR 和LF ,因为本例不需要使用CR 和LF ,并通过变频器设定参数 Pr.124=0 来表达最后一个字节也可不用,所以本例发送的格

PLC变频器控制实操题A卷含答案

P L C变频器控制实操题 A卷含答案 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

P L C、变频器高级工实操题(A卷)准考证号:姓名: 考核内容: 利用PLC、变频器控制某搅拌机。 考核要求: 1、画出PLC、变频器控制搅拌机的接线图。 2、写出变频器需要设置的参数及其功能。 3、按照设计的接线图接线,完成程序调试和运行,实现设计功能。 控制要求: 某搅拌机需要按照不同的搅拌速度进行搅拌作业,现要求利用PLC和变频器对该搅拌机进行控制,控制要求如下: 1、按下启动按钮,搅拌机电机以f=30HZ的频率启动搅拌。 2、搅拌5S后,自动转换为f=60HZ的频率搅拌。 3、快速搅拌8S后又自动切换为f=20HZ的频率搅拌。 4、5S后反转以f=30HZ的频率搅拌。 5、5S后自动停止。 6、当再次按下启动时,重复上述动作。 1.变频器端子接线图 2.本题电气连接意图 3.题目分析 从控制要求来看,搅拌机的运行频率有三个,分别是20Hz、30Hz、60Hz。因此,属于多段速控制(三段速)

4.多段速运行接线原理图 5.PLC连接变频器接线图 6.变频器参数设置 运行模式选择(Pr.79=0或2、3) 三段速设定(Pr.4=60,Pr.5=30,Pr.6=20) 7.PLC编程 PLC对应控制频率 Y2——RH(60Hz) Y3——RM(30Hz) Y3——RL(20Hz) 基本参数: 启动频率Pr.13,启动信号为ON时的启动频率 限制输出频率 上下限频率(Pr.1、Pr.2、Pr.18)140 避开机械共振点(频率跳变)(Pr.31~Pr.36)141 基准频率、电压(Pr.3、Pr.19、Pr.47、Pr.113)142 通过外部端子进行频率设定 通过多段速设定运行(Pr.4~Pr.6、Pr.24~Pr.27、Pr.232`Pr.239)148 点动运行(Pr.15)150点动加减速时间(Pr.16) 加速时间和减速时间的设定(Pr.7、Pr.8、Pr.20、Pr.21、Pr.44、Pr.45、Pr.110、Pr.111)155 启动频率和启动时的输出保持功能(Pr.13、Pr.571)157

变频器与三菱PLC实现485通讯

变频器与PLC通讯的精简设计 1、引言 在工业自动化控制系统中,最为常见的是PLC和变频器的组合应用,并且产生了多种多样的PLC控制变频器的方法,其中采用RS-485通讯方式实施控制的方案得到广泛的应用:因为它抗干扰能力强、传输速率高、传输距离远且造价低廉。但是,RS-485的通讯必须解决数据编码、求取校验和、成帧、发送数据、接收数据的奇偶校验、超时处理和出错重发等一系列技术问题,一条简单的变频器操作指令,有时要编写数十条PLC梯形图指令才能实现,编程工作量大而且繁琐,令设计者望而生畏。 本文介绍一种非常简便的三菱FX系列PLC通讯方式控制变频器的方法:它只需在PLC主机上安装一块RS-485通讯板或挂接一块RS-485通讯模块;在PLC 的面板下嵌入一块造价仅仅数百元的“功能扩展存储盒”,编写4条极其简单的PLC梯形图指令,即可实现8台变频器参数的读取、写入、各种运行的监视和控制,通讯距离可达50m或500m。这种方法非常简捷便利,极易掌握。本文以三菱产品为范例,将这种“采用扩展存储器通讯控制变频器”的简便方法作一简单介绍。 2、三菱PLC采用扩展存储器通讯控制变频器的系统配置

2.1 系统硬件组成 如图1~图3所示。 图1 三菱PLC采用扩展存储器通讯控制变频器的系统配置 图2 FX2N-485-BD通讯板外形图 图3 三菱变频器 PU插口外形及插针号(从变频器正面看)

?FX2N系列PLC(产品版本V 3.00以上)1台(软件采用FX-PCS/WIN-C V 3.00版); ?FX2N-485-BD通讯模板1块(最长通讯距离50m); ?或FX0N-485ADP通讯模块1块+FX2N-CNV-BD板1块(最长通讯距离500m); ?FX2N-ROM-E1功能扩展存储盒1块(安装在PLC本体内); ?带RS485通讯口的三菱变频器8台(S500系列、E500系列、F500系列、F700系列、A500系列、V500系列等,可以相互混用,总数量不超过8台; 三菱所有系列变频器的通讯参数编号、命令代码和数据代码相同。); ?RJ45电缆(5芯带屏蔽); ?终端阻抗器(终端电阻)100Ω; ?选件:人机界面(如F930GOT等小型触摸屏)1台。 2.2 硬件安装方法 (1) 用网线专用压接钳将电缆的一头和RJ45水晶头进行压接;另一头则按图1~图3的方法连接FX2N-485-BD通讯模板,未使用的2个P5S端头不接。 (2) 揭开PLC主机左边的面板盖, 将FX2N-485-BD通讯模板和FX2N-ROM-E1功能扩展存储器安装后盖上面板。 (3) 将RJ45电缆分别连接变频器的PU口,网络末端变频器的接受信号端RDA、RDB之间连接一只100Ω终端电阻,以消除由于信号传送速度、传递距离等原因,有可能受到反射的影响而造成的通讯障碍。 2.3 变频器通讯参数设置

ABB变频器调试(含PLC程序和电气图纸)

ABB ACS510变频器的调试 (1.1kW----110kW) 一、ACS510变频器的控制盘 1.助手型控制盘(见《ACS510-01用户手册》05年版P27~P35) 下图描述了助手型控制盘的按键功能和显示信息。 2.基本型控制盘(见《ACS510-01用户手册》05年版P36~P40) 下图描述了基本型控制盘的按键功能和显示信息。 二、在默认宏下的基本调试 下面调试均以助手型控制盘的ABB标准宏为例。 ①在变频器通电之前,检查确认功率电缆、控制端子的接线正确无误。下图的是ABB标准宏的端子接线与定义图。

②变频器通电后,在默认的ABB标准宏(9902=1)下,按键切换至本地控制模式下,此时液晶显示屏左上角显示“LOC”。 ③按MENU/ENTER键进入参数菜单,根据电机铭牌上的参数在99组设置电机参数: ●9905(电机额定电压) ●9906(电机额定电流) ●9907(电机额定频率) ●9908(电机额定转速) ●9909(电机额定功率) ④按下START键起动电机。再按住△或▽键调整给定频率,观察液晶显示屏左上角,显示变频器和电机的旋转状态标记“(正转) ”或“(反转)”在旋转,同时电机旋转。 ⑤若电机转向与要求不一致,通常有以下两种方法改变转向: ●改变任意两相电机电缆;(推荐使用) ●更改参数1003,把原先FORWARD(正转)改为REVERSE(反转),原先REVERSE(反转)改为FORWARD(正转)。(建议不用) ⑥按下STOP键停止电机,等到显示屏的旋转状态标记“(正转)”或“(反转)”停止转动后,再按键切换至远程控制模式下,此时液晶显示屏左上角显示“REM”。 ⑦送一个外部起动信号至DI1,使电机起动。再调整连接于AI1的模拟电位器,改变给定速度,观察液晶显示屏左上角,显示变频器和电机的旋转状态标记 “(正转) ”或“(反转)”在旋转,同时电机旋转。 ⑧送一个外部换向信号至DI2,电机将换向旋转。 ⑨送一个外部恒速信号至DI3,电机将以5Hz恒速旋转。 ⑩若想监视所有端子的信号状态,按MENU/ENTER键进入参数菜单,再进入01组运行参数组,监视以下参数: ●0118(DI1~3状态) = ×××(二进制) ●0119(DI4~6状态) = ×××(二进制) ●0120(AI1) = 0.0~100.0% ●0121(AI2) = 0.0~100.0% ●0122(RO1~3状态) = ×××(二进制) ●0123(RO4~6状态) = ×××(二进制) ●0124(AO1) = 0.0~20.0 mA ●0125(AO2) = 0.0~20.0 mA 三、参数保存与调用、恢复出厂设置的操作 在调试变频器的时候,有时需要检验变频器硬件和软件是否完好,并且要求最后调用原有参数。这时调试人员可以按以下步骤操作: ①保存原有参数。在本地控制模式下,按MENU/ENTER键进入参数菜单,设置参数: 9902(应用宏) = -1(用户宏1存储) 把原有参数保存在用户宏1,以备调用。 ②恢复出厂设置调试。设置参数: 9902(应用宏) = 1(ABB标准宏) 再做上面第二部分介绍的基本调试,以检验变频器硬件和软件是否完好。 ③调用原有参数。设置参数: 9902(应用宏) = 0(用户宏1上载) 调用原有参数。 四、常用参数 调试ACS510变频器的常用参数,除了上面提到的99组、01组参数外,还有以下参数也常用到,相关参数可根据应用需求进行相应的定义。 10组: 输入指令

『PLC在变频调速中的应用三』变频器多段速调速、PNP与NPN接线

『PLC在变频调速中的应用三』变频器多段速调速、PNP与NPN接线 2017-08-27认真PLC技术支持 本系列共分四节: 变频器的基本知识 变频器面板调速 变频器多段速 模拟量无极调速 把PLC与变频器在调速方面的应用基本都介绍了,本系列主要以西门子S7-200系列PLC与MM440变频器为主。 本篇是系列第三讲:多段速 多段速在变频器控制中是应用比较广泛的一种调速方式。本文知识点包括接线图、变频器参数、程序,有条件的可以边看边做实验。 PLC技术是一门实践性技术,多动手多思考进步才快。

用操作面板手动调速比较简单,面板调速不易实现自动控制。变频器常见的控制方式是,通过端子调整变频器运行模式,本文通过对多段速的应用,介绍端子控制模式。 1、继电器输出型PLC控制多段速 例子: 用一台继电器输出型CPU,控制一台MM440变频器。 当按下按钮SB1时,电机以5Hz的频率正转。 当按下按钮SB2时,电机以15Hz的频率正转。 当按下按钮SB3时,电机以15Hz的频率反转。 当按下按钮SB4时,电机停止运行。 电动机的技术参数,功率0.06KW、额定转1430r/min、额定电压380V、额定电流0.35A、额定频率50Hz。设计方案并编写程序。 1.1、主要的软件和硬件配置 ①软件:STEP 7 MicroWIN V4.0 。 ②硬件:变频器MM440一台。 ③硬件:CPU226CN一台。 ④硬件:三相异步电动机一台。 ⑤硬件:编程电缆一根。 电气接线图如下 1.2、变频器参数设置

根据上图所示设定为:当端子DIN1接通时对应一个频率,当端子DIN1和DIN2同时接通时对应一个频率,当端子DIN3接通时为反转,断开时为正转。 变频器参数较多也比较灵活,当熟悉了参数后可根据自己的工艺随 时调整。本例各个端子功能就根据以上设定。 根据以上配置设定如下参数: P0003=2:专家级 P0010=1:修改电机参数 P0304=380:额定电压 P0305=0.35:额定电流 P0307=0.06:额定功率 P0310=50:额定频率 P0311=1430:额定转速 P1000=3:频率源为固定频率 P1080=0:电动机最小频率 P1082=0:电动机最大频率 P1120=10:加速时间:10s P1121=10:减速时间:10s P0700=2:命令源为端子输入 P0701=16:固定频率设定值(直接选择+ ON 命令) P0702=17:固定频率设定值(直接选择+ ON 命令) P0703=12:反转 P1001=5:固定频率1 P1001=10:固定频率2 P0010=0:运行时为0 当Q0.0为1时变频器DIN1接通,电动机以5Hz(固定频率1)的频率运行,固定频率1的设定值在P1001中; 当Q0.0和Q0.1同时为1时变频器DIN1和DIN2接通,电动机以15Hz(固定频率1+固定频率2)的频率运行,固定频率2的设定值在P1002中。 修改参数P0701,对应数字输入DIN1的功能; 修改参数P0702,对应数字输入DIN2的功能;以此类推。 当只需要10Hz时只接通DIN2,即固定频率2。

PLC控制变频器的方式

PLC控制变频器的方式 第一、硬接线的方式。变频器自带的DI,DO,AI,AO口子与PLC的DI,DO,AI,AO 通过线连接起来。实现方法大体就是通过编程控制PLC的DO模块输出,为变频器提供一对干触点(无源触点),再用这对干触点来驱动变频器的启动,停止或者电动等。然后PLC的AO模块输出4-20mA等模拟信号连接到变频器的AI 口子实现一个模拟给定控制变频器输出频率达到调速的目的。变频器的DO口子可以输出一些如运行、故障等状态信号接入PLC的DI模块,当然也有变频器的AO口子输出如变频器的频率、温度、电流等4-20mA模拟信号进入PLC的AI 模块; 第二、通讯的方式。而通讯的方式呢现在最常见的是Profibus-DP的方式。这需要变频器支持这种通讯方式,一般是需要附加订一个DP通讯板(硬件)安装在变频器上面,当然也有通讯板外置然后通过光纤与变频器的控制单元连接的如ABB的NPBA-12通讯模块。PLC与变频器之间连接好DP通讯线缆,其他不需要任何硬连接的线了。那么接下来的工作就是通过PLC编程来控制变频器, 我在补充下第二点的通讯控制,一般国内的和台湾的例如台达的变频器,和plc连接一般都是RS485,台达的全部都是内置的,不要要另加板子,然后plc对应变频器的通讯地址即可 可以通过三种方式控制变频器 一、通过PLC开关量启动变频器,通过模拟量信号控制变频器输出频率。此方法有点是编程简单,缺点是硬件投入比较贵。 二、通过通讯模式控制变频器启停以及频率给定,此方法是编程复杂,不同变频器的通讯格式不一样。 三、还可以通过PLC控制启停,通过通讯给定频率 有多种方式:(我大概的总结一下) 1)通过开关量输出输入信号方式: 就是将PLC的开关量输出信号连接到变频器的输入端子上 用开关量信号开控制启动、停止、正转、反转、调速(多段速) 还可以用PLC的模拟量输出信号(0-10V或4-20mA)控制转速 2)用通信方式 大部分变频器都有通信接口(大多是RS485接口) 可以使用PLC的RS485(RS232是需要加转换器)与变频器的RS485接口通过 通信方式控制启动、停止、正转、反转、调速 还可以通过这种方式修改变频器的参数

相关文档
相关文档 最新文档