文档库 最新最全的文档下载
当前位置:文档库 › 大学物理 练习题

大学物理 练习题

大学物理 练习题
大学物理 练习题

练 习 一 振动和波

一、填空题

1.一弹簧振子作简谐振动,其振动曲线如图所示。则它的周期T = ,其余弦函数描述时初相位?= 。

2.两个同方向同频率的简谐振动,其合振动的振幅为0.2m ,合振动的位相与第一

个简谐振动的位相差为π/6,若第一个简谐振动的振幅为1

103?×m ,则第二个简谐振动的振幅为 m ,第一、二两个简谐振动的位相差为 。

3.产生机械波的必要条件是 和 。

4.一平面简谐波的周期为2.0s ,在波的传播路径上有相距为2.0cm 的M 、N 两点,如果N 点的位相比M 点位相落后/6π/,那么该波的波长为 ,波速为 。

5.处于原点(x =0)的一波源所发出的平面简谐波的波动方程为)cos(Cx Bt A y ?=,其中A 、B 、C 皆为常数。此波的速度为 ;波的周期为 ;波长为 ;离波源距离为l 处的质元振动相位比波源落后 ;此质元的初相位为 。

6.一平面简谐波沿ox 轴正向传播,波动方程为]4

)(cos[π

ω+?

=u x t A y ,则1L x =处质点的振动方程为 ,2L x ?=处质点的振动和1L x =处质点的振动的位相差为=?12φφ 。 二、选择题

1.一弹簧振子,当把它水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 [ ]

(A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。

2.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的[ ]

(A)7/16; (B)9/16; (C)11/16; (D)13/16; (E)15/16。

3.两个简谐振动的振动曲线如图所示,则有 [ ] (A )A 超前/2π/; (B )A 落后/2π/; (C )A 超前π; (D )A 落后π。

4.一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为:[ ] (A )T /4; (B )T /12; (C )T /6; (D )T /8。

5.分振动方程分别为)25.050cos(31ππ+=t x 和)75.050cos(42ππ+=t x (SI 制)则它们的

合振动表达式为: [ ]

(A ))25.050cos(2ππ+=t x ; (B ))50cos(5t x π=;

)

s ?

(C )7

1

250cos(51?++

=tg t x π

π; (D )7=x 。 6.一平面余弦波在t =0时刻的波形曲线如图所示,则O 点的振动初相φ为:[ ]

(A)0. (B)π/2 (C)π

(D)3π/2或(-π/2))

7 一个平面简谐波沿x 轴正方向传播,波速为u =160m/s ,t =0时刻的波形图如图所示,则该波的

表式为 [ ]

(A )2

4

40cos(3π

π

π?+=x t y m ; (B ))2

4

40cos(3π

π

π++=x t y m ; (C )2

4

40cos(3π

π

π??=x t y m ; (D )2

4

40cos(3π

π

π+

?

=x t y m 。

8.当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的?[ ]

(A) 媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒. (B) 媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同. (C) 媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不相等. (D) 媒质质元在其平衡位置处弹性势能最大.

9.S 1 和S 2 是波长均为λ的两个相干波的波源,相距3λ/4,S 1 的相位比S 2 超前π/2,若两波单独传播时,在过S 1 和S 2 的直线上各点的强度相同,不随距离变化,且两波的强度都是I 0,则在S 1、S 2 连线上S 1 外侧和S 2外侧各点,合成波的强度分别是[ ]

(A) 4I 0,4I 0;; (B) 0, 0;(C) 0, 4I 0 ;; (D) 4I 0,0.

10.两相干平面简谐波沿不同方向传播,如图所示,波速均为s m u /40.0=,其中一列波在A 点引起的振动方程为2

2cos(11π

π?

=t A y ,

另一列波在B 点引起的振动方程为)2

2cos(22π

π+=t A y ,

它们在P 点相遇,m AP 80.0=,m BP 00.1=,则两波在P 点的相位差为:[ ] (A )0; (B )π/2; (C )π; (D )3π/2。 三、简答题

设P 点距两波源S 1 和S 2 的距离相等,若P 点的振幅保持为零,则由S 1 和S 2分别发出的两列简谐波在P 点引起的两个简谐振动应满足什么条件?

答:

)

3

?A B

四、计算题

1. 有两个同方向、同频率的简谐振动,它们的振动表式为:

??????+=π4310cos 05.01t x ,?????

?

+=π4110cos 06.02t x (SI 制)

(1)求它们合成振动的振幅和初相位。

(2)若另有一振动)10cos(07.003?+=t x ,问0?为何值时,31x x +的振幅为最大;0?为何值时,

32x x +的振幅为最小。

解:

2.已知一平面简谐波的表达式为y =0.25cos(125t ?0.37x )(SI) (1)分别求x 1 =10 m ,x 2=25m 两点处质点的振动方程; (2)求x 1,x 2两点间的振动相位差; (3)求x 1点在t =4s 时的振动位移。 解:

3. 一列沿x 正向传播的简谐波,已知01=t 和

s t 25.02=时的波形如图所示。(假设周期s T 25.0>)试求

(1)P 点的振动表式;

K

)(m

(3)画出o 点的振动曲线。 解:

4.一横波沿绳子传播时的波动表式为)410cos(0

5.0x t y ππ?=(SI 制)。

(1)求此波的振幅、波速、频率和波长。

(2)求绳子上各质点振动的最大速度和最大加速度。

(3)求x =0.2m 处的质点在t =1s 时的相位,它是原点处质点在哪一时刻的相位? 解:

5.设1S 和2S 为两相干波源,初始相位相差π,相距为4λ。若两波在1S 与2S 连线方向上的强度相同均为0I ,且不随距离变化,求在1S 与2S 连线间由于干涉而波强为04I 的点的位置。 解:

1

S P

2

S 图

练习二 流体力学

一、填空题

1.水平放置的流管通内有理想流体水,在某两截面上,已知其中一截面A 面积是另一截面B 的两倍,在截面A 水的速度为

2.0m/s ,压强为10kPa,则另截面的水的速度为 ,压强为 。 2.雷诺数是判断生物体系内液体是做层流还是湍流流动状态的重要依据,许多藤本植物内水分流动雷诺数约为

3.33,说明一般植物组织中水分的流动是 。

3.如果其它条件不变,为使从甲地到乙地圆形管道流过的水量变为原来的16倍,则水管直径需变为原来的 倍。

4.圆形水管的某一点A,水的流速为1.0m/s,压强为3.0×105

Pa。沿水管的另一点B,比A 点低20米,A 点截面积是B 点截面积的三倍,忽略水的粘滞力,则B 点的压强为 。(重力加速度

29.8/g m s =)

5.某小朋友在吹肥皂泡的娱乐中,恰好吹成一个直径为2.00cm 的肥皂泡,若在此环境下,肥皂液的表面张力系数为0.025N/m,则此时肥皂泡内外压强差为 Pa。 二、选择题

1.水管的某一点A ,水的流速为1.0米/秒,计示压强为3.0×105Pa 。沿水管的另一点B ,比A 点低20米,A 点面积是B 点面积的三倍.则B 点的流速和计示压强分别为( )。

(A)3.0m/s,4.92×105Pa (B)0.33m/s, 4.92×105Pa (C)3.0m/s,5.93×105Pa (D )1.0m/s,5.93×105Pa

2.在如图所示的大容器中装有高度为H 的水,当在离最低点高度h 是水的高度H 多少时,水的水平距离最远。( )

(A) 1/4 (B)1/3 (C)1/2 (D)2/3

3.如图所示:在一连通管两端吹两半径不同的肥皂泡A 、B ,已知R A >R.B , 开通活塞,将出现的现象为?( )

(A)A 和B 均无变化; (B)A 变大,B 变小; (C)A 变小,B 变大; (D) )A 和B 均变小

4.下列事件中与毛细现象有关的是?( )

(2)石油开采;

(3)地下水开采;

(4)天然气开采;

(A)(1)、(2)、(4);(B)(1)、(2)、(4)、(5);

(C)(2)、(3)、(4)、(5);(D)(1)、(2)、(3)、(4)、(5);

5.在自然界中经常会出发发现这样一种现象,在傍晚时地面是干燥的,而在清晨时地面却变得湿润了。可能原因有下列五项,下列哪项组合是最合适的成因解释( D )

(1)根据对毛细现象的物理分析可知,由于水的表面张力系数与温度有关,毛细水上升的高度会随着温度的变化而变化,温度越低,毛细水上升的高度越高;(2)在白天,由于日照的原因,土壤表面的温度较高,土壤表面的水分蒸发快使傍晚时地面变得干燥的(3)土壤颗粒之间的毛细水会因白天温度升高而下降,使土壤表层变得干燥。(4)在夜间,土壤表面的温度较低,而土壤深层的温度变化不大,使得土壤颗粒间的毛细水上升;(5)夜间空气中的水汽也会因为温度下降而凝结,因而使清晨土壤表层标的湿润。

(A)(1)、(2)、(4);(B)(1)、(2)、(4)、(5);

(C)(2)、(3)、(4)、(5);(D)(1)、(2)、(3)、(4)、(5);

三、简答题

1.简述什么是毛细现象?

答:

2.述表面张力的基本性质。

四、计算题

1. 水以5.0m/s的速度通过横截面积为4.0cm2管道做稳定流动。当管道的横截面积大到8.0cm2时,

5

管道逐渐下降10m,求(1)低处管道内的水流速度.(2)如果高处管道内的压强是1.5×10

帕,求低处管内压强。设管中为理想流体作定常流动。(计示压强为实际压强P与大气压P0之差,)解:

2.圆形水管的某一点A ,水的流速为2.0米/秒,压强为

3.0×105Pa 。沿水管的另一点B ,比A 点低20米,A 点水管半径是B 点水管半径的1.41倍,忽略水的粘滞力,求B 点的水流速度和压强。(重力加速度

29.8/g m s =,水密度3

1000/kg m ρ=)

解: …

3.在变截面管的下方装有U 形管,内装水银。测量水平管道内的流速时,可将流量计串联于管道中,根据水银表面的高度差,即可求出流量或流速,这就是文特利流量计的原理。已知管道横截面为S 1和S 2,水银与液体的密度各为ρρ汞与,水银面高度差为h ,求液体流量。设管中为理想流体作定常流动。 解:

4.某同学在用毛细管升高法测量蒸馏水表面张力系数时,测得毛细管的内径为1.005mm ,液柱高度差h 为29.000mm ,考虑水能完全润湿玻璃毛细管壁,且不考虑凹液面下端以上液体重量,试问该同学测得的水的表面张力为系数多少?(重力加速度2

9.8/g m s =,水密度31000/kg m ρ

=)

解:

5.一粗细U 型玻璃管,右端半径R =1.5mm ,左端半径r =0.50mm ,将U

水面离管口有一段距离),已知接触角为0,已知重力加速度2

9.8/g m s = (1)那端液面高,液面是凸还是凹? (2)两边水面的高度差? 解:

练习三热学

一、填空题

M,分子数密度为n的理想气体,处于平衡态时,状态方程为___ ___,

1.质量为M,摩尔质量为

mol

状态方程的另一形式为____ __,其中k称为___ ____常数。

2.两种不同种类的理想气体,其分子的平均平动动能相等,但分子数密度不同,则它们的温度相同,压强;如果它们的温度、压强相同,但体积不同,则它们的分子数密度,单位体积的气体质量,单位体积的分子平动动能。(填“相同”或“不同”)。

3. 宏观量温度T与气体分子的平均平动动能ω的关系为ω=_ ___,因此,气体的温度是__ __的量度。

4.设氮气为刚性分子组成的理想气体,其分子的平动自由度数为__ ___,转动自由度为___ ___。

5.2mol氢气,在温度为27℃时,它的分子平动动能为,分子转动动能为。

6.1mol氧气和2mol氮气组成混合气体,在标准状态下,氧分子的平均能量为__ __,氮分子的平均能量为_ __;氧气与氮气的内能之比为__ __。

7 .3mol的理想气体开始时处在压强p1 =6atm、温度T1 =500 K 的平衡态.经过一个等温过程,压强变为p2 =3atm.该气体在此等温过程中吸收的热量为Q=_ ________J.(普适气体常量R = 8.31 J/mol·K)

8. 在一个孤立系统内,一切实际过程都向着_____________的方向进行.这就是热力学第二定律的统计意义.从宏观上说,一切与热现象有关的实际的过程都是__ _________.

9.右图为一理想气体几种状态变化过程的p-V 图,其中MT 为等温线,MQ

为绝热线,在AM、BM、CM 三种准静态过程中:

(1)温度升高的是_________过程;(2) 气体吸热的是_________过程.

10.可逆卡诺热机可以逆向运转.逆向循环时, 从低温热源吸热,向高温热源放

热,而且吸的热量和放出的热量等于它正循环时向低温热源放出的热量和从高温

热源吸的热量.设高温热源的温度为T1 =450 K , 低温热源的温度为T2 =300 K, 卡诺热机逆向循环时从低温热源吸热Q2 =400 J,则该卡诺热机逆向循环一次外界必须作功W=___ ___.

11.热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了_______________的过程是不可逆的,而克劳修斯表述指出了

____________的过程是不可逆的。

12.由绝热材料包围的容器被隔板隔为两半,左边是理想气体,右边真空.如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度________(升高、降低或不变),气体的熵_________(增加、减小或不变)。

二、选择题

1.关于温度的意义,有下列几种说法:

(1)气体的温度是分子平均平动动能的量度;(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4)从微观上看,气体的温度表示每个气体分子的冷热程度.这些说法中正确的是[ ]

(A)(1)、(2) 、(4); (B)(1)、(2) 、(3); (C)(2)、(3) 、(4); (D)(1)、(3) 、(4)。

2.若理想气体的体积为V ,压强为P ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为 [ ]

(A )m PV /; (B ))/(kT PV ; (C ))/(RT PV ; (D ))/(mT PV 。

3.若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了[ ] (A)0.5%; (B) 4%; (C)9%; (D)21%

4.若在某个过程中,一定量的理想气体的内能E 随压强p 的变化关系为一直线(其延长线过E -p 图的原点),则该过程为[ ] (A) 等温过程. (B) 等压过程. (C) 等体过程. (D) 绝热过程.

5.如果氢气和氦气的温度相同,摩尔数也相同,则 [ ] (A )这两种气体的平均动能相同; (B )这两种气体的平均平动动能相同; (C )这两种气体的内能相等; (D )这两种气体的势能相等。

6.在容积V =4×10-3m 3 的容器中,装有压强P =5×102 Pa 的理想气体,则容器中气体分子的平动动能总和为[ ]

(A)2J ; (B) 3J ; (C)5J ; (D)9J .

7.对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比W /Q 等于[ ]

(A) 2/3; (B) 1/2; (C) 2/5; (D) 2/7。

8.一定质量的理想气体完成一循环过程.此过程在V -T 图中用图线1→2→3→1 描写.该气体在循环过程中吸热、放热的情况是[ ] (A) 在1→2,3→1 过程吸热;在2→3 过程放热. (B) 在2→3 过程吸热;在1→2,3→1 过程放热. (C) 在1→2 过程吸热;在2→3,3→1 过程放热. (D) 在2→3,3→1 过程吸热;在1→2 过程放热.

9.一定量的理想气体经历acb 过程时吸热500 J .则经历acbda 过程时,吸热为[ ] (A) –1200 J ; (B) –700 J ; (C) –400 J ; (D) 700 J .

10.理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为1S 和2S ,则两者的大小关系为:[ ] (A )1S >2S ;

( B )1S <2S ; (C )1S =2S ; (D )无法确定。

(1) 可逆过程一定是平衡过程;(2) 平衡过程一定是可逆过程;(3) 不可逆过程发生后一定找不到另一过程使系统和外界同时复原;(4) 非平衡过程一定是不可逆过程.以上说法,正确的是:[ ] (A) (1)、(2)、(3); (B) (2)、(3)、(4); (C) (1)、(3)、(4); (D) (1)、(2)、(3) 、(4).

12.两个完全相同的气缸内盛有同种气体,设其初始状态相同,今使它们分别作绝热压缩至相同的体积,其中气缸1 内的压缩过程是非准静态过程,而气缸2内的压缩过程则是准静态过程.比较这两种情况的温度变化:[ ]

(A)气缸1和2内气体的温度变化相同; (B)气缸1内的气体较气缸2内的气体的温度变化大; (C) 气缸1和2内的气体的温度无变化; (D)气缸1内的气体较气缸2内的气体的温度变化小。

13.一定量的理想气体向真空作绝热自由膨胀,体积由V 1 增至V 2,在此过程中气体的[ ] (A)内能不变,熵增加;(B) 内能不变,熵减少;C)内能不变,熵不变; (D)内能增加,熵增加. 三、简答题

1.关于热力学第二定律,下列说法是否有错,如有错误请改正:

(1) 热量不能从低温物体传向高温物体.(2) 功可以全部转变为热量,但热量不能全部转变为功.

答:

四、计算题

1. 1mol 单原子理想气体从300K 加热到350K ,

(1)容积保持不变; (2)压强保持不变;

问在这两个过程中各吸收了多少热量?增加了多少内能?对外做了多少功? 解:

2.质量为kg 3

108.2?×、温度为300K 、压强为标准大气压的氮气,等压膨胀到原来体积的两倍。求氮气所作的功p W 、吸收的热量P Q 以及内能的增量U Δ。

解:

3.一定量的单原子分子理想气体,在等压过程中对外做功为200J ,则该过程吸热多少?内能改变多少? 解:

4. 1mol 的氢,在压强为1.0×105Pa ,温度为20℃时,其体积为0V 。今使它经以下两种过程达到同一状态: (1)先保持体积不变,加热使其温度升高到80℃,然后令它作等温膨胀,体积变为原体积的2倍; (2)先使它作等温膨胀至原体积的2倍,然后保持体积不变,加热使其温度升到80℃。试分别计算以上两种过程中吸收的热量,气体对外作的功和内能的增量。

5. 1mol 双原子分子理想气体从状态A(1p ,1V )沿V p ??图所示直线变化到状态B(2p ,2V ),试求: (1)气体的内能增量。

(2)气体对外界所作的功。 (3)气体吸收的热量。

(已知p p Pa V V L 5

21212 2.010,250.0==×==)

解:

1

2

练习四静电场

一、填空题

1.点电荷q1、q2、q3和q4在真空中的分布如图所示.图中S 为闭合曲面,则

通过该闭合曲面的电场强度通量

s E dS

i

=____________,式中的E 是点电荷

__ __在闭合曲面上任一点产生的场强的矢量和.

2.在边长为a的正方体中心处放置一电荷为Q的点电荷,则正方体顶角处的电

场强度的大小为_____________

3.一半径为R的均匀带电圆环,电荷线密度为λ.设无穷远处为电势零点,则圆环中心O点的电势U =_______________.

4.一半径为R的均匀带电导体球壳,带电荷为Q.球壳内、外均为真空.设无限远处为电势零点,则壳内各点电势U =______________.

5.在点电荷q 的电场中,把一个-1.0×10-9 C的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离 0.1 m 处,克服电场力作功1.8×10-5 J,则该点电荷q=________________.

(真空介电常量 ε0=8.85×10-12 C2·N-1·m-2 )

6.一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r处.若设两点电荷相距无限远时电势能为零,则此时的电势能We=_________________.

7. 图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电

荷为+q 的点电荷,O 点有一电荷为-q 的点电荷.线段BA = R .现将一

单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所作的

_____________________。

二、选择题

1. 如图所示,任一闭合曲面S内有一点电荷q,O为S面上任一点,若将q由闭合曲面内的P点移到T 点,且OP=OT,那么()

(A) 穿过S面的电通量改变,O点的场强大小不变;

(B) 穿过S面的电通量改变,O点的场强大小改变;

(C) 穿过S面的电通量不变,O点的场强大小改变;

(D) 穿过S面的电通量不变,O点的场强大小不变。

2. 半径为R的均匀带电球体的静电场中各点的电场强度的大小E与距球心的距离r 的关系曲线为:()

3.冬季人们脱毛衣时,常听见噼里啪啦的放电声,下列那些说法不确切( )

(A)毛衣和内衣都是绝缘材料,脱毛衣时发生摩擦,产生正负电荷;

(B)空气潮湿时,含有大量的正负离子,有助于放电产生;

(D)放电声的产生是因为产生很高电场将空气击穿。

4. 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出:( ) (A) EA >EB >EC ,UA >UB >UC . (B) EA <EB <EC ,UA <UB <UC . (C) EA >EB >EC ,UA <UB <UC . (D) EA <EB <EC ,UA >UB >UC .

5.面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为( )

(A)20q S ε;(B)202q S ε;(C)2202q S ε;(D)22

0q S ε

6.一点电荷,放在球形高斯面的中心处.下列哪一种情况,通过高斯面的电场强度通量发生变化:( ) (A) 将另一点电荷放在高斯面外. (B) 将另一点电荷放进高斯面内.

(C) 将球心处的点电荷移开,但仍在高斯面内. (D) 将高斯面半径缩小.

7. 当一个带电导体达到静电平衡时:( ) (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高.

(C) 导体内部的电势比导体表面的电势高.

(D) 导体内任一点与其表面上任一点的电势差等于零.

8. 真空中有一点电荷Q ,在与它相距为r 的a 点处有一试验电荷q .现使试验电荷q 从a 点沿半圆弧轨道运动到b 点,如图所示.则电场力对q 作功为( )

(A)22

042Qq r r ππε;(B) 2024Qq r r πε;(C) 204Qq r r

ππε;(D)0 9.真空中有两个点电荷M 、N ,相互间作用力为F

,当另一点电荷Q 移近这

两个点电荷时,M 、N 两点电荷之间的作用力( ) (A) 大小不变,方向改变. (B) 大小改变,方向不变. (C) 大小和方向都不变. (D) 大小和方向都改.

10.在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现:( ) (A) 球壳内、外场强分布均无变化. (B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变. (D) 球壳内、外场强分布均改变.

11. 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB 两板间的电势差U AB 为( ) (A)1202q q d S ε+ (B) 1204q q d S ε+ (C) 1202q q d S ε?. (D) 1204q q

d S

ε?

三、简答题

为什么在无电荷的空间里电场线不能相交? 答:

四、计算题

1.在x 轴上,有以点电荷6

12010q C ?=×,位于原点,另一点电荷6

25010q C ?=×,位于x=-10cm 处。试求x 轴上任一点的电场强度。

解:

2.在直角三角形ABC 的A 点,放置点电荷9

1 1.810q C ?=×,在B 点放置点电荷9

2 4.810q C ?=?×。

已知BC=0.04m ,AC=0.03m 。试求直角顶点C 处的场强E

解:

3.电荷为+q 和-2q 的两个点电荷分别置于x =1 m 和x =-1 m 处.一试验电荷置于x 轴上何处,它受到的合力等于零? 解:

4.如图所示,AB=2l,OCD是以B为中心、l为半径的圆,点A处有正点荷+q,点B处有负电荷-q,求: (1)把单位正点电荷从O点沿OCD移到D点,电场力对它作了多少功?

(2)把单位正点荷从D点沿AB的延长线移到无穷远出,电场力对它作了多少功? 解:

5..如图所示,已知

q q cm d cm r 28

1103,103,8,6?×?=×===(1)将电荷量为9

102?×C 的点电荷从A 点移到B (2)将此点电荷从C 点移到D 点,电场力作功多少?(ε0=8.85×10解.:

练 习 五 稳恒电流磁场 电磁感应定律

一、填空题

1. 如图所示,均匀磁场的磁感应强度为B =0.2T ,方向沿x 轴正方向,则通过abod 面的磁通量为______ ___,通过befo 面的磁通量为_________,通过aefd 面的磁通量为_______。

2. 如图所示,两根无限长载流直导线相互平行,通过的电流分别为I 1和I 2。则

=?∫1

L l d B K

K ____________,

=?∫2

L l d B K

K __________。

3. 试写出下列两种情况的平面内的载流均匀导线在给定点P 处所产生的磁感强度的大小. (1) B = ;

(2) B = 。

4. 感应电场是由 产生的,它的电场线是 。 5. 如图所示,一段长度为l 的直导线MN ,水平放置在载电流为I 的竖直长导线旁与竖直导线共面,并从静止由图示位置自由下落,则t 秒末导线两端的电势差

M N U U ?______________________.

二、选择题

1. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r ),两螺线管单位长度上的匝数相等。两螺线管中的磁感应强度大小B R 和B r 应满足:( ) (A )B R =2B r ;(B )B R =B r ; (C )2B R =B r ; (D )B R =4B r

2. 磁场的高斯定理∫∫=?0S d B K

K 说明了下面的哪些叙述是正确的? ( )

a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;

b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;

c 一根磁感应线可以终止在闭合曲面内;

d 一根磁感应线可以完全处于闭合曲面内。 (A )ad ; (B )ac ; (C )cd ; (D )ab 。

3. 如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ和面上各点的磁感应强度B 将如何变化? ( D )

(A )Φ增大,B 也增大; (B )Φ不变,B 也不变; (C )Φ增大,B 不变;(D )Φ不变,B 增大

4. 如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将 ( )

30

1

(C) 转动; (D) 不动。

5. 若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布( ) (A) 不能用安培环路定理来计算. (B) 可以直接用安培环路定理求出. (C) 只能用毕奥-萨伐尔定律求出.

(D) 可以用安培环路定理和磁感强度的叠加原理求出.

6.闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO’转动,转轴与磁场方向垂直,转动角速度为ω,如图所示。用下述哪种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略)?( )

A. 把线圈的匝数增加到原来的两倍。

B. 把线圈的面积增加到原来的两倍,而形状不变。

C. 把线圈切割磁力线的两条边增长到原来的两倍。

D. 把线圈的角速度ω增大到原来的两倍。

7. 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO’轴匀角速度ω旋转(如图所示)。设t=0时,线框平面处于纸面内,则任一时刻感应电动势的大小为:( ) (A )2abB|cos ωt| (B) ωabB

(C) 1

cos 2

abB t ωω (D) ωabB|cos ωt| (E) ωabB|sin ωt|

8. 如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的 垂直于棒长且沿磁场方向

的轴OO ′转动(角速度ωG

与B G 同方向),BC 的长度为棒长的1

3

,则 ( )

(A) A 点比B 点电势高. (B) A 点与B 点电势相等. (B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点

9. 在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为a ,则通过半球面S 的磁通量(取弯面向外为正)为 ( ) (A)

2r B π. . (B) 22r B π.(C) 2sin r B πα?. (D) 2

cos r B πα?

10.图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是( ) (A) Oa . (B) Ob . (C) Oc . (D) Od .

11.涡流的热效应在某些情况下是非常有害的,为了减少变压器中的铁芯由于涡流的存在而产生的大量热,下列那些做法不妥( )

(A)将铁芯做成片状;(B)铁片平面的放置方向应和线圈中磁感应强度的方向平行;

O’

三、简答题

判断下列说法是否正确,并说明理由:

若所取围绕长直载流导线的积分路径是闭合的,但不是圆,安培环路定理也成立. 若围绕长直载流导线的积分路径是闭合的,但不在一个平面内,则安培环路定理不成立. 答:

四、计算题

1.2.将通有电流I =5.0A 的无限长导线折成如图形状,已知半圆环的半径为R =0.10m ,求圆心O 点的磁感应强度。)A /Tm (70104?×=πμ

2. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),AB EF R ==,大

圆弧p BC 的半径为R ,小圆弧p DE 的半径为12

R ,求圆心O 处的磁感强度B J G 的大小和方向.

解:

3.无限长直导线折成V 形,顶角为θ ,置于xy 平面内,一个角边与x 轴重合,如图.当导线中有电流 I 时,求y 轴上一点P (0,a)处的磁感强度大小. 解:

4.如图所示,一根长为L 的金属细杆ab 绕竖直轴O 1O 2以角速度ω在水平面内旋转.O 1O 2在离细杆a 端

L /5 处.若已知地磁场在竖直方向的分量为B J G

.求ab 两端间的电势差a b U U ?.

解:

5.如图所示,一无限长直导线通有电流I=5.0A ,一矩形单匝线圈与此长直导线共面。设矩形线圈以V=2.0m/s 的速度垂直于长直导线向右运动。已知:l=0.40m, a=0.20m, d=0.20m ,求矩形线圈中的感应电动势。若若线圈保持不动,而长直导线中的电流变为交变电流()i t A 10sin 100π=i=10,求线圈中的感应电动势。(不计线圈的自感) 解:

6.真空中有一载流导线 abcde ,如图所示,电流为I ,圆弧对应的曲率半径为R ,求O 点的磁感应强度的大小和方向。

R

大学物理测试题及答案3

波动光学测试题 一.选择题 1. 如图3.1所示,折射率为n2 、厚度为e的透明介质薄膜的上方和下方的透明介质的折射率分别为n1和n3,已知n1 <n2 >n3,若用波长为(的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①②示意)的光程差是 (A) 2n2e. (B) 2n2e-(/(2 n2 ). (C) 2n2e-(. (D) 2n2e-(/2. 2. 如图 3.2所示,s1、s2是两个相干光源,它们到P点的距离分别为r1和r2,路径s1P垂直穿过一块厚度为t1,折射率为n1的介质板,路径s2P垂直穿过厚度为t2,折射率为n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) (r2 + n2 t2)-(r1 + n1 t1). (B) [r2 + ( n2-1) t2]-[r1 + (n1-1)t1]. (C) (r2 -n2 t2)-(r1 -n1 t1). (D) n2 t2-n1 t1. 3. 如图3.3所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e,并且n1<n2>n3,(1 为入射光在折射率为n1 的媒质中的波长,则两束反射光在相遇点的位相差为 (A) 2 ( n2 e / (n1 (1 ). (B) 4 ( n1 e / (n2 (1 ) +(. (C) 4 ( n2 e / (n1 (1 ) +(. (D) 4( n2 e / (n1 (1 ). 4. 在如图3.4所示的单缝夫琅和费衍射实验装置中,s为单缝,L为透镜,C为放在L的焦面处的屏幕,当把单缝s沿垂直于透镜光轴的方向稍微向上平移时,屏幕上的衍射图样 (A) 向上平移.(B) 向下平移.(C) 不动.(D) 条纹间距变大. 5. 在光栅光谱中,假如所有偶数级次的主极大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为 (A) a = b. (B) a = 2b. (C) a = 3b. (D) b = 2a. 二.填空题 1. 光的干涉和衍射现象反映了光的性质, 光的偏振现象说明光波是波. 2. 牛顿环装置中透镜与平板玻璃之间充以某种液体时,观察到第10级暗环的直径由1.42cm 变成1.27cm,由此得该液体的折射率n = . 3. 用白光(4000?~7600?)垂直照射每毫米200条刻痕的光栅,光栅后放一焦距为200cm的凸透镜,则第一级光谱的宽度为. 三.计算题 1. 波长为500nm的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上,在观察反射光的干涉现象中,距劈尖棱边l = 1.56cm的A处是从棱边算起的第四条暗条纹中心. (1) 求此空气劈尖的劈尖角( . (2) 改用600 nm的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A处是明条纹,还是暗条纹? 2. 设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有5000条刻线,用它来观察波长为(=589 nm的钠黄光的光谱线. (1) 当光线垂直入射到光栅上时,能看到的光谱线的最高级数km 是多少? (2) 当光线以30(的入射角(入射线与光栅平面法线的夹角)斜入射到光栅上时,能看到的光谱线的最高级数km 是多少? 3.在杨氏实验中,两缝相距0.2mm,屏与缝相距1m,第3明条纹距中央明条纹7.5mm,求光波波长?

大学物理下答案习题14

习题14 14.1 选择题 (1)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹[ ] (A) 对应的衍射角变小. (B) 对应的衍射角变大. (C) 对应的衍射角也不变. (D) 光强也不变. [答案:B] (2)波长nm (1nm=10-9m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d=12mm,则凸透镜的焦距是[ ] (A)2m. (B)1m. (C)0.5m. (D)0.2m. (E)0.1m [答案:B] (3)波长为的单色光垂直入射于光栅常数为d、缝宽为a、总缝数为N的光栅上.取k=0,±1,±2....,则决定出现主极大的衍射角的公式可写成[ ] (A) N a sin=k. (B) a sin=k. (C) N d sin=k. (D) d sin=k. [答案:D] (4)设光栅平面、透镜均与屏幕平行。则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级次k [ ] (A)变小。 (B)变大。 (C)不变。 (D)的改变无法确定。 [答案:B] (5)在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为[ ] (A) a=0.5b (B) a=b (C) a=2b (D)a=3b [答案:B] 14.2 填空题 (1)将波长为的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为,则缝的宽度等于________________. λθ] [答案:/sin (2)波长为的单色光垂直入射在缝宽a=4 的单缝上.对应于衍射角=30°,单缝处的波面可划分为______________个半波带。 [答案:4] (3)在夫琅禾费单缝衍射实验中,当缝宽变窄,则衍射条纹变;当入射波长变长时,则衍射条纹变。(填疏或密) [答案:变疏,变疏]

大学物理练习题(下)

第十一章真空中的静电场 1.如图所示,真空中一长为L的均匀带电细直杆,电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度. L P 2.一个点电荷位于一边长为a的立方体高斯面中心,则通过此高斯面的电通量为???,通过立方体一面的电场强度通量是???,如果此电荷移到立方体的一个角上,这时通过(1)包括电荷所在顶角的三个面的每个面电通量是???,(2)另外三个面每个面的电通量是???。 3.在场强为E的均匀静电场中,取一半球面,其半径为R,E的方向和半球的轴平行,可求得通过这个半球面的E通量是() A.E R2 π B. R2 2π C. E R2 2π D. E R2 2 1 π 4.根据高斯定理的数学表达式?∑ ?= S q S E / dε ? ? 可知下述各种说法中,正确的是() (A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零. (B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零. (D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷. 5.半径为R的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E与距轴线的距离r的关系曲线为( ) E O r (A) E∝1/r 6.如图所示, 电荷-Q均匀分布在半径为R,长为L的圆弧上,圆弧的两端有一小空隙,空隙长为图11-2 图11-3

)(R L L <

大学物理课后习题答案(赵近芳)下册

习题八 8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系 ? 解: 如题8-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 2 220)3 3(π4130cos π412a q q a q '=?εε 解得 q q 3 3- =' (2)与三角形边长无关. 题8-1图 题8-2图 8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2 图所示.设小球的半径和线的质量都可 解: 如题8-2图示 ?? ? ?? ===220)sin 2(π41 sin cos θεθθl q F T mg T e 解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式2 04r q E πε= ,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解 ?

解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电 荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f = 2 024d q πε,又有人 说,因为f =qE ,S q E 0ε=,所以f =S q 02 ε.试问这两种说法对吗?为什么? f 到底应等于多少 ? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε= ,另一板受它的作用 力S q S q q f 02 022εε= =,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为 r E = 302cos r p πεθ, θ E =3 04sin r p πεθ 证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量 θsin p . ∵ l r >>

大学物理(上)课后习题标准答案

大学物理(上)课后习题答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2 m ⑵ 1 t s,2 t s 时,j i r 5.081 m ;2114r i j v v v m ∴ 213 4.5r r r i j v v v v v m ⑶0t s 时,054r i j v v v ;4t s 时,41716r i j v v v ∴ 140122035m s 404r r r i j i j t v v v v v v v v v ⑷ 1 d 3(3)m s d r i t j t v v v v v ,则:437i j v v v v 1s m (5) 0t s 时,033i j v v v v ;4t s 时,437i j v v v v 24041 m s 44 j a j t v v v v v v v v v (6) 2d 1 m s d a j t v v v v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x ,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x v v v v 得:2 d d (26)d a x x x v v 两边积分 210 d (26)d x x x v v v 得:2322250x x v ∴ 31225 m s x x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2 ⑴ s 2 t 时,2 s m 362181 R a 2 222s m 1296)29(1 R a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a 即: R R 2 ,亦即t t 18)9(2 2 ,解得:9 2 3 t 则角位移为:32 2323 2.67rad 9 t 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为 =0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2 t 时,4.02 2.0 t 1s rad 则0.40.40.16R v 1s m 064.0)4.0(4.022 R a n 2 s m 0.40.20.08a R 2 s m 22222s m 102.0)08.0()064.0( a a a n 与切向夹角arctan()0.0640.0843n a a

大学物理练习册习题答案

大学物理练习册习题答案

练习一 (第一章 质点运动学) 一、1.(0586)(D )2.(0587)(C )3.(0015)(D )4.(0519)(B ) 5.(0602)(D ) 二、1.(0002)A t= 1.19 s t= 0.67 s 2.(0008)8 m 10 m 3.(0255)() []t t A t ωβωωωβ βsin 2cos e 22 +--,()ωπ/122 1+n , (n = 0, 1, 2,…) 4.(0588) 30/3 Ct +v 4 00112 x t Ct ++ v 5.(0590) 5m/s 17m/s 三、 1.(0004)解:设质点在x 处的速度为v , 2 d d d 26 d d d x a x t x t ==?=+v v ()2 d 26d x x x =+??v v v () 2 2 1 3 x x +=v 2.(0265)解:(1) /0.5 m/s x t ??==-v (2) 2 =/96dx dt t t =- v (3) 2= 6 m/s -v |(1.5)(1)||(2)(1.5)| 2.25 m S x x x x =-+-= 3.(0266)解:(1) j t r i t r j y i x r ????? sin cos ωω+=+=

(2) d sin cos d r r t i r t j t ωωωω==-+v v v v v 22 d cos sin d a r t i r t j t ωωωω==--v v v v v (3) ()r j t r i t r a ???? sin cos 22 ωωωω-=+-= 这说明 a ?与 r ? 方向相反,即a ?指向圆心. 4. 解:根据题意t=0,v=0 --------==?+?∴=?+?=====?+?=+?+?? ??? ??由于及初始件v t t r t t r dv adt m s i m s j dt v m s ti m s tj dr v t r m i dt dr vdt m s ti m s tj dt r m m s t m s t j 0 220 220 220 2222[(6)(4)] (6)(4)0,(10)[(6)(4)][10(3)][(2)] 质点运动方程的分量式: --=+?=?x m m s t y m s t 2 2 22 10(3)(2) 消去参数t ,得到运动轨迹方程 =-y x 3220 练习二(第一章 质点运动学) 一、1.(0604)(C ) 2.(5382)(D ) 3.(5627)(B ) 4.(0001)(D ) 5.(5002)(A ) 二、1.(0009) 0 bt +v 2. (0262) -c (b -ct )2/R

大学物理学上练习题(供参考)

一. 选择题 1. 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作[ ]。 (A) 匀加速直线运动,加速度沿x 轴正方向; (B) 匀加速直线运动,加速度沿x 轴负方向; (C) 变加速直线运动,加速度沿x 轴正方向; (D) 变加速直线运动,加速度沿x 轴负方向。 2. 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,t a 表示切向加速度,下列表达式中[ ]。 (1) a t = d /d v , (2) v =t /r d d , (3) v =t S d /d , (4) t a t =d /d v 。 (A) 只有(1)、(4)是对的; (B) 只有(2)、(4)是对的; (C) 只有(2)是对的; (D) 只有(3)是对的。 3. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作[ ]。 (A) 匀速直线运动; (B) 变速直线运动; (C) 抛物线运动; (D)一般曲线运动。 4. 一小球沿斜面向上运动,其运动方程为s=5+4t -t 2 (SI), 则小球运动到最高点的时刻是 [ ]。 (A) t=4s ; (B) t=2s ; (C) t=8s ; (D) t=5s 。 5. 一质点在xy 平面内运动,其位置矢量为j t i t r ?)210(?42-+= (SI ),则该质点的位置 矢量与速度矢量恰好垂直的时刻为[ ]。 (A) s t 2=; (B )s t 5=; (C )s t 4=; (D )s t 3=。 6. 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量。当0=t 时,初速 为v 0,则速度v 与时间t 的函数关系是[ ]。 (A) 0221v v +=kt ; (B) 022 1v v +-=kt ; (C) 02121v v +=kt ; (D) 0 2121v v +-=kt 。 [ ] 7. 一质点在0=t 时刻从原点出发,以速度0v 沿x 轴运动,其加速度与速度的关系为 2a k =-v ,k 为正常数,这质点的速度v 与所经路程x 的关系是[ ]。 (A) 0kx e -=v v ; (B) 02 012x =-v v ()v ;

大学物理练习册习题及答案4

习题及参考答案 第3章 刚体力学 参考答案 思考题 3-1刚体角动量守恒的充分而必要的条件是 (A )刚体不受外力矩的作用。 (B )刚体所受合外力矩为零。 (C)刚体所受的合外力和合外力矩均为零。 (D)刚体的转动惯量和角速度均保持不变。 答:(B )。 3-2如图所示,A 、B 为两个相同的绕着轻 绳的定滑轮。A 滑轮挂一质量为M 的物体, B 滑轮受拉力F ,而且F =Mg 。设A 、B 两 滑轮的角加速度分别为βA 和βB ,不计滑轮 轴的摩擦,则有 (A )βA = βB (B )βA > βB (C )βA < βB (D )开始时βA = βB ,以后βA < βB 答:(C )。 3-3关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。 (B)取决于刚体的质量和质量的空间分布,与轴的位置无关。 (C )取决于刚体的质量、质量的空间分布和轴的位置。 (D)只取决于转轴的位置,与刚体的质量和质量的空间分布无 答:(C )。 3-4一水平圆盘可绕通过其中心的固定铅直轴转动,盘上站着一个人,初始时整个系统处于静止状态,当此人在盘上随意走动时,若忽略轴的摩擦,则此系统 (A)动量守恒; (B)机械能守恒; (C)对转轴的角动量守恒; (D)动量、机械能和角动量都守恒; (E)动量、机械能和角动量都不守恒。 答:(C )。 3-5光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点o 且垂直于 杆的竖直光滑固定轴自由转动,其转动惯量为2 13mL , 起初杆静止,桌面上有两个质量均为m 的小球,各自在 垂直于杆的方向上,正对着杆的一端,以相同速率v 相向 运动,如图所示,当两小球同时与杆的两个端点发生完全 非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 A M F 思考题3-2图 v 思考题3-5图

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

大学物理练习题册答案

练习一 质点运动学 1、26t dt d +== ,61+= ,t v 261 331+=-=-? , a 241 31 331=--=- 2、020 22 12110 v Kt v Ktdt v dv t Kv dt dv t v v +=?-?=??-= 所以选(C ) 3、因为位移00==v r ?,又因为,0≠?0≠a 。所以选(B ) 4、选(C ) 5、(1)由,mva Fv P ==dt dv a = ,所以:dt dv mv P =,??=v t mvdv Pdt 0 积分得:m Pt v 2= (2)因为m Pt dt dx v 2==,即:dt m Pt dx t x ??=0 02,有:2 3 98t m P x = 练习二 质点运动学 (二) 1、 平抛的运动方程为 202 1gt y t v x ==,两边求导数有: gt v v v y x ==0,那么 2 22 0t g v v +=, 2 22 022t g v t g dt dv a t +==, = -=22 t n a g a 2 220 0t g v gv +。 2、 2241442s /m .a ;s /m .a n n == 3、 (B ) 4、 (A ) 练习三 质点运动学

1、023 2332223x kt x ;t k )t (a ;)k s (t +=== 2、0321`=++ 3、(B ) 4、(C ) 练习四 质点动力学(一) 1、m x ;912== 2、(A ) 3、(C ) 4、(A ) 练习五 质点动力学(二) 1、m 'm mu v )m 'm (v V +-+-=00 2、(A ) 3、(B ) 4、(C ) 5、(1)Ns v v m I v s m v t t v 16)(,3,/19,38304042=-===+-= (2)J mv mv A 1762 1212 024=-= 练习六、质点动力学(三) 1、J 900 2、)R R R R ( m Gm A E 2 12 1-= 3、(B ) 4、(D ) 5、)(2 1 222B A m -ω 练习七 质点动力学(四) 1、) m m (l Gm v 212 2 12+= 2、动量、动能、功 3、(B )

大学物理下册练习题

静电场部分练习题 一、选择题 : 1.根据高斯定理的数学表达式?∑=?0 εq s d E ,可知下述各种说法中正确的是( ) A 闭合面的电荷代数和为零时,闭合面上各点场强一定为零。 B 闭合面的电荷代数和不为零时,闭合面上各点场强一定处处不为零。 C 闭合面的电荷代数和为零时,闭合面上各点场强不一定处处为零。 D 闭合面上各点场强均为零时,闭合面一定处处无电荷。 2.在静电场中电场线为平行直线的区域( ) A 电场强度相同,电势不同; B 电场强度不同,电势相同; C 电场强度、电势都相同; D 电场强度、电势都不相同; 3.当一个带电导体达到静电平衡时,( ) A 表面上电荷密度较大处电势较高。 B 表面曲率较大处电势较高。 C 导体部的电势比导体表面的电势高; D 导体任一点与其表面上任意点的电势差等于零。 4.有四个等量点电荷在OXY 平面上的四种不同组态,所有点电荷均与原点等距,设无穷远处电势为零。则原点O 处电场强度和电势均为零的组态是( ) A 图 B 图 C 图 D 图 5.关于高斯定理,下列说法中哪一个是正确的?( ) A 高斯面不包围自由电荷,则面上各点电位移矢量D 为零。 B 高斯面上处处D 为零,则面必不存在自由电荷。 C 高斯面上D 通量仅与面自由电荷有关。 D 以上说法都不对。 6.A 和B 为两个均匀带电球体,A 带电量+q ,B 带电量-q ,作一个与A 同心的球面S 为高斯面,如图所示,则( ) S A B

A 通过S 面的电通量为零,S 面上各点的场强为零。 B 通过S 面的电通量为 εq ,S 面上各点的场强大小为2 04r q E πε= 。 C 通过S 面的电通量为- εq ,S 面上各点的场强大小为2 04r q E πε- =。 D 通过S 面的电通量为 εq ,但S 面上场强不能直接由高斯定理求出。 7.三块互相平行的导体板,相互之间的距离1d 和2d ,与板面积相比线度小得多,外面二板用导线连接,中间板上带电,设左、右两面上电荷面密度分别为1σ,2σ。如图所示,则比值1σ/2σ为( ) A 1d /2d ; B 1 C 2d /1d ; D (2d /1d )2 8.一平板电容器充电后切断电源,若改变两极板间的距离,则下述物理量中哪个保持不变?( ) A 电容器的电容量 B 两极板间的场强 C 两极板间的电势差 D 电容器储存的能量 9.一空心导体球壳,其外半径分别为1R 和2R ,带电量q ,当球壳中心处再放一电量为q 的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为( )。 A 1 04R q πε B 2 04R q πε C 1 02R q πε D 2 02R q πε 10.以下说确的是( )。 A 场强为零的地方,电势一定为零;电势为零的地方,均强也一定为零; B 场强大小相等的地方,电势也相等,等势面上各点场强大小相等; C 带正电的物体,也势一定是正的,不带电的物体,电势一定等于零。 D 沿着均场强的方向,电势一定降低。 11.两个点电荷相距一定的距离,若在这两个点电荷联线的中垂线上电势为零,那么这两个点电荷为( )。

大学物理(上)练习题1

4、一质点沿y 轴作直线运动,速度,=0时,,采用SI 单位制,则质点得运动方程为;加速度= 4m/s2 。 3、质量为得子弹以速率水平射入沙土中.若子弹所受阻力与速率成正比(比例系数为),忽略子弹重力得影响,则:(1)子弹射入沙土后,;(2)子弹射入沙土得深度。 4、一质量为、半径为得均匀圆盘,以圆心为轴得转动惯量为,如以与圆盘相切得直线为轴,其转动惯量为。 3、一个人在平稳地行驶得大船上抛篮球,则( D )。 A、向前抛省力; B 、向后抛省力;C、向侧抛省力; D 、向哪个方向都一样。 13、关于刚体得转动惯量,以下说法正确得就是:( A )。 A、刚体得形状大小及转轴位置确定后,质量大得转动惯量大; B、转动惯量等于刚体得质量; C、转动惯量大得角加速度一定大; D 、以上说法都不对。 14、关于刚体得转动惯量,以下说法中哪个就是错误得?( B ). A 、转动惯量就是刚体转动惯性大小得量度; B 、转动惯量就是刚体得固有属性,具有不变得量值; ? C、对于给定转轴,刚体顺转与反转时转动惯量得数值相同; D、转动惯量就是相对得量,随转轴得选取不同而不同. 15、两个质量均匀分布、重量与厚度都相同得圆盘A 、B,其密度分别为与.若,两圆盘得旋转轴都通过盘心并垂直盘面,则有( B )。 A、; B 、; C 、; D 、不能确定、哪个大。 19、均匀细棒OA,可绕通过其一端而与棒垂直得水平固定光滑轴转动,如右下图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置得过程中,下述说法正确得就是( C )。 A、角速度从小到大,角加速度不变;B 、角速度从小到大,角加速度从小到大; C 、角速度从小到大,角加速度从大到小; D、角速度不变,角加速度为零。 4、一个质量为M 、半径为R得定滑轮(当作均质圆盘)上面绕有细绳。绳得一端在滑轮边缘上,另一端挂一质量为m 得物体。忽略轴处摩擦,求物体 m由静止下落h 高度时得速度与此时滑轮得角速度。 , 5、一细而轻得绳索跨过一质量为,半径为R 得定滑轮C ,绳得两端分别系有质量为与得物体,且>,绳得质量、轮轴间得摩擦不计且绳与轮间无相对滑动。轮可视为圆盘,求物体得加速度得大小与绳得张力.(注:只需列出足够得方程,不必写出结果) 2、(式中得单位为,得单位为)得合外力作用在质量为得物体上,则:(1)在开始内,力得冲量大小为:; (2)若物体得初速度,方向与相同,则当力得冲量时,物体得速度大小为:。 3、一质量为、长为得均匀细棒,支点在棒得上端点,开始时棒自由悬挂.现以100N 得力打击它得下端点,打击时间为0、02s 时。若打击前棒就是静止得,则打击时棒得角动量大小变化为,打击后瞬间棒得角速 度为。 5、设一质量为得小球,沿轴正向运动,其运动方程为,则在时间到内,合外力对小球得 功为;合外力对小 A O mg M h β R

大学物理练习册习题及答案4

习题及参考答案 第3章刚体力学 参考答案 思考题 3-1刚体角动量守恒的充分而必要的条件是 (A )刚体不受外力矩的作用。 (B) 刚体所受合外力矩为零。 (C) 刚体所受的合外力和合外力矩均为零。 (D) 刚体的转动惯量和角速度均保持不变。答:(B)。 3-2如图所示,A、B为两个相同的绕着轻 绳的定滑轮。A滑轮挂一质量为M的物体, B滑轮受拉力F,而且F = Mg。设A、B两滑 轮的角加速度分别为俭和传,不计滑轮轴的摩 擦,则有 (C) 3A<伊(D)开始时3A=伊,以后3A<伊 答:(C)。 3-3关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。 (B)取决于刚体的质量和质量的空间分布,与轴的位置无关。 (C)取决于刚体的质量、质量的空间分布和轴的位置。 思考题3-2图 (D)只取决于转轴的位置,与刚体的质量和质量的空间分布无 答:(C)。 3-4 一水平圆盘可绕通过其中心的固定铅直轴转动,盘上站着一个人,初始时整个系统处 于静止状态,当此人在盘上随意走动时,若忽略轴的摩擦,则此系统 (A) 动量守恒; (B) 机械能守恒; (C) 对转轴的角动量守恒; (D) 动量、机械能和角动量都守恒; (E) 动量、机械能和角动量都不守恒。 答:(C)。 3-5光滑的水平桌面上,有一长为2L、质量为m的匀质细杆,可绕过其中点o且垂直于 ;v I ■o 杆的竖直光滑固定轴自由转动,其转动惯量为 丄mL2起初杆静止,桌面上有两个质量均为m的小球,各自在 思考题3-5图垂直于杆的方向上,正对着杆的一端,以相同速率V相向 运动,如图所示,当两小球同时与杆的两个端点发生完全 非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为

大学物理学(上)练习题

(A) 只有(1)、(4)是对的; (C)只有(2)是对的; 但)只有⑵、⑷是对的; (D)只有(3)是对的。 (D)—般曲线运动。 4. 一小球沿斜面向上运动,其运动方程为 s=5+4t-t 2 (SI), :]。 2 dv/dt 二-kv t ,式中的k 为大于零的常量。当 1 2 (B) v =-丄 kt 2 v o ; (A) v kt v o ; 2 1 kt 2 1 1 kt 2 1 (C) 2 (D) v 2 V o v 2 v o 度v 与时间t 的函数关系是[ ]。 7. 一质点在t=0时刻从原点出发,以速度 v o 沿X 轴运动,其加速度与速度的关系为 优质参考文档 专业班级 学号 姓名 序号 第1单元质点运动学 .选择题 G = 3t- 5t 3+ 6 (SI),则该质点作[ ]。 (A) 匀加速直线运动,加速度沿 G 轴正方 向; (B) 匀加速直线运动,加速度沿 G 轴负方向; (C) 变加速直线运动,加速度沿 G 轴正方向; (D) 变加速直线运动,加速度沿 G 轴负方向。 1.某质点作直线运动的运动学方程为 2.质点作曲线运动,r 表示位置矢 量 , 示切向加速度,下列表达式中] v 表示速度,a 表示加速度, S 表示路程,a t 表 (1) dv /d t = a , (2) dr /dt =v ⑶ dS/dt =v , dv / dt = a t 。 3. 一质点在平面上运动, 常量),则该质点作] 已知质点位置矢量的表示式为 ] 。 (A) 匀速直线运动;(B)变速直线运动; r =at 2 i bt 2 j (其中a 、b 为 (A) t=4s ; (B)t=2s ; (C) t=8s ; 5. 一质点在GP 平面内运动,其位置矢量为「 矢量与速度矢量恰好垂直的时刻为[ ] 。 =4ti?+(10-2t (D) t=5s 。 2 )? (SI),则该质点的位置 (A) t = 2s ; ( B) t = - 5s ; (C) t = 4s ; ( D) t =、3s 。 (C)抛物线运动; 则小球运动到最咼点的时刻是 t = 0时,初速为v ° ,则速 6.某物体的运动规律为

大学物理电磁学练习题及答案

大学物理电磁学练习题 球壳,内半径为R 。在腔内离球心的距离为d 处(d R <),固定一点电荷q +,如图所示。用导线把球壳接地后,再把地线撤 去。选无穷远处为电势零点,则球心O 处的电势为[ D ] (A) 0 (B) 04πq d ε (C) 04πq R ε- (D) 01 1 () 4πq d R ε- 2. 一个平行板电容器, 充电后与电源断开, 当用绝缘手柄将电容器两极板的距离拉大, 则两极板间的电势差12U 、电场强度的大小E 、电场能量W 将发生如下变化:[ C ] (A) 12U 减小,E 减小,W 减小; (B) 12U 增大,E 增大,W 增大; (C) 12U 增大,E 不变,W 增大; (D) 12U 减小,E 不变,W 不变. 3.如图,在一圆形电流I 所在的平面内, 选一个同心圆形闭合回路L (A) ?=?L l B 0d ,且环路上任意一点0B = (B) ?=?L l B 0d ,且环路上 任意一点0B ≠ (C) ?≠?L l B 0d ,且环路上任意一点0B ≠ (D) ?≠?L l B 0d ,且环路上任意一点B = 常量. [ B ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感应强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示。现测得导体上下两面电势差为V ,则此导体的霍尔系数等于[ C ] (A) IB V D S (B) B V S ID (C) V D IB (D) IV S B D 5.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为 l 。当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a 、 c 两点间的电势差a c U U -为 [ B ] (A)2 0,a c U U B l εω=-= (B) 2 0,/2a c U U B l εω=-=- (C)22 ,/2a c B l U U B l εωω=-= (D)2 2 ,a c B l U U B l εωω=-= 6. 对位移电流,有下述四种说法,请指出哪一种说法正确 [ A ] (A) 位移电流是由变化的电场产生的; (B) 位移电流是由线性变化的磁场产生的; (C) 位移电流的热效应服从焦耳——楞次定律; (D) 位移电流的磁效应不服从安培环路定理.

大学物理习题集(下)答案

一、 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ] (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子 的初相为4 3 π,则t=0时,质点的位置在: [ D ] (A) 过1x A 2=处,向负方向运动; (B) 过1x A 2 =处,向正方向运动; (C) 过1x A 2=-处,向负方向运动;(D) 过1 x A 2 =-处,向正方向运动。 3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表 此简谐振动的旋转矢量图为 [ B ] 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ] (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ] (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。 6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ] (4) 题(5) 题

大学物理教程 上 课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题)27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 或1= (2)将1t s =和2t s =代入,有 11r i =u r r , 241r i j =+u r r r 位移的大小 r ==r V (3) 2x dx v t dt = = 2x x dv a dt = =, 2y y dv a dt == 当2t s =时,速度和加速度分别为 22a i j =+r r r m/s 2 1-4 设质点的运动方程为 cos sin ()r R ti R t j SI ωω=+r r r ,式中的R 、ω均为常量。求(1)质点的速度;(2)速率的变化率。 解 (1)质点的速度为 (2)质点的速率为 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t dt θ ω= = 质点在t 时刻的法向加速度n a 的大小为 角加速度β的大小为 24/d rad s dt ω β== 77 页2-15, 2-30, 2-34,

2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作 用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的 阻力(空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 即 dv k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等 于地球半径的2倍(即2R ),试以,m R 和引力恒量G 及地球的质量M 表示出: (1) 卫星的动能; (2) 卫星在地球引力场中的引力势能. 解 (1) 人造卫星绕地球做圆周运动,地球引力作为向心力,有 卫星的动能为 212 6k GMm E mv R == (2)卫星的引力势能为 2-37 一木块质量为1M kg =,置于水平面上,一质量为2m g =的子弹以 500/m s 的速度水平击穿木块,速度减为100/m s ,木块在水平方向滑行了20cm 后 停止。求: (1) 木块与水平面之间的摩擦系数; (2) 子弹的动能减少了多少。

相关文档
相关文档 最新文档