文档库 最新最全的文档下载
当前位置:文档库 › 单站潮汐的谱分析预报-海洋预报

单站潮汐的谱分析预报-海洋预报

单站潮汐的谱分析预报-海洋预报
单站潮汐的谱分析预报-海洋预报

潮汐的变化规律

潮汐的变化规律 由于太阳与月亮对地球的引力作用,我国大部分沿海地区均有一昼夜各出现海水涨落两次的潮汐现象。每月的农历初一至初五(或农历十六至二十)为大潮汐(当地人称“大活汛”);农历初六至十二(或农历二十一至农历二十五)为小潮汐(当地人称“死汛”);而初九或二十四为最小潮(当地人称“死汛底”)。每天的潮汐时间均后延45分钟左右,如此周而复始 有个计算公式共,仅供大家参考。 满潮时间=(农历日—1或16)乘以0.8+10:32 干潮时间=满潮时间加或减6:12 潮汐表编辑 潮汐预报表的简称。它预报沿海某些地点在未来一定时期的每天 潮汐情况。在航运方面,有些水道和港湾须在高潮前后才能航行和进出港;在军事方面,有时为了选择有利的登陆地点和时间,就必须考虑和掌握潮汐的情况;在生产方面,沿海的渔业、水产养殖业、农业、盐业、资源开发、港口工程建设、测量、环境保护和潮汐发电等,都要掌握潮汐变化的规律。潮汐表就是为这些方面服务的。 中文名 潮汐预报表 外文名

Tidal prediction table 作用 预报沿海某些地点潮汐情况 服务行业 航运,军事,生产... 最早文献 《海涛志》 包括 主港逐日预报表,附港差比数等 目录 1简介 2文献来源 3港差比数 4潮汐信息 5简便算法 6潮汐时间 1简介编辑 cháo xī biǎo 潮汐表 tide tables 潮汐表又称潮汐长期预测表,即在正常天气情况下由天文因素影响所

产生的潮汐。 2文献来源编辑 英国开尔文 中国唐代窦叔蒙在《海涛志》一文中提出了根据月相推算高潮时刻的图表法,这是保存下来的介绍潮汐预报方法的最早的文献,大约比英国的《伦敦桥潮候表》早400年。19世纪60年代末,英国开尔文和G.H.达尔文等人提出了潮汐调和分析方法,后来还设计和制造了机械的潮汐推算机,使潮汐表的编算工作得到迅速发展。自20世纪60年代以来,电子计算机已广泛应用在潮汐推算工作中。 潮汐表一般包括主港逐日预报表(通常有高潮和低潮的时间和潮高,有的港还有每小时的潮高)、附港差比数、潮信和任意时刻的潮高计算等内容。 主港逐日预报表 潮汐现象可视为由许多不同周期的分潮叠加而成,故任意时刻的潮高可表示为 图片中A为平均海平面在潮高基准面上的高度,表示分潮的圆频率,为交点因子,d为格林威治开始时的天文相角,H和为分潮的调和常数──振幅和迟角。这样,应用已求出的该港的潮汐调和常数,就能

基于谱分析法的深水海洋平台疲劳寿命分析

龙源期刊网 https://www.wendangku.net/doc/c817249826.html, 基于谱分析法的深水海洋平台疲劳寿命分析作者:关放李开宇 来源:《名城绘》2017年第06期 摘要:导管架平台在服役期间受到海洋复杂载荷的作用而易产生节点疲劳破坏。由于交变应力的随机性,本文采用随机波浪谱和线性疲劳累积损伤理论对导管架式海洋平台在波浪荷载作用下的疲劳进行计算。波浪载荷则使用Morison方程计算,并结合所计算的关键节点的热点应力函数及P-M波浪谱得出疲劳累积损伤。本次分析同时考虑波浪长期随机性对结构疲劳强 度的影响。本文根据此理论使用SACS软件对南海海域某导管架平台进行了计算,所计算的疲劳寿命可为该海洋平台结构设计提供参考。 关键词:海洋平臺;谱分析法;疲劳损伤 目前工程界对海洋平台疲劳分析方法主要有简化疲劳分析方法、谱分析方法以及确定性方法。一般简化疲劳分析方法主要是基于疲劳应力的Weibull分布假设,用经验推荐的形状参数和计算得到的尺度参数代入拟合出该Weibull分布从而进行疲劳计算。谱分析法则是通过计算结构响应,结合波浪谱和波浪概率分布来计算应力长期分布,更为精确和直接,同时计算量也更大。确定性方法主要基于经验曲线进行疲劳寿命估算,精确性也不及谱分析法。海上平台作为海洋石油和天然气资源开发的基础设施,处于一个非常复杂和恶劣的环境中。它受到各种负载的影响,这些负载随时间和空间而变化。这些负荷的影响是长期连续和随机的。连续的周期性波动应力会对平台结构造成疲劳损伤,降低系统的可靠性,给经济安全带来诸多不利影响。因此,海洋平台结构的疲劳寿命分析变得越来越重要。波浪,海风和海流是作用于海上平台的主要载荷。由于风和电流影响平台结构的疲劳损伤相对较小,一般被忽略。本文主要考虑海上平台结构的波浪载荷。疲劳寿命影响作用。 工程行业的海洋平台疲劳分析方法主要包括简化的疲劳分析方法,光谱分析方法和确定性方法。一般简化疲劳分析方法主要基于疲劳应力的威布尔分布假设。经验推荐的形状参数和计算的尺度参数被替换以适合Weibull分布以进行疲劳计算。谱分析规则计算结构响应,结合波谱和波概率分布计算长期应力分布,更准确,更直接,计算量也更大。确定性方法基于疲劳寿命估计的经验曲线,精度不如光谱分析方法。 本文基于结构有限元分析软件SACS计算南海某平台的疲劳损伤度,以中国南海海领域中的一种新型深水固定平台是目标平台,平台结构更加复杂。采用热点应力谱分析方法,完成了主结构典型节点的疲劳强度分析。研究结果可为平台节点的详细设计和疲劳强度评估提供参考。 1谱分析疲劳理论简介 1.1波浪载荷

随机波浪谱

Jonswap 谱:联合北海波浪项目 峰形参数a σσ=(当m ωω≤时),b σσ=(当m ωω>时),因此该谱共有五个参量,它们都随各个谱而变化。对于平均的JONSWAP 谱: 3.3γ= 0.07a σ= 0.09b σ= 0.615 1.080.615 1.0883.7220 4.515.403(/)s U kX H m s --==??= 22/9.82201000/15.4039087.368X gX U ==??= 0.330.3322(/)()22(9.8/15.403)9087.3640.69145(/)m g u X rad s ω--==??= 0.220.220.076()0.0769087.3680.0102319X α--==?= 在m ωω≤时, 2222222exp[()/(2)]2 4524 exp[(0.69145)/(0.070.69145)]5exp[426.85695(0.69145)] 54 1 5()exp[()]4150.691450.01023199.8exp[()] 3.3410.285730.9827exp() 3.3m m m S g ωωσωωωωωαγ ωω ωω ωω ----?--=-=?-?=-? 在 m ωω>时, 2222222exp[()/(2)] 2 4524 exp[(0.69145)/(0.090.69145)]5exp[258.22211(0.69145)] 54 1 5()exp[()]4150.691450.01023199.8exp[()] 3.3410.285730.9827exp() 3.3m m m S g ωωσωωωωωαγωω ωω ωω ----?--=-=?-?=-? 22 exp[426.85695(0.69145)] 54exp[258.22211(0.69145)]5410.285730.9827exp() 3.3()10.285730.9827exp() 3.3m m S ωωωωωωωωωωω----?-?≤??=??-?>?? P-M 谱:又称ITTC 谱 4 5 0.78 ()exp[ 1.25( )]m S ωωωω = - 其中谱峰频率 1.253/0.59067(/)m rad s ω===

中国近海的区域海洋学

第十二章中国近海的区域海洋学 12.1自然环境概况 12.1.1地理位置、区划和岸线 中国近海,依传统分为四个海区,即渤海、黄海、东海和南海。 一、渤海 渤海是中国内海。是深入中国大陆的近封闭型的一个浅海。它通过东面的渤海海峡与黄海相沟通;其北、西、南三面均被陆地所包围,即分别邻接辽宁、河北、山东三省和天津市。渤海海峡北起辽东半岛南端的老铁山角(老铁山头),南至山东半岛北端的蓬莱角(登州头),宽度约106km。 二、黄海 黄海是全部位于大陆架上的一个半封闭的浅海。因古黄河在江苏北部入海时,携运大量泥沙而来,使水色呈黄褐色,从而得名。 三、东海 东海位于中国岸线中部的东方,是西太平洋的一个边缘海。东海西有广阔的大陆架,东有深海槽,故兼有浅海和深海的特征。 四、南海 南海位于中国大陆南方,纵跨热带与亚热带,而以热带海洋性气候为主要特征。也是中国海疆国界伸展最南之处。 12.1.2海底地形、沉积与构造 —、渤海 在四个海区中,渤海深度最浅,小于30m的海域近7.2×l04km2,

因而海底地势最为平坦,地形也较单调。若再细分,可分5部分:渤海海峡、辽东湾、渤海湾和莱州湾、中央海盆。 二、黄海 海底地势比东海和南海平坦,但地貌形态却比渤海复杂。最突出的特征有黄海槽、潮流脊和水下阶地。 三、东海 东海兼有浅海和深海的特征而不同于渤海和黄梅,但仍以浅海特征比较显著。浅海特征中,尤以大陆架宽广最为突出。 四、南海 南海居于深海。大陆架、大陆坡和深海盆地等形态相当齐全。海底地形的基本特点是由岸边向海盆中心的阶梯状下降,但突出特征是,南、北坡度缓而东、西坡度陡。 12.1.3径流特征 流入中国近海各海区的径流量,彼此相差很悬殊。即使同一海区,在不同季节,差别也很大。

随机波浪谱

Jonswap 谱: 峰形参数a σσ=(当m ωω≤时),b σσ=(当m ωω>时),因此该谱共有五个参量,它们都随各个谱而变化。对于平均的JONSWAP 谱: 3.3γ= 0.07a σ= 0.09 b σ= 0.615 1.080.615 1.0883.7220 4.515.403(/)s U kX H m s --==??= 22/9.82201000/15.4039087.368X gX U ==??= 0.330.3322(/)()22(9.8/15.403)9087.3640.69145(/)m g u X rad s ω--==??= 0.220.220.076()0.0769087.3680.0102319X α--==?= 在m ωω≤时, 2222222exp[()/(2)]2 4524 exp[(0.69145)/(0.070.69145)]5exp[426.85695(0.69145)] 54 1 5()exp[()]4150.691450.01023199.8exp[()] 3.3410.285730.9827exp() 3.3m m m S g ωωσωωωωωαγ ωω ωω ωω ----?--=-=?-?=-? 在 m ωω>时, 2222222exp[()/(2)] 2 4524exp[(0.69145)/(0.090.69145)] 5exp[258.22211(0.69145)] 54 1 5()exp[()]4150.691450.01023199.8exp[()] 3.3 410.285730.9827exp() 3.3m m m S g ωωσωωωωωαγωω ωω ωω ----?--=-=?-?=-? 22 exp[426.85695(0.69145)] 54exp[258.22211(0.69145)]5410.285730.9827exp() 3.3()10.285730.9827exp() 3.3m m S ωωωωωωωωωωω----?-?≤??=??-?>?? P-M 谱: 4 5 0.78 ()exp[ 1.25( )]m S ωωωω = - 其中谱峰频率 1.253/0.59067(/)m rad s ω===

中国近海区域海洋学期末复习

中国近海区域海洋学期末复习 中国近海包括渤海、黄海、东海、南海及台湾以东海域。 我国宣布的领海宽度为12海里,我国划定的毗连区为24海里,中国的专属经济区从测算领海宽度的基线量起延至200海里。 中国近海受海雾影响最显著、时间最长的海区为黄海。 渤海的三个海湾是辽东湾、渤海湾、莱州湾。 水团包括沿岸水系、外海水系以及混合水系。 黑潮主要通过吕宋海峡进入南海。 南海生成的热带气旋类型:正抛物线型、倒抛物线型、西移型。

控制中国近海环流的因素 ●季风:冬季盛行偏北风,夏季盛行偏南风,季风对表层流影响较大,在不同程度上带有 风海流的性质。 ●沿岸流:沿岸大量的河川径流入海,在当地形成以低盐为特征的沿岸流。 ●来自大洋的黑潮。黑潮及其入侵水是中国近海环流的主干。黑潮源地在吕宋岛以东海域, 贴近台湾岛东岸北上,流经东海后返回太平洋,向东海和南海北部输送大量动量、热量和盐量,影响或制约中国近海的密度场,进而制约中国近海的环流。假如黑潮不流经中国近海,那么中国近海的环流就不是现在的样子;就连温度、盐度、密度分布与结构,水团配置,海洋生物资源及海底沉积物分布,都会是另一个面貌。 ●潮流非线性效应。中国海是潮汐、潮流现象十分显著的海区。对渤海、黄海来讲,潮流 流速约为余流的10倍,因此,潮致余流对某些局部环流至关重要 ●海区的轮廓和地形,在很大程度上影响局部环流的格局 对马暖流的可能来源 (1)起源于台湾东北海域,为沿大陆架边缘北流过程中不断变性的一支海流 (2)源于东海南部的混合水,并非是黑潮的一个分支 (3)台湾暖流外侧分支和内侧分支汇合而成的 (4)黑潮的一个分支 (5)多源的

潮汐调和分析-实验报告

中期水位观测资料的最小二乘分析报告 摘要: 本次实验中采用了KM站(28.05N,121.17E)1997年8月的逐时潮位数据,运用中期水位观测资料的最小二乘分析方法,通过奇异值剔除、调和分析、逐时潮位回报、高低潮及余水位计算等工作,对此验潮站的数据进行了初步分析,并了解了中期水位资料分析的基本流程。 报告主要内容: (1)11个主要分潮(MSf Q1 O1 K1 N2 M2 S2 MK3 M4 MS4)及两个随从分潮(P1 K2)的调和常数H和g (2)图像和数据文件的基本信息 (3)平均潮差和潮汐类型 (4)余水位特征分析 (5)误差分析 (6)程序的相关说明 (1)潮汐的调和常数: 利用最小二乘原理,通过引入差比关系的方法,我们可以成功得到11个主要分潮和2个随从分潮的调和常数如下: 分潮名称调和常数H 调和常数g MSf 121.2222 -32.38747 Q1 62.95736 233.5120 O1 225.5294 238.7111 K1 266.1612 113.2537 N2 420.5689 167.2492 M2 1922.772 174.8581 S2 679.3940 197.3759 MK3 33.19594 252.1002 M4 32.43390 121.7806 MS4 33.60584 198.8826 M6 3.762754 94.29744 P1 73.46050 109.5160 K2 192.9479 201.4156 程序运行结果如图:

其中H关系到分潮的振幅,g关系到分潮的相位。从表中可以看出,M2分潮的振幅最强,对当地潮位的贡献最大,这与实际情况相符,但K1分潮的调和常数H仅有266.1412,结果偏小。 (2)图像和数据文件的基本信息: 本次报告中包含以下数据文件: 1. KM9708new.dat 数据原始文件。 2. KM9708new_02.dat 经过奇异值订正的数据文件,为方便画图时读取,没有输入数据质量信息。 3. 调和常数.txt 保存了调和常数的相关数据 4.回报值.txt 保存了利用六个主要分潮进行数据回报得到的结果,同样为方便读取,没有输入质量控制信

近海区域海洋学论文

西北航道的海冰冰况及其对通航的影响分析 文献综述 摘要:近些年,我国实行“海洋强国”战略,西北航道因为其对我国重要的战略意义而受广泛关注。而决定西北航道是否能够通航的一个重要因素就是航道内的冰情,包括海冰密集度、冰厚、冰流量等方面。目前,对海冰的研究方法主要包括北极国际浮标计划(IABP)、由飞机搭载的空气电磁感应、以及卫星微波或可见光遥感。本文便是通过总结北极海冰的研究情况,来探讨影响西北航道通航的因素。 关键词:西北航道、海冰密集度、冰厚、海冰流出、冰障 一、前言 自新航道开辟以来,无数船队为了减短航程,不惜花费庞大的人力物力来开凿运河,以此来避免绕过好望角、弗罗厄德角等的遥远海上旅途。与此同时,许多冒险家另辟蹊径,梦想不在广阔的太平洋、大西洋上行舟。而他们的目光向北移动,看中了纬度最高的大洋——北冰洋,并且希望开辟出真正的航线。在计划中,从大西洋北部出发,穿越北极海域到达太平洋,然后直抵亚洲。这便是“东北航线”或“西北航线”。东北航道是指西起冰岛,经巴伦支海,沿欧亚大陆北方海域向东,直至白令海峡的航道。现已初具通航规模,而西北航道却仍停留在理论层面。但是由于其巨大的经济、政治影响,目前对其的研究正在如火如荼的进行,本文的重点也是对西北航道的研究。 “西北航道”主要包括两条路线,在苏洁[1]等的描述中,靠北的一支航线是从波弗特海东南沿班克斯岛( Banks Island) 西侧,进入麦克卢尔海峡( MCS,M’Clure Strait) ,经梅尔维尔子爵海峡( VMS,Viscount-Melville Sound) 、巴罗海峡 ( BS,Barrow Strait) 和兰开斯特海峡( LS,Lancaster) ,进入巴芬湾,我们称这条线路为西北航道北路,其中从 MCS 至 LS 的水道统称帕里( Parry) 水道。西北航道的南路有多条线路,其中主要的是由波弗特海开始从阿蒙森湾 ( AG,Amundsen Gulf) 进入经科罗内申湾( CG,Coronation Gulf) 、

深水半潜式平台系泊系统设计研究

第14卷第5期船舶力学Vol.14No.5 2010年5月Journal of Ship Mechanics May2010文章编号:1007-7294(2010)05-0495-09 深水半潜式平台系泊系统设计研究 周素莲,聂武,白勇 (哈尔滨工程大学船舶工程学院,哈尔滨150001) 摘要:随着海洋平台逐步向更深水域的发展,系泊系统设计成了深海平台开发的关键问题之一。该文主要采用时域计算方法对系泊系统进行动力响应分析,给出了深水半潜式平台系泊系统的基本设计方法,并对2000m水深的半潜式平台系泊缆索进行了8根与12根锚链线的系泊方案的对比分析,结果表明系泊方式不同,锚泊线的张力,系统的运动响应都受到了一定程度的影响。 关键词:深水半潜式平台;时域;动力响应分析;系泊方案 中图分类号:U675.92文献标识码:A Investigation on mooring system design of a deepwater semi-submersible platform ZHOU Su-lian,NIE Wu,BAI Yong (Department of Ship Building,Harbin Engineering University,Harbin150001,China) Abstract:With the development of the offshore platform used in deeper and deeper waters,the design of moor-ing system is one of the key issues in the exploitation of platforms for deepwater.In this paper,the dynamic response analysis of mooring system is solved in time domain,and a basic design method of deepwater se-mi-submersible platform mooring systems is presented.Then the comparative analysis of the mooring system in the depth of2000m,which has8and12mooring lines to position is carried out.The results show that the platform motion responses and the mooring line tensions are effected to some extent by the different mooring scheme. Key words:deepwater semi-submersible platform;time domain;dynamic response analysis; the mooring scheme 1引言 随着海上油气勘探和开采技术不断发展,海洋油气生产浮式结构的工作水深不断增长。这些海上结构通常主要采用两种定位系统[1]:系泊定位系统和动力定位系统。由于系泊系统具有投资少、使用和维修方便等特点,因而系泊系统是目前主要采用的定位系统,其广泛应用于半潜式钻井平台、钻井船以及半潜式采油平台。与其他工程问题一样,一种方法的选取及其有效性取决于其所采用的假定与真实情况的符合程度。系泊系统所受的载荷主要有自重、流力、波浪力等,可以根据不同情况得到不同的计算模型来对其进行动力分析,对于系泊系统的动力分析目前已有学者进行了相关研究[2-8],其中肖越,王言英[2]采用频时域相结合的方法分析了水深为119.5m的浮体运动响应与锚泊线张力。童波,杨建民等[3] 收稿日期:2009-09-29 作者简介:周素莲(1981-),女,哈尔滨工程大学船舶工程学院讲师,博士研究生,Email:lsczsl@https://www.wendangku.net/doc/c817249826.html,; 聂武(1944-),男,教授,哈尔滨工程大学船舶工程学院博士生导师,主要从事各种海洋工程结 构动态响应分析。

基于波浪谱分析的重大件货物在船受力计算

基于波浪谱分析的重大件货物在船受力计算 王彪,王扬 大连海事大学航海学院,大连(116026) E-mail :wangbiao820109@https://www.wendangku.net/doc/c817249826.html, 摘 要:本文立足于我国海上重大件运输的实际,提出了一整套采用了海况长期预测技术和谱分析技术,预测重大件货物在既定航次的环境中所受外力的方法,与IMO 的CSS 规则中推荐的方法及中国船级社的拖航指南中的方法相比,更贴近运输实际且易于为从事工程设计人员理解,适合于海上重大件货物运输的现实要求。 关键词:重大件,外力,海况预测,谱分析 1. 引言 由于海上货物运输中因绑扎不牢引起的事故不断增多,IMO 制定货物积载与系固规则(CSS 规则),推荐用来计算货件在船所受外力;中国船级社也制定了拖航指南供驳船装载货件时计算货件所受外力。但在海上运输重大件货物过程中,货物重量及尺寸导致货件受力较大,若不能较精确的预测每个航次货件所受外力,则货件很可能由于受力估计不足而导致绑扎系固不牢,从而在遇到较恶劣的海况时,招致货损。本文着力于引入海况长期预测技术,利用船舶耐波性理论中较成熟的谱分析方法,较真实地考虑进航行过程中波浪运动对货件受力的影响,预测货件在既定航次环境中所受外力。货件所受外力可简化为惯性力、风作用力和波溅力,此三力的总和即为货件所受外力,其在三个方向上的受力如下面三式。本文即从这三方面入手,结合已有的较成熟的方法提出作者设计的实用计算方法,供海上重大件运输从业者参考使用。 x eix wx s F F F F =++ y eiy wy F F F =+ z eiz F F = 由于后文中,对货件绑扎不利的力的计算皆采用了趋于安全的值(对于横摇和纵摇时的风力和波溅力的减小,予以忽略),因此利用后文方法计算得出的各力相加所得代数和值作为设计外力来设计绑扎方案,是趋于安全的。 2. 惯性力 2.1 确定途经海区的最恶劣海况 对于重大件运输,需要较准确的计入海况的影响。目前世界上较有影响的海浪数据库有GWS (Global Wave Statistics )、IMDSS (Integrated Marine Decision Support System )和ClioSat (climatological atlas ),而这三个数据库中GWS 相对于其他两种数据库,对海浪的预报值偏大,即偏于安全,因此本文对海浪的长期预报采用GWS 中的波浪数据。1 GWS 中的波浪数据的来源为由不列颠海事技术有限公司于1986年出版的《全球波浪统计数据》一书(若有条件,也可在互联网上付费订购最新的波浪数据,网址:https://www.wendangku.net/doc/c817249826.html, )。 此书包含了全球海洋波浪的统计数据,意于为那些需知道遇到特定区域的(将波高、波浪周期和波浪方向作为整体考虑)波浪的概率的人提供一个参考指南。此书提供了104个海

潮汐调和分析

program main real*8 h(100000),h0(100000),preh(100000),prehf(100000),ph0(100000),ph(100000) !实测数据 real*8 w(1000) !分潮角速度 real*8 x(1000),y(1000),aa(1000,1000),bb(1000,1000),f1(1000),f2(1000) real*8 q(1000,1000),d(1000),v(1000,1000),aaa(1000,1000),bbb(1000,1000) integer n,ntidal,khl,kh1,n2,n12 ,np,nep,np12,nbp !n为观测数据时间长度!!ntidal为分潮数目 real*8 tdif,dt,err,pai,tbi,max,min character*15 b,char WRITE(*,111) WRITE(*,222) WRITE(*,111) 111 format(20x,'********************') 222 FORMAT(20x,'**<<潮汐调和分析>>**') pai=3.1415926 dt=1.d0 tdif=8.d0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !读取预报时段实测潮位(连云港,1979年7月) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! open(1,file='d:\Lyg1979.dat') read(1,*)char,icck,iyyk,immk,iddk,ihhk,iccj,iyyj,immj,iddj,ihhj call GDAY(iddk,immk,iyyk,icck,kd) !开始时间转换为18521015后的天数 nbp=(kd-1)*24+ihhk-tdif call GDAY(iddj,immj,iyyj,iccj,kd) !开始时间转换为18521015后的天数 nep=(kd-1)*24+ihhj-tdif np=nep-nbp+1 np12=np/12 nep=12*np12+nbp-1 np=nep-nbp+1 read(1,*) do i=1,np12 read(1,*)(ph0(j),j=(i-1)*12+1,12*i) enddo close(1) call GDAY(01,07,79,19,kd) nmlb=(kd-1)*24+00-tdif call GDAY(31,07,79,19,kd) nmle=(kd-1)*24+23-tdif nmn=nmle-nmlb+1 write(*,*)np,nmn,nmle-nmlb-1+i do i=1,nmn

随机波浪谱

Jonswap 谱:联合北海波浪项目 峰形参数 a (当 m 时), b (当 都随各个谱而变化。对于平均的 JONSWAP 谱: 3.3 0.615 1.08 0.615 1.08 U kX 0.615 H s 1.08 83.7 220 0.615 4.51.08 15.403( m / s) X gX /U 2 9.8 220 1000 /15.403 2 9087.368 m 22(g/u)(X) 0.33 22 (9.8/15.403) 9087.364 0.33 0.69145(rad / s) 0.22 0.22 0.076( X ) 0.22 0.076 9087.368 0.22 0.0102319 在 m 时, S( ) g 2 15 exp[ 5 ( m )4] exp[ ( m )2/(2 22m )] 4 2 1 5 0.69145 4 exp[ ( 0.69145)2 /(0.072 0.691452 )] 0.0102319 9.8 2 5 exp[ ( )4] 3.3 exp[ ( 0.69145) /(0.07 0.69145 )] 5 4 0.9827 15 exp( 0.2854 73 ) 3.3exp[ 426.85695( 0.69145)2 ] 在 m 时, S( ) g 2 15 exp[ 5( m )4] exp[ ( m )2/(2 22 m )] 5 4 2 1 5 0.69145 4 exp[ ( 0.69145)2 /(0.092 0.691452 )] 0.0102319 9.8 5 exp[ ( ) ] 3.3 4 1 0.28573 exp[ 258.22211( 0.69145)2 ] 0.9827 5 exp( 4 ) 3.3 exp[ 258.22211( 0.69145) ] S( ) 0.9827 1 5 exp( 0.28573) 4 ) 3.3exp[ 426.85695( 0.69145)2] 0.9827 1 5 exp( 0.28573) 4 ) 3.3exp[ 258.22211( 0.69145)2] P-M 谱:又称 ITTC 谱 1.253/ H s 1.253/ 4.5 0.59067(rad /s) 0.07 b 0.09 S( ) 0.75 8exp[ 1.25( m )4 ] m 时),因此该谱共有五个参量,它们 其中谱峰频率

星载雷达波谱仪反演海浪谱的精度研究

第32卷 第5期海 洋 学 报 Vo l 132,N o 152010年9月 ACT A OCEANOLOGICA SIN ICA September 2010 星载雷达波谱仪反演海浪谱的精度研究 林文明1,2,董晓龙1* (1.中国科学院空间科学与应用研究中心,北京100190;2.中国科学院研究生院,北京100049) 收稿日期:2010-05-07;修订日期:2010-07-22。 基金项目:国家高技术研究发展计划(/八六三0计划)课题(2007AA12Z119)。 作者简介:林文明(1984)),男,福建省仙游县人,博士研究生,研究方向为星载雷达散射计信号处理及微波遥感技术。E -mail:1inw enzi1984@https://www.wendangku.net/doc/c817249826.html, 通信作者:董晓龙(1969)),男,陕西省人,研究员,主要从事微波遥感理论研究以及微波遥感器系统研究、设计与研制等。E -m ail:dxl@nm https://www.wendangku.net/doc/c817249826.html, 摘要:介绍了星载雷达波谱仪的观测原理及误差分析模型,并在H auser 等提出的SWIM (sea w ave investigatio n and mo nitoring by satellite)的基础上分析了波谱仪反演海浪谱的波长分辨率和角度分辨率。为了减小反演调制谱的波动,在数据处理过程中时域和波数域相邻单元的平均个数分别为10和8个。系统在不同的模式下工作,为了获取20b 的角度分辨率,对调制谱平均次数分 别取3次(模式1)、7次(模式2)、10次(模式3)。使用解析法和仿真法分析了SWIM 工作在模式2时海浪谱观测的能量误差,两种方法的结果一致。对于给定的海浪条件,能量误差小于20%。关键词:雷达波谱仪;海浪谱;精度指标;能量误差 中图分类号:T P732.1 文献标志码:A 文章编号:0253-4193(2010)05-0009-08 1 引言 海洋波浪谱信息在数值波浪预测模型的数据同化中可以改善波浪预测的精度[1]。以往的数据同化一般都是基于波浪谱的总能量,而忽略了谱的具体参数,因此需要假定波浪特性。对于全球性的海浪预测,需要卫星遥感技术提供大尺度海浪谱观测的数据。合成孔径雷达(SAR)是当前惟一用于海浪方向谱估计的星载传感器,但SAR 图像与真实的海浪具有非线性的关系,由图像提取海浪谱并不直观;SAR 观测受限于海面的运动特性和海浪的波长,并非所有海况都能成像;由于SAR 的功耗和数据量的限制,不能实现全球观测,并且SAR 图像比较昂贵,因此利用SAR 观测的海浪谱来预测波浪并没有得到广泛应用[1-2]。国际上利用雷达波谱仪进行海浪谱观测的研究已经开展并取得了一定的成果。Jackson 等[3]论证了利用机载和星载真实孔径雷达即雷达波谱仪测量海浪 谱的可行性,并分析了相应的数据处理流程;通过对比机载Ku 波段雷达(ROWS)海浪方向谱观测数据和现场观测数据,证明ROWS 测量的海浪谱与浮标测量的海浪谱相当吻合[4]。H auser 等[1]利用C 波段的机载雷达(RESSAC)进行海浪谱测量实验,观测结果也与真实值一致。H auser 等[1]还提出了利用星载雷达进行表面波研究和监测计划(SWIM SAT,sea w ave investigation and monitoring by satellite ),并建立了相应的仿真模型,指出SWIM SAT 能够测量波长大于70m,有效波高大于1.5~2.0m 的海浪谱信息。 真实孔径雷达波谱仪是一种较新的遥感仪器,它的应用指标还没有统一的规范。本文在SWIM 的基础上,分析了雷达波谱仪的海浪方向谱的角度测量精度、波长确定度,并利用解析法着重分析了雷达波谱仪的能量误差指标,最后通过仿真的方法进一步验证雷达波谱仪的精度指标。用解析法和仿真得到的结果一致。研究这些精度及指标将为雷达波

中国近海水色遥感研究进展

International Journal of Ecology 世界生态学, 2017, 6(2), 82-92 Published Online May 2017 in Hans. https://www.wendangku.net/doc/c817249826.html,/journal/ije https://https://www.wendangku.net/doc/c817249826.html,/10.12677/ije.2017.62010 文章引用: 高慧, 赵辉, 沈春燕. 中国近海水色遥感研究进展[J]. 世界生态学, 2017, 6(2): 82-92. Progress in Ocean Color Remote Sensing of Chinese Marginal Seas Hui Gao 1, Hui Zhao 1, Chunyan Shen 2 1 College of Oceanography and Meteorology, Guangdong Ocean University, Zhanjiang Guangdong 2 Fisheries College, Guangdong Ocean University, Zhanjiang Guangdong Received: May 6th , 2017; accepted: May 23rd , 2017; published: May 27th , 2017 Abstract Ocean color remote sensing is an important means of monitoring the marine environment; it has the advantages of high observation frequency, wide spatial coverage and small influence by sea condition. In recent years, marine scientific researchers and marine monitoring branches have been paid more and more attention. This paper reviews the development process of ocean color sensor, summarizes and classifies the ocean color inversion algorithms, and further takes remote sensing of ocean color in Chinese coastal regions as an example, to show the present status, progress and application prospect of ocean color in recent years. Keywords Chinese Marginal Seas, Ocean Color Remote Sensing Algorithm, Chlorophyll-A 中国近海水色遥感研究进展 高 慧1,赵 辉1,沈春燕2 1 广东海洋大学,海洋与气象学院,广东 湛江 2广东海洋大学,水产学院,广东 湛江 收稿日期:2017年5月6日;录用日期:2017年5月23日;发布日期:2017年5月27日 摘 要 海洋水色遥感是海洋环境监测的重要手段,具有观测频率高、空间覆盖广以及受海况影响小的优点,近年来逐渐受到海洋科研工作者和海洋监测部门的重视。本文概述了水色传感器的发展历程,对水色反演

海洋学

中国气象科学研究院研究生考试复习大纲 (海洋学) 一、试题内容及范围 试题内容主要考察对海洋学基础理论以及学科发展现状的认识水平,考察考生对学科的熟知程度和理解水平,以物理海洋学为主。主要范围包括:海洋科学的研究对象、方法和特点,海洋科学的分支,海水的物理性质,海洋环流,海洋中的波动现象,潮汐,风暴潮,大气与海洋,中国近海的区域海洋学等。 二、建议参考书 1.《海洋科学导论》,冯士筰,李凤岐,李少菁主编,高等教育出版社,1999 2.《物理海洋学》,叶安乐,李凤岐编著,青岛海洋大学出版社,1992 三、复习大纲 1、绪论 海洋科学的研究对象、方法和特点;海洋科学的分支;世界海洋学的发展简史;中国海洋科学的发展现状和前景。 2、海水的物理特性和世界大洋的层化结构 海水位温的定义;世界大洋的盐度、温度和密度空间分布基本特征;大洋主温跃层和季节温跃层;海水主要热力学性质;海冰的主要物理性质;海洋水团;海洋混合的概念及引起混合的主要原因。 3、海洋环流 海流的形成原因及表示方法;海水运动的驱动力;重力势、等势面、位势高度和位势深度的定义;压强梯度力和科氏力的定义;海水运动方程的基本形式;地转流及动力计算方法;EKMAN无线深海漂流理论;经典风生大洋环流理论的主要结论;热盐环流的基本内涵;全球风生环流的主要结构等。 4、海洋中的波动现象 海洋中波动现象的成因;描述波动的基本物理量;驻波的成因及基本特征;波群的成因及基本特征;开尔文波和罗斯贝波的定义;风浪和涌浪的成因;海浪谱的定义;海洋内波。 5、潮汐

潮汐现象的解释;引潮力的定义及分布特征;潮汐静力理论的基本思想;潮汐动力理论的基本思想;风暴潮及风暴潮预报。 6、大气与海洋 气压场及其与风场的基本关系;东风带、西风带定义及成因;季风;海洋上的天气系统;台风及其基本结构;海气相互作用;ENSO及其对气候变化的影响;海洋在全球气候变化中的重要地位等。 7、中国近海的区域海洋学 中国近海海域气候特征;中国近海海域水温、盐度的分布及变化特征;中国海水团和水平环流的分布;渤海的海冰分布;中国近海潮汐、潮流、风浪和风暴潮的特征;中国近海的海洋环境保护的现状和任务。

中国海洋大学 环境海洋学 课程大纲(理论课程)

附件2: 中国海洋大学环境海洋学课程大纲(理论课程) 英文名称(Environmental Oceanography) 【开课单位】环境科学与工程学院【课程模块】学科基础 【课程编号】【课程类别】必修 【学时数】51 (理论51 实践)【学分数】 3 备注:课程模块为公共基础、通识教育、学科基础、专业知识或工作技能;课程类别为必修或选修。 一、课程描述 (一)教学对象 环境科学专业本科四年制二年级学生 (二)教学目标及修读要求 讲授环境海洋学的基础理论、基本知识和主要方法,使学生熟悉海洋环境的基本特征、海洋环境地学与资源、海水特殊的物理性质和海水运动的主要形式、规律和机制;认识海水主要化学特征,了解海洋环境中污染物质的化学行为, 即污染物质在海洋环境中迁移、转化及归宿等规律;理解海洋生物的主要类群及其与非生物环境的关系,了解海洋生态系统的结构和功能,掌握海洋中的初级生产和次级生产过程,熟悉海洋中的物质循环和能量传递过程;初步了解海洋管理的有关知识。特别是从动力学角度出发,认识海洋中物理、化学与生物等过程之间的相互作用及其与海洋环境变化和生态系统演变之间的关系。要求对环境海洋学的知识体系有系统了解,为以后以海洋为对象的环境科学和工程领域的学习和应用打下基础。 (三)先修课程:环境科学概论 二、教学内容 (一)第一章绪论 1、主要内容: 环境科学、海洋科学、以及环境海洋学等学科基本概念,以及学科间的联系;海洋环 境变化与生态破坏的历史与未来趋势。 2、教学要求: 了解环境科学和海洋科学的发展史及其趋势,对环境海洋学有概括的认识。 3、重点、难点: 海洋环境问题的特点以及复杂性。

潮汐调和分析-实验报告

中期水位观测资料的最小二乘分析报告摘要: 本次实验中采用了KM站(28.05N,121.17E)1997年8月的逐时潮位数据,运用中期水位观测资料的最小二乘分析方法,通过奇异值剔除、调和分析、逐时潮位回报、高低潮及余水位计算等工作,对此验潮站的数据进行了初步分析,并了解了中期水位资料分析的基本流程。 报告主要内容: (1)11 个主要分潮(MSf Q1 O1 K1 N2 M2 S2 MK3 M4 MS4)及两个随从分潮(P1 K2)的调和常数H和g (2)图像和数据文件的基本信息 (3)平均潮差和潮汐类型 (4)余水位特征分析 (5)误差分析 (6)程序的相关说明 (1)潮汐的调和常数: 利用最小二乘原理,通过引入差比关系的方法,我们可以成功得到11个主要分潮和2个随从分潮的调和常数如下: 分潮名称调和常数H调和常数g MSf 121.2222 -32.38747 Q1 62.95736 233.5120 O1 225.5294 238.7111 K1 266.1612 113.2537 N2 420.5689 167.2492 M2 1922.772 174.8581 S2 679.3940 197.3759 MK3 33.19594 252.1002 M4 32.43390 121.7806 MS4 33.60584 198.8826 M6 3.762754 94.29744 P1 73.46050 109.5160 K2 192.9479 201.4156 程序运行结果如图:

其中H关系到分潮的振幅,g关系到分潮的相位。从表中可以看出,M2 分潮的振幅最强,对当地潮位的贡献最大,这与实际情况相符,但K1分潮的调和常数H 仅有266.1412,结果偏小。 (2)图像和数据文件的基本信息: 本次报告中包含以下数据文件: 1. KM9708new.dat 数据原始文件。 2. KM9708new_02.dat 经过奇异值订正的数据文件,为方便画图时读取,没有输入数据质量信息。 3. 调和常数.txt 保存了调和常数的相关数据 4.回报值.txt 保存了利用六个主要分潮进行数据回报得到的结果,同样为方便读取,没有输入质量控制

相关文档
相关文档 最新文档