文档库 最新最全的文档下载
当前位置:文档库 › 决策树算法

决策树算法

决策树算法
决策树算法

决策树算法:顾名思义,以二分类问题为例,即利用自变量构造一颗二叉树,将目标变量区分出来,所有决策树算法的关键点如下:

1.分裂属性的选择。即选择哪个自变量作为树叉,也就是在n个自变量中,优先选择哪个自变量进行分叉。而采用何种计算方式选择树叉,决定了决策树算法的类型,即ID3、c4.5、CART三种决策树算法选择树叉的方式是不一样的,后文详细描述。

2.树剪枝。即在构建树叉时,由于数据中的噪声和离群点,许多分支反映的是训练数据中的异常,而树剪枝则是处理这种过分拟合的数据问题,常用的剪枝方法为先剪枝和后剪枝。后文详细描述。

为了描述方便,本文采用评价电信服务保障中的满意度预警专题来解释决策树算法,即假如我家办了电信的宽带,有一天宽带不能上网了,于是我打电话给电信报修,然后电信派相关人员进行维修,修好以后电信的回访专员询问我对这次修理障碍的过程是否满意,我会给我对这次修理障碍给出相应评价,满意或者不满意。根据历史数据可以建立满意度预警模型,建模的目的就是为了预测哪些用户会给出不满意的评价。目标变量为二分类变量:满意(记为0)和不满意(记为1)。自变量为根据修理障碍过程产生的数据,如障碍类型、障碍原因、修障总时长、最近一个月发生故障的次数、最近一个月不满意次数等等。简单的数据如下:

客户ID 故障原因故障类型修障时长满意度

001 1 5 10.2 1

002 1 5 12 0

003 1 5 14 1

004 2 5 16 0

005 2 5 18 1

006 2 6 20 0

007 3 6 22 1

008 3 6 23 0

009 3 6 24 1

010 3 6 25 0

故障原因和故障类型都为离散型变量,数字代表原因ID和类型ID。修障时长为连续型变量,单位为小时。满意度中1为不满意、0为满意。

下面沿着分裂属性的选择和树剪枝两条主线,去描述三种决策树算法构造满意度预警模型:

分裂属性的选择:即该选择故障原因、故障类型、修障时长三个变量中的哪个作为决策树的第一个分支。

ID3算法是采用信息增益来选择树叉,c4.5算法采用增益率,CART算法采用Gini 指标。此外离散型变量和连续型变量在计算信息增益、增益率、Gini指标时会有些区别。详细描述如下:

1.ID3算法的信息增益:

信息增益的思想来源于信息论的香农定理,ID3算法选择具有最高信息增益的自变量作为当前的树叉(树的分支),以满意度预警模型为例,模型有三个自变量:故障原因、故障类型、修障时长。分别计算三个自变量的信息增益,选取其中最大的信息增益作为树叉。信息增益=原信息需求-要按某个自变量划分所需要的信息。

如以自变量故障原因举例,故障原因的信息增益=原信息需求(即仅仅基于满意度类别比例的信息需求,记为a)-按照故障原因划分所需要的信息需求(记为a1)。

其中原信息需求a的计算方式为:

其中D为目标变量,此例中为满意度。m=2,即满意和不满意两种情况。Pi为满意度中属于分别属于满意和不满意的概率。此例中共计10条数据,满意5条,不满意5条。概率都为1/2。Info(满意度)即为仅仅基于满意和满意的类别比例进行划分所需要的信息需求,计算方式为:

按照故障原因划分所需要的信息需求(记为a1)可以表示为:

其中A表示目标变量D(即满意度)中按自变量A划分所需要的信息,即按故障类型进行划分所需要的信息。V表示在目标变量D(即满意度)中,按照自变量 A (此处为故障原因)进行划分,即故障原因分别为1、2、3进行划分,将目标变量分别划分为3个子集,{D1、D2、D3},因此V=3。即故障原因为1 的划分中,有2个不满意和1个满意。D1即指2个不满意和1个满意。故障原因为2的划分中,有1个不满意和2个满意。D2即指1个不满意和2个满意。故障原因为3的划分中,有2个不满意和2个满意。D3即指2个不满意和2个满意。具体公式如下:

注:此处的计算结果即0.165不准确,没有真正去算,结果仅供参考。

因此变量故障原因的信息增益Gain(故障原因)=Info(满意度)- Info故障原因(满意度)=1-0.165=0.835

同样的道理,变量故障类型的信息增益计算方式如下:

=0.205(结果不准,为准确计算)

变量故障类型的信息增益Gain(故障类型)=1-0.205=0.795

故障原因和故障类型两个变量都是离散型变量,按上述方式即可求得信息增益,但修障时长为连续型变量,对于连续型变量该怎样计算信息增益呢?只需将连续型变量由小到大递增排序,取相邻两个值的中点作为分裂点,然后按照离散型变量计算信息增益的方法计算信息增益,取其中最大的信息增益作为最终的分裂点。如求修障时长的信息增益,首先将修障时长递增排序,即10.2、12、14、16、18、20、22、23、24、25,取相邻两个值的中点,如10.2和 12,中点即为(10.2+12)/2=11.1,同理可得其他中点,分别为11.1、13、15、17、19、21、22.5、23.5、24.5。对每个中点都离散化成两个子集,如中点11.1,可以离散化为两个<=11.1和>11.1两个子集,然后按照离散型变量的信息增益计算方式计算其信息增益,如中点11.1的信息增益计算过程如下:

中点11.1的信息增益Gain(修障时长)=1-0.222=0.778

中点13的信息增益计算过程如下:

中点11.1的信息增益Gain(修障时长)=1-1=0

同理分别求得各个中点的信息增益,选取其中最大的信息增益作为分裂点,如取中点11.1。然后与故障原因和故障类型的信息增益相比较,取最大的信息增益作为第一个树叉的分支,此例中选取了故障原因作为第一个分叉。按照同样的方式继续构造树的分支。

总之,信息增益的直观解释为选取按某个自变量划分所需要的期望信息,该期望信息越小,划分的纯度越高。因为对于某个分类问题而言,Info(D)都是固定的,而信息增益Gain(A)=Info(D)-Info A(D) 影响信息增益的关键因素为:-Info A(D),即按自变量A进行划分,所需要的期望信息越小,整体的信息增益越大,越能将分类变量区分出来。

2.C4.5算法的增益率:

由于信息增益选择分裂属性的方式会倾向于选择具有大量值的属性(即自变量),如对于客户ID,每个客户ID对应一个满意度,即按此变量划分每个划分都是纯的(即完全的划分,只有属于一个类别),客户ID的信息增益为最大值1。但这种按该自变量的每个值进行分类的方式是没有任何意义的。为了克服这一弊端,有人提出了采用增益率(GainRate)来选择分裂属性。计算方式如下:

其中Gain(A)的计算方式与ID3算法中的信息增益计算方式相同。

以故障原因为例:

=1.201

Gain(故障原因)=0.835(前文已求得)

GainRate故障原因(满意度)=1.201/0.835=1.438

同理可以求得其他自变量的增益率。

选取最大的信息增益率作为分裂属性。

3.CART算法的Gini指标:

CART算法选择分裂属性的方式是比较有意思的,首先计算不纯度,然后利用不纯度计算Gini指标。以满意度预警模型为例,计算自变量故障原因的Gini 指标时,先按照故障原因可能的子集进行划分,即可以将故障原因具体划分为如下的子集:{1,2,3}、{1,2}、{1,3}、{2,3}、{1}、{2}、{3}、{},共计8(2^V)个子集。由于{1,2,3}和{}对于分类来说没有任何意义,因此实际分为2^V-2共计6个有效子集。然后计算这6个有效子集的不纯度和Gini指标,选取最小的Gini指标作为分裂属性。

不纯度的计算方式为:

pi表示按某个变量划分中,目标变量不同类别的概率。

某个自变量的Gini指标的计算方式如下:

对应到满意度模型中,A为自变量,即故障原因、故障类型、修障时长。D 代表满意度,D1和D2分别为按变量A的子集所划分出的两个不同元组,如按子集{1,2}划分,D1即为故障原因属于{1,2}的满意度评价,共有6条数据,D2即故障原因不属于{1,2}的满意度评价,共有3条数据。计算子集{1,2}的不纯度时,即Gini(D1),在故障原因属于{1,2}的样本数据中,分别有3条不满意和3条满

意的数据,因此不纯度为1- (3/6)^2-(3/6)^2=0.5。

以故障原因为例,计算过程如下:

=0.5

计算子集故障原因={1,3}的子集的Gini指标时,D1和D2分别为故障原因={1,3}的元组共计7条数据,故障原因不属于{1,3}的元组即故障原因为2的数据,共计3条数据。详细计算过程如下:

=0.52

同理可以计算出故障原因的每个子集的Gini指标,按同样的方式还可以计算故障类型和修障时长每个子集的Gini指标,选取其中最小的Gini指标作为树的分支。连续型变量的离散方式与信息增益中的离散方式相同。

树的剪枝:

树剪枝可以分为先剪枝和后剪枝。

先剪枝:通过提前停止树的构造,如通过决定在给定的节点不再分裂或划分训练元组的子集,而对树剪枝,一旦停止,该节点即成为树叶。在构造树时,可以使用诸如统计显著性、信息增益等度量评估分裂的优劣,如果划分一个节点的元组低于预先定义阈值的分裂,则给定子集的进一步划分将停止。但选取一个适当的阈值是困难的,较高的阈值可能导致过分简化的树,而较低的阈值可能使得树的简化太少。

后剪枝:它由完全生长的树剪去子树,通过删除节点的分支,并用树叶替换它而剪掉给定节点的子树,树叶用被替换的子树中最频繁的类标记。

其中c4.5使用悲观剪枝方法,CART则为代价复杂度剪枝算法(后剪枝)。

R语言-决策树算法知识讲解

R语言-决策树算法

决策树算法 决策树定义 首先,我们来谈谈什么是决策树。我们还是以鸢尾花为例子来说明这个问题。 观察上图,我们判决鸢尾花的思考过程可以这么来描述:花瓣的长度小于 2.4cm的是setosa(图中绿色的分类),长度大于1cm的呢?我们通过宽度来判别,宽度小于1.8cm的是versicolor(图中红色的分类),其余的就是 virginica(图中黑色的分类) 我们用图形来形象的展示我们的思考过程便得到了这么一棵决策树: 这种从数据产生决策树的机器学习技术叫做决策树学习, 通俗点说就是决策树,说白了,这是一种依托于分类、训练上的预测树,根据已知预测、归类未来。 前面我们介绍的k-近邻算法也可以完成很多分类任务,但是他的缺点就是含义不清,说不清数据的内在逻辑,而决策树则很好地解决了这个问题,他十分好理解。从存储的角度来说,决策树解放了存储训练集的空间,毕竟与一棵树的存储空间相比,训练集的存储需求空间太大了。 决策树的构建 一、KD3的想法与实现 下面我们就要来解决一个很重要的问题:如何构造一棵决策树?这涉及十分有趣的细节。 先说说构造的基本步骤,一般来说,决策树的构造主要由两个阶段组成:第一阶段,生成树阶段。选取部分受训数据建立决策树,决策树是按广度优先建立直到每个叶节点包括相同的类标记为止。第二阶段,决策树修剪阶段。用剩余数据检验决策树,如果所建立的决策树不能正确回答所研究的问题,我们要对决策树进行修剪直到建立一棵正确的决策树。这样在决策树每个内部节点处进行属性值的比较,在叶节点得到结论。从根节点到叶节点的一条路径就对应着一条规则,整棵决策树就对应着一组表达式规则。 问题:我们如何确定起决定作用的划分变量。 我还是用鸢尾花的例子来说这个问题思考的必要性。使用不同的思考方式,我们不难发现下面的决策树也是可以把鸢尾花分成3类的。 为了找到决定性特征,划分出最佳结果,我们必须认真评估每个特征。通常划分的办法为信息增益和基尼不纯指数,对应的算法为C4.5和CART。 关于信息增益和熵的定义烦请参阅百度百科,这里不再赘述。 直接给出计算熵与信息增益的R代码:

决策树算法研究及应用概要

决策树算法研究及应用? 王桂芹黄道 华东理工大学实验十五楼206室 摘要:信息论是数据挖掘技术的重要指导理论之一,是决策树算法实现的理论依据。决 策树算法是一种逼近离散值目标函数的方法,其实质是在学习的基础上,得到分类规则。本文简要介绍了信息论的基本原理,重点阐述基于信息论的决策树算法,分析了它们目前 主要的代表理论以及存在的问题,并用具体的事例来验证。 关键词:决策树算法分类应用 Study and Application in Decision Tree Algorithm WANG Guiqin HUANG Dao College of Information Science and Engineering, East China University of Science and Technology Abstract:The information theory is one of the basic theories of Data Mining,and also is the theoretical foundation of the Decision Tree Algorithm.Decision Tree Algorithm is a method to approach the discrete-valued objective function.The essential of the method is to obtain a clas-sification rule on the basis of example-based learning.An example is used to sustain the theory. Keywords:Decision Tree; Algorithm; Classification; Application 1 引言 决策树分类算法起源于概念学习系统CLS(Concept Learning System,然后发展 到ID3

决策树算法介绍(DOC)

3.1 分类与决策树概述 3.1.1 分类与预测 分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平”、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差”,在这个例子中,所研究的属性“信用度”是一个离散属性,它的取值是一个类别值,这种问题在数据挖掘中被称为分类。 还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。那么这种问题在数据挖掘中被称为预测。 总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。 3.1.2 决策树的基本原理 1.构建决策树 通过一个实际的例子,来了解一些与决策树有关的基本概念。 表3-1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、......、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。这里把这个表记做数据集D。 银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。这里的信用等级分析模型,就可以是一棵决策树。在这个案例中,研究的重点是“信用等级”这个属性。给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良”还是“差”,也就是说,要把这客户划分到信用等级为“优”、“良”、“差”这3个类别的某一类别中去。这里把“信用等级”这个属性称为“类标号属性”。数据集D中“信用等级”属性的全部取值就构成了类别集合:Class={“优”,

决策树算法分析报告

摘要 随着信息科技的高速发展,人们对于积累的海量数据量的处理工作也日益增重,需发明之母,数据挖掘技术就是为了顺应这种需求而发展起来的一种数据处理技术。 数据挖掘技术又称数据库中的知识发现,是从一个大规模的数据库的数据中有效地、隐含的、以前未知的、有潜在使用价值的信息的过程。决策树算法是数据挖掘中重要的分类方法,基于决策树的各种算法在执行速度、可扩展性、输出结果的可理解性、分类预测的准确性等方面各有千秋,在各个领域广泛应用且已经有了许多成熟的系统,如语音识别、模式识别和专家系统等。本文着重研究和比较了几种典型的决策树算法,并对决策树算法的应用进行举例。 关键词:数据挖掘;决策树;比较

Abstract With the rapid development of Information Technology, people are f acing much more work load in dealing with the accumulated mass data. Data mining technology is also called the knowledge discovery in database, data from a large database of effectively, implicit, previou sly unknown and potentially use value of information process. Algorithm of decision tree in data mining is an important method of classification based on decision tree algorithms, in execution speed, scalability, output result comprehensibility, classification accuracy, each has its own merits., extensive application in various fields and have many mature system, such as speech recognition, pattern recognition and expert system and so on. This paper studies and compares several kinds of typical decision tree algorithm, and the algorithm of decision tree application examples. Keywords: Data mining; decision tree;Compare

决策树分类算法与应用

机器学习算法day04_决策树分类算法及应用课程大纲 决策树分类算法原理决策树算法概述 决策树算法思想 决策树构造 算法要点 决策树分类算法案例案例需求 Python实现 决策树的持久化保存 课程目标: 1、理解决策树算法的核心思想 2、理解决策树算法的代码实现 3、掌握决策树算法的应用步骤:数据处理、建模、运算和结果判定

1. 决策树分类算法原理 1.1 概述 决策树(decision tree)——是一种被广泛使用的分类算法。 相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置 在实际应用中,对于探测式的知识发现,决策树更加适用 1.2 算法思想 通俗来说,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话: 女儿:多大年纪了? 母亲:26。 女儿:长的帅不帅? 母亲:挺帅的。 女儿:收入高不? 母亲:不算很高,中等情况。 女儿:是公务员不? 母亲:是,在税务局上班呢。 女儿:那好,我去见见。 这个女孩的决策过程就是典型的分类树决策。 实质:通过年龄、长相、收入和是否公务员对将男人分为两个类别:见和不见 假设这个女孩对男人的要求是:30岁以下、长相中等以上并且是高收入者或中等以上收入的公务员,那么这个可以用下图表示女孩的决策逻辑

上图完整表达了这个女孩决定是否见一个约会对象的策略,其中: ◆绿色节点表示判断条件 ◆橙色节点表示决策结果 ◆箭头表示在一个判断条件在不同情况下的决策路径 图中红色箭头表示了上面例子中女孩的决策过程。 这幅图基本可以算是一颗决策树,说它“基本可以算”是因为图中的判定条件没有量化,如收入高中低等等,还不能算是严格意义上的决策树,如果将所有条件量化,则就变成真正的决策树了。 决策树分类算法的关键就是根据“先验数据”构造一棵最佳的决策树,用以预测未知数据的类别 决策树:是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

决策树算法的原理与应用

决策树算法的原理与应用 发表时间:2019-02-18T17:17:08.530Z 来源:《科技新时代》2018年12期作者:曹逸知[导读] 在以后,分类问题也是伴随我们生活的主要问题之一,决策树算法也会在更多的领域发挥作用。江苏省宜兴中学江苏宜兴 214200 摘要:在机器学习与大数据飞速发展的21世纪,各种不同的算法成为了推动发展的基石.而作为十大经典算法之一的决策树算法是机器学习中十分重要的一种算法。本文对决策树算法的原理,发展历程以及在现实生活中的基本应用进行介绍,并突出说明了决策树算法所涉及的几种核心技术和几种具有代表性的算法模式。 关键词:机器学习算法决策树 1.决策树算法介绍 1.1算法原理简介 决策树模型是一种用于对数据集进行分类的树形结构。决策树类似于数据结构中的树型结构,主要是有节点和连接节点的边两种结构组成。节点又分为内部节点和叶节点。内部节点表示一个特征或属性, 叶节点表示一个类. 决策树(Decision Tree),又称为判定树, 是一种以树结构(包括二叉树和多叉树)形式表达的预测分析模型,决策树算法被评为十大经典机器学习算法之一[1]。 1.2 发展历程 决策树方法产生于上世纪中旬,到了1975年由J Ross Quinlan提出了ID3算法,作为第一种分类算法模型,在很多数据集上有不错的表现。随着ID3算法的不断发展,1993年J Ross Quinlan提出C4.5算法,算法对于缺失值补充、树型结构剪枝等方面作了较大改进,使得算法能够更好的处理分类和回归问题。决策树算法的发展同时也离不开信息论研究的深入,香农提出的信息熵概念,为ID3算法的核心,信息增益奠定了基础。1984年,Breiman提出了分类回归树算法,使用Gini系数代替了信息熵,并且利用数据来对树模型不断进行优化[2]。2.决策树算法的核心 2.1数据增益 香农在信息论方面的研究,提出了以信息熵来表示事情的不确定性。在数据均匀分布的情况下,熵越大代表事物的越不确定。在ID3算法中,使用信息熵作为判断依据,在建树的过程中,选定某个特征对数据集进行分类后,数据集分类前后信息熵的变化就叫作信息增益,如果使用多个特征对数据集分别进行分类时,信息增益可以衡量特征是否有利于算法对数据集进行分类,从而选择最优的分类方式建树。如果一个随机变量X的可以取值为Xi(i=1…n),那么对于变量X来说,它的熵就是

决策树算法介绍

3.1分类与决策树概述 3.1.1分类与预测 分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病 症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平”、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差”,在这个例子中,所研究的属性“信用度”是E—个离散属性,它的取值是一个类别值,这种问题在数 据挖掘中被称为分类。 还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这 里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。那么这种 问题在数据挖掘中被称为预测。 总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。 3.1.2决策树的基本原理 1. 构建决策树 通过一个实际的例子,来了解一些与决策树有关的基本概念。 表3-1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、......、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。这里把这个表记做数据集D。 银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。这里的信用等级分析模型,就可以是一棵决策树。在这个案例中,研究的重点是“信用等级”这个属性。给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良”还是 “差”,也就是说,要把这客户划分到信用等级为“优”、“良”、“差”这3 个类别的某一类别中去。这里把“信用等级”这个属性称为“类标号属性”。数据集D中“信用等级”属性的全部取值就构成了类别集合:Class={ “优”,

C45算法生成决策树的研究

精心整理 C4.5算法生成决策树 1、基础知识 当我们需要对一个随机事件的概率分布进行预测时,我们的预测应当满足全部已知的条件,而对未知的情况不要做任何主观假设。在这种情况下,概率分布最均SEE5、SLIQ 算法的的标准,克服了ID3算法中信息增益选择属性时偏向选择取值多的属性的不足,并能够完成对连续属性离散化的处理,还能够对不完整数据进行处理。根据分割方法的不同,目前决策的算法可以分为两类:基于信息论(InformationTheory )的方法和最小GINI 指标(LowestGINIindex )方法。对应前者的算法有ID3、C4.5,后者的有CART 、SLIQ 和SPRINT 。

C4.5算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。 2、算法 以下图数据为例,介绍用C4.5建立决策树的算法。 表1 ID3算法最初假定属性都是离散值,但在实际应用中,很多属性值都是连续的。C4.5对ID3不能处理连续型属性的缺点进行了改进。如果存在连续型的描述性属性,首先将连续型属性的值分成不同的区间,即“离散化”。

对上表中将实际耗电量分为10个区间(0—9) (300~320,320~340,340~360,360~380,380~400,400~420,420~440,440~460,460~480,480~500)因为最终是要得到实际的耗电量区间,因此“实际耗电量”属于“类别属性”。“室外温度”、“室内温度”、“室外湿度”、“风力大小”、“机房楼层”、“机房朝向”、“机房开启设备总额定功率”属于“非类别属性”。 表2 通过表 知,实 际耗电的个数表3

基于决策树的分类算法

1 分类的概念及分类器的评判 分类是数据挖掘中的一个重要课题。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个。分类可用于提取描述重要数据类的模型或预测未来的数据趋势。 分类可描述如下:输入数据,或称训练集(training set)是一条条记录组成的。每一条记录包含若干条属性(attribute),组成一个特征向量。训练集的每条记录还有一个特定的类标签(类标签)与之对应。该类标签是系统的输入,通常是以往的一些经验数据。一个具体样本的形式可为样本向量:(v1,v2,…,…vn:c)。在这里vi表示字段值,c表示类别。 分类的目的是:分析输入数据,通过在训练集中的数据表现出来的特性,为每一个类找到一种准确的描述或者模型。这种描述常常用谓词表示。由此生成的类描述用来对未来的测试数据进行分类。尽管这些未来的测试数据的类标签是未知的,我们仍可以由此预测这些新数据所属的类。注意是预测,而不能肯定。我们也可以由此对数据中的每一个类有更好的理解。也就是说:我们获得了对这个类的知识。 对分类器的好坏有三种评价或比较尺度: 预测准确度:预测准确度是用得最多的一种比较尺度,特别是对于预测型分类任务,目前公认的方法是10番分层交叉验证法。 计算复杂度:计算复杂度依赖于具体的实现细节和硬件环境,在数据挖掘中,由于操作对象是巨量的数据库,因此空间和时间的复杂度问题将是非常重要的一个环节。 模型描述的简洁度:对于描述型的分类任务,模型描述越简洁越受欢迎;例如,采用规则表示的分类器构造法就更有用。 分类技术有很多,如决策树、贝叶斯网络、神经网络、遗传算法、关联规则等。本文重点是详细讨论决策树中相关算法。

企业CRM系统中决策树算法的应用

企业CRM系统中决策树算法的应用 河北金融学院郭佳许明 保定市科技局《基于数据挖掘的客户关系管理系统应用研究》09ZG009 摘要:客户资源决定企业的核心竞争力,更多的关心自己的销售群体,并与之建立良好的、长期的客户关系,提升客户价值,对全面提升企业竞争能力和盈利能力具有重要作用。本文以某企业销售业绩为对象,利用决策树分类算法,得到支持决策,从而挖掘出理想客户。 关键字:客户关系管理;数据挖掘;分类算法 决策树分类是一种从无规则、无序的训练样本集合中推理出决策树表示形式的分类规则的方法。该方法采用自顶向下的比较方式,在决策树的内部结点进行属性值的比较,然后根据不同的属性值判断从该结点向下的分支,在决策树的叶结点得到结论。 本文主要研究决策树分类算法中ID3算法在企业CRM系统中的应用情况。 1.ID3算法原理 ID3算法是一种自顶向下的决策树生成算法,是一种根据熵减理论选择最优的描述属性的方法。该算法从树的根节点处的训练样本开始,选择一个属性来区分样本。对属性的每一个值产生一个分支。分支属性的样本子集被移到新生成的子节点上。这个算法递归地应用于每个子节点,直到一个节点上的所有样本都分区到某个类中。 2.用于分类的训练数据源组 数据挖掘的成功在很大程度上取决于数据的数量和质量。我们应从大量的企业客户数据中找到与分析问题有关的,具有代表性的样本数据子集。然后,进行数据预处理、分析,按问题要求对数据进行组合或增删生成新的变量,从而对问题状态进行有效描述。 在本文研究的企业数据中,是将客户的年龄概化为“小于等于30”、“30到50之间”和“大于50”三个年龄段,分别代表青年、中年和老年客户,将产品价格分为高、中、低三档等,详见表1,将企业CRM系统数据库中销售及客户信息汇总为4个属性2个类别。4个属性是客户年龄段、文化程度、销售地区、产品档次,类别是销售业绩,分为好和差两类。

完整word版,决策树算法总结

决策树研发二部

目录 1. 算法介绍 (1) 1.1.分支节点选取 (1) 1.2.构建树 (3) 1.3.剪枝 (10) 2. sk-learn中的使用 (12) 3. sk-learn中源码分析 (13)

1.算法介绍 决策树算法是机器学习中的经典算法之一,既可以作为分类算法,也可以作为回归算法。决策树算法又被发展出很多不同的版本,按照时间上分,目前主要包括,ID3、C4.5和CART版本算法。其中ID3版本的决策树算法是最早出现的,可以用来做分类算法。C4.5是针对ID3的不足出现的优化版本,也用来做分类。CART也是针对ID3优化出现的,既可以做分类,可以做回归。 决策树算法的本质其实很类似我们的if-elseif-else语句,通过条件作为分支依据,最终的数学模型就是一颗树。不过在决策树算法中我们需要重点考虑选取分支条件的理由,以及谁先判断谁后判断,包括最后对过拟合的处理,也就是剪枝。这是我们之前写if语句时不会考虑的问题。 决策树算法主要分为以下3个步骤: 1.分支节点选取 2.构建树 3.剪枝 1.1.分支节点选取 分支节点选取,也就是寻找分支节点的最优解。既然要寻找最优,那么必须要有一个衡量标准,也就是需要量化这个优劣性。常用的衡量指标有熵和基尼系数。 熵:熵用来表示信息的混乱程度,值越大表示越混乱,包含的信息量也就越多。比如,A班有10个男生1个女生,B班有5个男生5个女生,那么B班的熵值就比A班大,也就是B班信息越混乱。 基尼系数:同上,也可以作为信息混乱程度的衡量指标。

有了量化指标后,就可以衡量使用某个分支条件前后,信息混乱程度的收敛效果了。使用分支前的混乱程度,减去分支后的混乱程度,结果越大,表示效果越好。 #计算熵值 def entropy(dataSet): tNum = len(dataSet) print(tNum) #用来保存标签对应的个数的,比如,男:6,女:5 labels = {} for node in dataSet: curL = node[-1] #获取标签 if curL not in labels.keys(): labels[curL] = 0 #如果没有记录过该种标签,就记录并初始化为0 labels[curL] += 1 #将标签记录个数加1 #此时labels中保存了所有标签和对应的个数 res = 0 #计算公式为-p*logp,p为标签出现概率 for node in labels: p = float(labels[node]) / tNum res -= p * log(p, 2) return res #计算基尼系数 def gini(dataSet): tNum = len(dataSet) print(tNum) # 用来保存标签对应的个数的,比如,男:6,女:5 labels = {} for node in dataSet: curL = node[-1] # 获取标签 if curL not in labels.keys(): labels[curL] = 0 # 如果没有记录过该种标签,就记录并初始化为0 labels[curL] += 1 # 将标签记录个数加1 # 此时labels中保存了所有标签和对应的个数 res = 1

数据挖掘——决策树分类算法 (1)

决策树分类算法 学号:20120311139 学生所在学院:软件工程学院学生姓名:葛强强 任课教师:汤亮 教师所在学院:软件工程学院2015年11月

12软件1班 决策树分类算法 葛强强 12软件1班 摘要:决策树方法是数据挖掘中一种重要的分类方法,决策树是一个类似流程图的树型结构,其中树的每个内部结点代表对一个属性的测试,其分支代表测试的结果,而树的每个 叶结点代表一个类别。通过决策树模型对一条记录进行分类,就是通过按照模型中属 性测试结果从根到叶找到一条路径,最后叶节点的属性值就是该记录的分类结果。 关键词:数据挖掘,分类,决策树 近年来,随着数据库和数据仓库技术的广泛应用以及计算机技术的快速发展,人们利用信息技术搜集数据的能力大幅度提高,大量数据库被用于商业管理、政府办公、科学研究和工程开发等。面对海量的存储数据,如何从中有效地发现有价值的信息或知识,是一项非常艰巨的任务。数据挖掘就是为了应对这种要求而产生并迅速发展起来的。数据挖掘就是从大型数据库的数据中提取人们感兴趣的知识,这些知识是隐含的、事先未知的潜在有用的信息,提取的知识表示为概念、规则、规律、模式等形式。 分类在数据挖掘中是一项非常重要的任务。 分类的目的是学会一个分类函数或分类模型,把数据库中的数据项映射到给定类别中的某个类别。分类可用于预测,预测的目的是从历史数据记录中自动推导出对给定数据的趋势描述,从而能对未来数据进行预测。分类算法最知名的是决策树方法,决策树是用于分类的一种树结构。 1决策树介绍 决策树(decisiontree)技术是用于分类和预测 的主要技术,决策树学习是一种典型的以实例为基础的归纳学习算法,它着眼于从一组无次序、无规则的事例中推理出决策树表示形式的分类规则。它采用自顶向下的递归方式,在决策树的内部节点进行属性的比较,并根据不同属性判断从该节点向下的分支,在决策树的叶节点得到结论。所以从根到叶节点就对应着一条合取规则,整棵树就对应着一组析取表达式规则。 把决策树当成一个布尔函数。函数的输入为物体或情况的一切属性(property),输出为”是”或“否”的决策值。在决策树中,每个树枝节点对应着一个有关某项属性的测试,每个树叶节点对应着一个布尔函数值,树中的每个分支,代表测试属性其中一个可能的值。 最为典型的决策树学习系统是ID3,它起源于概念学习系统CLS,最后又演化为能处理连续属性的C4.5(C5.0)等。它是一种指导的学习方法,该方法先根据训练子集形成决策树。如果该树不能对所有给出的训练子集正确分类,那么选择一些其它的训练子集加入到原来的子集中,重复该过程一直到时形成正确的决策集。当经过一批训练实例集的训练产生一棵决策树,决策树可以根据属性的取值对一个未知实例集进行分类。使用决策树对实例进行分类的时候,由树根开始对该对象的属性逐渐测试其值,并且顺着分支向下走,直至到达某个叶结点,此叶结点代表的类即为该对象所处的类。 决策树是应用非常广泛的分类方法,目前有多种决策树方法,如ID3,C4.5,PUBLIC,

决策树分类算法

决策树分类算法 决策树是一种用来表示人们为了做出某个决策而进行的一系列判断过程的树形图。决策树方法的基本思想是:利用训练集数据自动地构造决策树,然后根据这个决策树对任意实例进行判定。 1.决策树的组成 决策树的基本组成部分有:决策节点、分支和叶,树中每个内部节点表示一个属性上的测试,每个叶节点代表一个类。图1就是一棵典型的决策树。 图1 决策树 决策树的每个节点的子节点的个数与决策树所使用的算法有关。例如,CART算法得到的决策树每个节点有两个分支,这种树称为二叉树。允许节点含有多于两个子节点的树称为多叉树。 下面介绍一个具体的构造决策树的过程,该方法

是以信息论原理为基础,利用信息论中信息增益寻找数据库中具有最大信息量的字段,建立决策树的一个节点,然后再根据字段的不同取值建立树的分支,在每个分支中重复建立树的下层节点和分支。 ID3算法的特点就是在对当前例子集中对象进行分类时,利用求最大熵的方法,找出例子集中信息量(熵)最大的对象属性,用该属性实现对节点的划分,从而构成一棵判定树。 首先,假设训练集C 中含有P 类对象的数量为p ,N 类对象的数量为n ,则利用判定树分类训练集中的对象后,任何对象属于类P 的概率为p/(p+n),属于类N 的概率为n/(p+n)。 当用判定树进行分类时,作为消息源“P ”或“N ”有关的判定树,产生这些消息所需的期望信息为: n p n log n p n n p p log n p p )n ,p (I 22++-++- = 如果判定树根的属性A 具有m 个值{A 1, A 2, …, A m },它将训练集C 划分成{C 1, C 2, …, C m },其中A i 包括C 中属性A 的值为A i 的那些对象。设C i 包括p i 个类P 对象和n i 个类N 对象,子树C i 所需的期望信息是I(p i , n i )。以属性A 作为树根所要求的期望信息可以通过加权平均得到

分类论文决策树相关算法论文:决策树相关算法研究

分类论文决策树相关算法论文:决策树相关算法研究 摘要:id3算法和c4.5算法是经典的决策树算法,通过对id3算法和c4.5算法的数据结构、算法描述和分裂属性选取等方面进行比较,为其他研究者提供参考。 关键词:分类;id3;c4.5 an association explore based on decision tree algorithm wang hui, hou chuan-yu (school of information engineering, suzhou university, suzhou 234000, china) abstract: id3 algorithm and c4.5algorithm is classic decision tree algorithm in data mining. the article has some comparisons about c4.5 algorithm and id3 algorithm ,for example, data structure of decision tree, the process of algorithm of c4.5 and id3, and the choice of division attribute and so on, in order to provide this for others. key words: categories; id3; c4.5 随着计算机的普及和网络的高速发展,人们获得信息的途径越来越多,同时获取信息的量呈几何级数的方式增长。如何从海量信息获得有用知识用于决策,成为大家关注的问

决策树算法总结

决策树决策树研发二部

目录 1. 算法介绍 (1) 1.1. 分支节点选取 (1) 1.2. 构建树 (3) 1.3. 剪枝 (10) 2. sk-learn 中的使用 (12) 3. sk-learn中源码分析 (13)

1. 算法介绍 决策树算法是机器学习中的经典算法之一,既可以作为分类算法,也可以作 为回归算法。决策树算法又被发展出很多不同的版本,按照时间上分,目前主要包括,ID3、C4.5和CART版本算法。其中ID3版本的决策树算法是最早出现的,可以用来做分类算法。C4.5是针对ID3的不足出现的优化版本,也用来做分类。CART也是针对 ID3优化出现的,既可以做分类,可以做回归。 决策树算法的本质其实很类似我们的if-elseif-else语句,通过条件作为分支依据,最终的数学模型就是一颗树。不过在决策树算法中我们需要重点考虑选取分支条件的理由,以及谁先判断谁后判断,包括最后对过拟合的处理,也就是剪枝。这是我们之前写if语句时不会考虑的问题。 决策树算法主要分为以下3个步骤: 1. 分支节点选取 2. 构建树 3. 剪枝 1.1. 分支节点选取 分支节点选取,也就是寻找分支节点的最优解。既然要寻找最优,那么必须要有一个衡量标准,也就是需要量化这个优劣性。常用的衡量指标有熵和基尼系数。 熵:熵用来表示信息的混乱程度,值越大表示越混乱,包含的信息量也就越多。比如,A班有10个男生1个女生,B班有5个男生5个女生,那么B班的熵值就比A班大,也就是B班信息越混乱。 Entropy = -V p ” 基尼系数:同上,也可以作为信息混乱程度的衡量指标。 Gini = 1 - p: l-L

数据挖掘决策树算法概述

决策树是分类应用中采用最广泛的模型之一。与神经网络和贝叶斯方法相比,决策树无须花费大量的时间和进行上千次的迭代来训练模型,适用于大规模数据集,除了训练数据中的信息外不再需要其他额外信息,表现了很好的分类精确度。其核心问题是测试属性选择的策略,以及对决策树进行剪枝。连续属性离散化和对高维大规模数据降维,也是扩展决策树算法应用范围的关键技术。本文以决策树为研究对象,主要研究内容有:首先介绍了数据挖掘的历史、现状、理论和过程,然后详细介绍了三种决策树算法,包括其概念、形式模型和优略性,并通过实例对其进行了分析研究 目录 一、引言 (1) 二、数据挖掘 (2) (一)概念 (2) (二)数据挖掘的起源 (2) (三)数据挖掘的对象 (3) (四)数据挖掘的任务 (3) (五)数据挖掘的过程 (3) (六)数据挖掘的常用方法 (3) (七)数据挖掘的应用 (5) 三、决策树算法介绍 (5) (一)归纳学习 (5) (二)分类算法概述 (5) (三)决策树学习算法 (6) 1、决策树描述 (7) 2、决策树的类型 (8) 3、递归方式 (8) 4、决策树的构造算法 (8) 5、决策树的简化方法 (9) 6、决策树算法的讨论 (10) 四、ID3、C4.5和CART算法介绍 (10) (一)ID3学习算法 (11) 1、基本原理 (11) 2、ID3算法的形式化模型 (13) (二)C4.5算法 (14) (三)CART算法 (17) 1、CART算法理论 (17) 2、CART树的分支过程 (17) (四)算法比较 (19) 五、结论 (24) 参考文献...................................................................................... 错误!未定义书签。 致谢.............................................................................................. 错误!未定义书签。

基于关联规则的决策树算法

基于关联规则的决策树算法 汪海锐1,2,李 伟2 (1. 河海大学计算机与信息学院,江苏 常州 213022;2. 海军蚌埠士官学校,安徽 蚌埠 233012) 摘 要:通过将关联规则与决策树算法相结合,形成一种基于关联规则的决策树算法。该算法对不同时期同一事务的异种数据结构进行处理,得到一种可扩展的多分支分类决策树,使得改进后的决策树算法具有良好的可扩展性。该算法解决了传统分类算法在数据集维度发生变化时分类过程无法持续进行的问题。 关键词关键词::决策树;关联规则;分类算法;扩展性;组合算法 Decision Tree Algorithm Based on Association Rules W ANG Hai-rui 1,2, LI Wei 2 (1. Institute of Computer & Information, Hohai University, Changzhou 213022, China; 2. Navy Petty Officer Academy, Bengbu 233012, China) 【Abstract 】This paper combines association rules and decision tree algorithm, and proposes a new decision tree classification based on association rule. The decision tree algorithm can handle dissimilar transaction data set record blocks which are same investigations conducted in different times to the same transactions. Through the decision tree algorithm, it can get a multi-crunodes decision tree, which has a good extendable performance. The algorithm solves the problem, which exists in the traditional classification, that is the traditional classification can not classify effectively and sustaine when dimensions of dataset change. 【Key words 】decision tree; association rule; classification algorithm; extendable performance; combining algorithm DOI: 10.3969/j.issn.1000-3428.2011.09.035 计 算 机 工 程 Computer Engineering 第37卷 第9期 V ol.37 No.9 2011年5月 May 2011 ·软件技术与数据库软件技术与数据库·· 文章编号文章编号::1000—3428(2011)09—0104—03 文献标识码文献标识码::A 中图分类号中图分类号::TP311.12 1 概述 在数据挖掘的诸多分支中,分类具有极大的实际意义, 渐渐成为数据挖掘在生活中应用的一个重要课题,也使得各种分类算法成为当前的研究热点。在分类算法中,决策树算法[1-2]是一个极为经典的分类算法,有不少学者对其进行研究改进。对于现行的决策树算法,虽然不少学者从多个方面提出了改进,部分算法解决了其缺值处理、并行处理等局限性,但它们同时都具有一个不可回避的缺点:无法适应因采样数据时期不同而导致的属性值不一致问题。同时,传统的决策树算法对于很庞大的数据集而言是很不合适的,由此一些研究人员采用了不同的方法来处理这个问题,如并行的处理方法、多决策树合并算法来提高决策树算法的效率,为此,文献[3]对数据集进行划分,将大数据集划分成小的数据集,再 在小数据集上应用决策树算法,生成小的决策树,再将各个 小的决策树联合起来形成整个决策树。该方法虽然解决了大数据集的分类问题,但降低了分类的准确度。 本文结合关联规则与决策树算法形成一种新的分类算法,既具有决策树的优点,又具有关联规则可并行处理的性质。该算法主要着眼于现实世界的事务数据集是不断变化的,在数据的采集过程中可能会出现某段时间只采集某一事务数据的某些属性值样本,而后期的采集又增加了一些属性,从而形成了对同一事务不同时期的数据采集,构成异种数据集。在这些数据集中可能还会出现新增的类别,也可能会出现某些类别的消亡。在此情况下,按照传统的决策树算法,一旦某一时段的数据集采集完成就进行处理,则如果该时段之后的新增数据集增加了采样属性,那么旧的数据集就有可能会失效或无法使用。如果在新数据集采集完成之前已经对旧数据集进行处理,则造成前期所有的处理工作都无用。为此, 本文考虑利用不同时期的数据集,建立新的决策树算法,使决策树具备良好的伸缩性及可调整性。 2 基于关联规则的决策树算法 2.1 算法流程及简介 本文通过决策树算法与关联规则的结合形成基于关联规则的决策树算法,并对传统决策树算法与关联规则进行结合,形成新的分类算法,该算法同时具有决策树分类准确、易于理解等特点。本算法主要流程如图1所示。

决策树算法的原理与应用

决策树算法的原理与应用 摘要:在机器学习与大数据飞速发展的21世纪,各种不同的算法成为了推动发 展的基石.而作为十大经典算法之一的决策树算法是机器学习中十分重要的一种算法。本文对决策树算法的原理,发展历程以及在现实生活中的基本应用进行介绍,并突出说明了决策树算法所涉及的几种核心技术和几种具有代表性的算法模式。 关键词:机器学习算法决策树 1.决策树算法介绍 1.1算法原理简介 决策树模型是一种用于对数据集进行分类的树形结构。决策树类似于数据结 构中的树型结构,主要是有节点和连接节点的边两种结构组成。节点又分为内部 节点和叶节点。内部节点表示一个特征或属性, 叶节点表示一个类. 决策树(Decision Tree),又称为判定树, 是一种以树结构(包括二叉树和多叉树)形式表达的 预测分析模型,决策树算法被评为十大经典机器学习算法之一[1]。 1.2 发展历程 决策树方法产生于上世纪中旬,到了1975年由J Ross Quinlan提出了ID3算法,作为第一种分类算法模型,在很多数据集上有不错的表现。随着ID3算法的 不断发展,1993年J Ross Quinlan提出C4.5算法,算法对于缺失值补充、树型结 构剪枝等方面作了较大改进,使得算法能够更好的处理分类和回归问题。决策树 算法的发展同时也离不开信息论研究的深入,香农提出的信息熵概念,为ID3算 法的核心,信息增益奠定了基础。1984年,Breiman提出了分类回归树算法,使 用Gini系数代替了信息熵,并且利用数据来对树模型不断进行优化[2]。 2.决策树算法的核心 2.1数据增益 香农在信息论方面的研究,提出了以信息熵来表示事情的不确定性。在数据 均匀分布的情况下,熵越大代表事物的越不确定。在ID3算法中,使用信息熵作 为判断依据,在建树的过程中,选定某个特征对数据集进行分类后,数据集分类 前后信息熵的变化就叫作信息增益,如果使用多个特征对数据集分别进行分类时,信息增益可以衡量特征是否有利于算法对数据集进行分类,从而选择最优的分类 方式建树。 如果一个随机变量X的可以取值为Xi(i=1…n),那么对于变量X来说,它 的熵就是 在得到基尼指数增益之后,选择基尼指数增益最大的特征来作为当前步骤的 分类依据,在之后的分类中重复迭代使用这一方法来实现模型的构造。 3. 决策树算法的优缺点 3.1决策树算法的优点[3] (1)计算速度快,算法简单,分类依据清晰 (2)在处理数据时,有很高的准确度,同时分类结果清晰,步骤明朗。 (3)可以处理连续和种类字段 (4)适合高维数据 3.2决策树算法的缺点 (1)决策树算法可以帮助使用者创建复杂的树,但是在训练的过程中,如

相关文档