文档库 最新最全的文档下载
当前位置:文档库 › 2.2.3 向量数乘运算及其几何意义

2.2.3 向量数乘运算及其几何意义

2.2.3  向量数乘运算及其几何意义
2.2.3  向量数乘运算及其几何意义

2.2.3向量数乘运算及其几何意义 班级: 姓名:

1.下列计算正确的有( )①a a 426)7(-=?-; ②

a

b a b a 3)32(2=++-;③

0)(=+-+b a b a A 、0个 B 、1个

C 、2个

D 、3个

2.化简++-的结果等于( )A 、 B 、 C 、 D 、SQ

3.设a 是非零向量,λ是非零实数,下列结论正确的是( ) A 、a 与a λ-的方向相反 B 、||||a a ≥λ- C 、a a 2

λ

与的方向相同 D 、a a ||||λ=λ-

4.在平面上有A ,B ,C 三点,设m =AB →+BC →,n =AB →-BC →

,若m 与n 的长度恰好相等,则有( ) A .A ,B ,C 三点必在一条直线上 B .△ABC 必为等腰三角形且∠B 为顶角 C .△ABC 必为直角三角形且∠B 为直角 D .△ABC 必为等腰直角三角形 5.下列叙述不正确的是( )

A .若a 、b 共线,则存在唯一的实数λ,使a =λb . B. b =3a (a 为非零向量),则a 、b 共线

C .若m =3a +4b ,n =3

2

a +2

b ,则m ∥n D .若a +b +

c =0,则a +b =-c

6.(07·湖南)若O 、E 、F 是不共线的任意三点,则以下各式中成立的是( ) A.EF →=OF →+OE → B.EF →=OF →-OE → C.EF →=-OF →+OE → D.EF →=-OF →-OE →

7.已知向量b a b a b a b a 27,65,2,,-=+-=+=且,则一定共线的三点是( ) A 、A 、B 、D B 、A 、B 、C C 、B 、C 、D D 、A 、C 、D 8.设1e 和2e 为不共线的向量,若21e ﹣32e 与k 1e +λ2e (k 、λ∈R )共线,则k 与λ满足( ) A 、3k+2λ=0 B 、2k+3λ=0 C 、3k ﹣2λ=0 D 、2k ﹣3λ=0

9.在△ABC 中,AD 、BE 、CF 为三条中线,G 是它们的交点,则下列等式错误的是 ( ) A 、BG =32 B 、DG =2

1

C 、=﹣2

FG D 、3

1+3

2FC =2

1BC

10.平面上有一个△ABC 和一点O ,设=,=,=,又OA 、BC 的中点分别为D 、E ,则向量等于 ( ) A 、2

1(++) B 、2

1 (﹣++) C 、2

1 (﹣b +) D 、2

1 (a +﹣)

11.已知一点O 到平行四边形ABCD 的三个顶点A 、B 、C 的向量分别为a →

、b →

、c →

,则向量等于( ) A .a b c ++ B .a b c -+ C .a b c +- D .a b c --

12.已知O 是△ABC 所在平面内一点,D 为BC 边中点,且2OA →+OB →+OC →

=0,那么( ) A.AO →=OD → B.AO →=2OD → C.AO →=3OD → D .2AO →=OD →

13. 已知△ABC 的三个顶点A 、B 、C 及平面内一点P 满足PA →+PB →=PC →

,下列结论中正确的是( ) A .P 在△ABC 的内部 B .P 在△ABC 的边AB 上 C .P 在AB 边所在直线上 D .P 在△ABC 的外部 14.已知a 、b 是不共线的向量,AB a b λ=+,AC a b μ=+(λ、R μ∈),当且仅当( )时,A 、B 、C

三点共线. ()1

A λμ+= ()1

B λμ-= ()1

C λμ=- ()1

D λμ=

1.11(2)8(42)32a b a b ??+--????

=___________

2.(1)若a b a 与,5||=的方向相反,且7||=b ,则=a _________b 。 (2)已知|a |=4,b 与a 的方向相反,且|b |=2,a =m b ,则实数m =________. 4.点C 在线段AB 上,且35

AC AB =,则________AC CB =。

5.若a ,b 为已知向量,且2

3(4a -3c )+3(5c -4b )=0,则c =________.

6.已知四边形ABCD 中,1AB DC 2

=,且

AD BC

=则四边形ABCD 的形状是______.

7.已知向量a 和不共线,实数x 、y 满足 (x ﹣y)+4=3+(x ﹣2y),则x+y 的值等于 . 8.设21,e e 是不共线的两个向量,有下列四组向量:①212122,e e b e e a +-=-=;②212122,e e b e e a -=+=;③2

1216

1,3

12e e b e e a --=-=;④113,2e b e a -==;其中b a 与共线的组为 。

9.有下面四个命题:①对于实数m 和向量a 、b ,恒有m (a -b )=m a -m b ;

②对于实数m ,n 和向量a ,恒有(m -n )a =m a -n a ;③对于实数m 和向量a 、b ,若m a =m b ,则a =b ; ④对于实数m 、n 和非零向量a ,若m a =n a ,则m =n .其中真命题有________. 10.设21,e e 是两个不共线向量,且2121212,3,k 2e e e e e e -=+=+=,若A 、B 、D 三点

共线,则k=_________。

11.设向量1e 和2e 不共线,若k 1e +2e 与1e +k 2e 共线,则实数k 的值等于 ;

12.已知x 、y 是实数,向量a ,b 不共线,若(x +y -1)a +(x -y )b =0,则x =________,y =________. 13.在△ABC 中,D 是BC 的中点,E 在AD 上,且AE=3ED,设=,则++= 1.如图,ABCD 是一个梯形,AB ∥CD ,且AB =2CD ,M 、N 分别是DC 和AB 的中点,已

知AB →=a ,AD →=b ,试用a 、b 表示BC →和MN →.

2.已知?ABCD 的边BC 、CD 的中点分别是M 、N ,设AM →=a ,AN →=b ,试用a 、b 表示AB →

、BC →.

3.设两个非零向量b a ,不共线,

(1)若)(3,82,b a b a b a -=+=+=,求证:A 、B 、D 三点共线; (2)试确定实数k ,使b a b a k k ++与共线。

4.如图所示,在平行四边形ABCD 中,点M 是

AB 边中点,点N 在BD 上且

BD BN 3

1

=

,求证:M 、N 、C 三点共线.

4.已知向量a 与b 反向,且|a |=r ,|b |=R ,b =λa ,则λ的值等于( )

A.r R

B .-r R

C .-R r D.R r

5.在△ABC 中,AB a =,AC b =,如果a||b|=|,那么△ABC 一定是( ).

A .等腰三角形

B .等边三角形

C .直角三角形

D .钝角三角形 8.下列说法不正确的是( )

A .若AO →=34O

B →,则A 、O 、B 三点共线 B .若AO →=34

OB →,则AO →∥OB →

C .若|λa |=|λ||a |(λ∈R ),则λa 与a 方向相同

D .若a =4m +n ,b =m +n 则a -b =3m 9.如图,在平行四边形ABCD 中,下列结论中错误的是( )

A.AB →=DC →

B.AD →+AB →=AC →

C.AB →-AD →=BD →

D.AD →+CB →=0 11.设21,e e 是不共线的两个向量,有下列四组向量:

①212122,e e b e e a +-=-=;②212122,e e b e e a -=+=;③2

1216

1,3

12e e b e e a --=-=;

④113,2e b e a -==;其中b a 与共线的组数为( )

A 、1

B 、2

C 、3

D 、4

16.已知向量和不共线,实数x 、y 满足 (x ﹣y)+4=3+(x ﹣2y),则x+y 的值等于 ( ) A 、-1 B 、1 C 、0 D 、3

高中数学导数的概念、运算及其几何意义练习题

导数的概念、运算及其几何意义 黑龙江 依兰高中 刘 岩 A 组基础达标 选择题: 1.已知物体做自由落体运动的方程为21(),2 s s t gt ==若t ?无限趋近于0时, (1)(1)s t s t +?-?无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度 B .9.8/m s 是在1~(1+t ?)s 这段时间内的速度 C .9.8/m s 是物体从1s 到(1+t ?)s 这段时间内的平均速度 D .9.8/m s 是物体在1t s =这一时刻的瞬时速度. 2. 已知函数f ’ (x)=3x 2 , 则f (x)的值一定是( ) A. 3x +x B. 3x C. 3x +c (c 为常数) D. 3x+c (c 为常数) 3. 若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f / (x)的图象是( ) 4.下列求导数运算错误.. 的是( ) A. 20122013x 0132c x ='+)( (c 为常数) B. x xlnx 2lnx x 2+=')( C. 2x cosx xsinx x cosx +=')( D . 3ln 33x x =')( 5..已知曲线23ln 4x y x =-的一条切线的斜率为12 ,则切点的横坐标为( ) A . 2 B . 3 C . 12 D .1 填空题: 1.若2012)1(/ =f ,则x f x f x ?-?+→?)1()1(lim 0= ,x f x f x ?--?+→?)1()1(lim 0= ,x x f f x ??+-→?4)1()1(lim 0= , x f x f x ?-?+→?)1()21(lim 0= 。 2.函数y=(2x -3)2 的导数为 函数y= x -e 的导数为 A x D C x B

空间向量的加减数乘运算练习题集

课时作业(十四) [学业水平层次] 一、选择题 1.对于空间中任意三个向量a ,b,2a -b ,它们一定是( ) A .共面向量 B .共线向量 C .不共面向量 D .既不共线也不共面向量 【解析】 由共面向量定理易得答案A. 【答案】 A 2.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD → =7a -2b ,则一定共线的三点是( ) A .A 、 B 、D B .A 、B 、 C C .B 、C 、D D .A 、C 、D 【解析】 BD →=BC →+CD →=-5a +6b +7a -2b =2a +4b ,BA → =-AB →=-a -2b ,∴BD →=-2BA →, ∴BD →与BA → 共线, 又它们经过同一点B , ∴A 、B 、D 三点共线. 【答案】 A 3.A 、B 、C 不共线,对空间任意一点O ,若OP →=34OA →+18OB →+18OC → ,则P 、A 、B 、C 四点( ) A .不共面 B .共面

C .不一定共面 D .无法判断 【解析】 ∵34+18+1 8=1, ∴点P 、A 、B 、C 四点共面. 【答案】 B 4. (2014·莱州高二期末)在平行六面体ABCD -A 1B 1C 1D 1中,用向量AB →,AD →,AA 1→表示向量BD 1→ 的结果为( ) 图3-1-9 =AB →-AD →+AA 1→ =AD →+AA 1→-AB → =AB →+AD →-AA 1→ =AB →+AD →+AA 1→ 【解析】 BD 1→=BA →+AA 1→+A 1D 1→=-AB →+AA 1→+AD → .故选B. 【答案】 B 二、填空题 5.如图3-1-10,已知空间四边形ABCD 中,AB →=a -2c ,CD → =5a +6b -8c ,对角线AC ,BD 的中点分别为E 、F ,则EF → =________(用向量a ,b ,c 表示).

导数的计算及其几何意义

导数的计算及其几何意义 一、导数的概念及其几何意义 1.函数的平均变化率: 定义:已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ?=- 10y y y ?=-10()()f x f x =-00()()f x x f x =+?-,则当0x ?≠时,商 00()()f x x f x y x x +?-?=??称 作函数()y f x =在区间00[,]x x x +?(或00[,]x x x +?)的平均变化率. 注意:这里x ?,y ?可为正值,也可为负值.但0x ?≠,y ?可以为0. 2.函数的瞬时变化率、函数的导数: 定义:设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ?时,函数值相应的改变00()()y f x x f x ?=+?-.如果当x ?趋近于0时,平均变化 00()()f x x f x y x x +?-?=??趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ?趋近于零时,00()() f x x f x x +?-?趋近于常数l ”可以用符号“→”记作:“当0 x ?→时, 00()()f x x f x l x +?-→?”,或记作“000()() lim x f x x f x l x ?→+?-=?”,符号“→”读作“趋近于”.函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '.这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作“当0x ?→时, 000()() ()f x x f x f x x +?-'→?” 或 “0000 ()() lim ()x f x x f x f x x ? →+?-'=?”. 注:0'()f x 是个数. 3.可导与导函数: 定义:如果()f x 在开区间(,)a b 内每一点都是可导的,则称()f x 在区间(,)a b 可导.这样,对开区间(,)a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(,)a b 内,()f x '构

向量的加减法运算及其几何意义

课题 向量的加减法运算及其几何意义 知识点一:向量的基本概念: (一)向量的概念:我们把既有大小又有方向的量叫向量 (二)探究学习 1、数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法: ①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ; ④向量AB 的大小――长度称为向量的模,记作|AB |. 3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别: (1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; (2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段. 4、零向量、单位向量概念: ①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别. ②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义: ①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行. 说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c. 6、相等向量定义: 长度相等且方向相同的向量叫相等向量. 说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等; (3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关........... 7、共线向量与平行向量关系: 平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关)............ 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行, 要区别于在同一直线上的线段的位置关系. A(起点) B (终点) a

高中数学知识点总结导数的定义及几何意义

导数的定义及几何意义 1.x x f x x f x f x ?-?+=→?)()(lim )(0000/ 叫函数)(x f y =在0x x →处的导数,记作0|/x x y = 。 注:①函数应在点0x 的附近有定义,否则导数不存在。②在定义导数的极限式中,x ?趋近 于0可正、可负、但不为0,而y ?可能为0。③x y ??是函数)(x f y =对自变量x 在x ?范围内的平均变化率,它的几何意义是过曲线)(x f y =上点(0x ,)(0x f )及点(0x +x ?, )(00x x f ?+)的割线斜率。④导数x x f x x f x f x ?-?+=→?)()(lim )(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在0x 点处变化的快慢程度,它的几何意义是 曲线)(x f y =上点(0x ,)(0x f )处的切线的斜率。⑤若极限x x f x x f x ?-?+→?)()(lim 000不存在,则称函数)(x f y =在点0x 处不可导。⑥如果函数)(x f y =在开区间),(b a 内每一点 都有导数,则称函数)(x f y =在开区间),(b a 内可导;此时对于每一个x ∈),(b a ,都对应 着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f ,称这个函数)(/ x f 为函数)(x f y =在开区间),(b a 内的导函数,简称导数;导数与导函数都称为导数,这要加以区分: 求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值。 [举例1]若2)(0/=x f ,则k x f k x f k 2)()(lim 000--→等于: (A) -1 (B) -2 (C) 1 (D) 1/2 解析:∵2)(0/=x f ,即k x f k x f k ---+→-)()]([lim 000=2?k x f k x f k 2)()(lim 000--→=-1。 [举例2] 已知0,a n >为正整数设()n y x a =-,证明1'() n y n x a -=- 解析:本题可以对()n y x a =-展开后“逐项”求导证明;这里用导数的定义证明: x a x a x x y n n x ?---?+=→?)()(lim 0/ =

导数的概念、运算及几何意义

导数的概率、运算以及几何意义 1.函数的平均变化率: 一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ?=-, 10y y y ?=-10()()f x f x =-00()()f x x f x =+?-, 则当0x ?≠时,商00()()f x x f x y x x +?-?= ??称作函数()y f x =在区间[,]x x x +?(或00[,]x x x +?)上的平均变化率.2.函数的瞬时变化率、函数的导数: 设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ?时,函数值相应的改变00()()y f x x f x ?=+?-. 如果当x ?趋近于0时,平均变化率 00()() f x x f x y x x +?-?= ??趋近于一个常数,那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ?趋近于零时,00()() f x x f x x +?-?趋近于常数l ”可以用符号“→”记作: “当0x ?→时,00()()f x x f x l x +?-→?”,或记作“000()() lim x f x x f x l x ?→+?-=?”,符号“→” 读作“趋近于”. 函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作()f x '. 这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作 “当0x ?→时,000()()()f x x f x f x x +?-'→?”或“0000()() lim ()x f x x f x f x x ?→+?-'=?”. 考点1: 导数的定义【铺垫】求下列函数在区间[]22x +?,和[]33x +?,上的平均变化率 ①()f x x = ②2()f x x = 【例1】 平均变化率与瞬时变化率 ⑴ 求下列函数在区间00[]x x x +?,上的平均变化率. ① ()f x x = ② 2()f x x = ③ 3()f x x = ④1 ()f x x = ⑤ ()f x ⑵ 求下列函数分别在1x =,2x =和3x =处的瞬时变化率. ① ()f x x = ② 2()f x x = ③ 3()f x x =④1 ()f x x =⑤()f x 【追问】从瞬时变化率角度分析每个函数的整体变化趋势,我们可以很明显的看出 对于一次函数,二次函数,三次函数来说,次数越高,往后变化越快. 【总结】由例1⑵看出一次函数的增长速度不变,二次函数三次函数的增长速度越来越快, 提高班学案1 【拓1】 求函数3()2f x x x =-在[]11x +?,上附近的平均变化率,在1x =处的瞬时变化率与 导数.

向量减法及其几何意义

§2.2.2 向量的减法运算及其几何意义 教学目标: 1. 了解相反向量的概念; 2. 掌握向量的减法,会作两个向量的减向量,并理解其几何意义; 3. 通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物之间 可以相互转化的辩证思想. 教学重点:向量减法的概念和向量减法的作图法. 教学难点:减法运算时方向的确定. 授课类型:新授课 教学思路: 一、 复习:向量加法的法则:三角形法则与平行四边形法则向量加法的运算 定律: 例:在四边形中,=++BA BA CB . 解:CD AD BA CB BA BA CB =++=++ 二、 提出课题:向量的减法 1.用“相反向量”定义向量的减法 (1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a (2) 规定:零向量的相反向量仍是零向量.-(-a ) = a. 任一向量与它的相反向量的和是零向量.a + (-a ) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 (3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差. 即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法. 2.用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算: 若b + x = a ,则x 叫做a 与b 的差,记作a - b 3.求作差向量:已知向量a 、b ,求作向量 ∵(a -b ) + b = a + (-b ) + b = a + 0 = a 作法:在平面内取一点O , 作= a , = b 则= a - b 即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量. 注意:1?表示a - b .强调:差向量“箭头”指向被减数 2?用“相反向量”定义法作差向量,a - b = a + (-b ) 显然,此法作图 较繁,但最后作图可统一. O A B a B’ b -b b a + (- b ) a b A B D C O a b B a b a -b

《3.1.2 空间向量的数乘运算(1)》导学案(新部编)3

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

《3.1.2 空间向量的数乘运算(1)》导学案3 学习目标 1. 掌握空间向量的数乘运算律,能进行简单的代数式化简; 2. 理解共线向量定理和共面向量定理及它们的推论; 3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 学习过程 一、课前准备 (预习教材P 86~ P 87,找出疑惑之处) 复习1:化简: ⑴ 5(32a b -r r )+4(23b a -r r ); ⑵ ()() 63a b c a b c -+--+-r r r r r r . 复习2:在平面上,什么叫做两个向量平行? 在平面上有两个向量,a b r r , 若b r 是非零向量,则a r 与b r 平行的充要条件是 二、新课导学 ※ 学习探究 探究任务一:空间向量的共线 问题:空间任意两个向量有几种位置关系?如何判定它们的位置关系? 新知:空间向量的共线: 1. 如果表示空间向量的 所在的直线互相 或 ,则这些向量叫共线向量,也叫平行向量. 2. 空间向量共线:

定理:对空间任意两个向量,a b r r (0b ≠r r ), //a b r r 的充要条件是存在唯一实数λ,使得 推论:如图,l 为经过已知点A 且平行于已知非零向量的直线,对空间的任意一点O ,点P 在直线l 上的充要条件是 试试:已知5,28,AB a b BC a b =+=-+u u u r r r u u u r r r () 3CD a b =-u u u r r r ,求证: A,B,C 三点共线. 反思:充分理解两个向量,a b r r 共线向量的充要条件中的0b ≠r r ,注意零向量与任何向量共线. ※ 典型例题 例1 已知直线AB ,点O 是直线AB 外一点,若OP xOA yOB =+u u u r u u u r u u u r ,且x +y =1,试判断 A,B,P 三点是否共线? 变式:已知A,B,P 三点共线,点O 是直线AB 外一点,若12OP OA tOB =+u u u r u u u r u u u r ,那么t = 例2 已知平行六面体''''ABCD A B C D -,点M 是棱AA '的中点,点G 在对角线A 'C 上,且CG:GA ' =2:1,设CD u u u r =a r ,',CB b CC c ==u u u u r u u u r r r ,试用向量,,a b c r r r 表示向量',,,CA CA CM CG u u u r u u u r u u u u r u u u r .

导数的概念和几何意义同步练习题(教师版)

导数的概念和几何意义同步练习题 一、选择题 1.若幂函数()y f x =的图像经过点11(,)42 A ,则它在A 点处的切线方程是( ) A. 4410x y ++= B. 4410x y -+= C .20x y -= D. 20x y += 【答案】B 【解析】试题分析:设()a f x x =,把11(,)42A 代入,得1142a =,得12 a =,所以1 2()f x x ==() f x '= ,1 ()14f '=,所以所求的切线方程为11 24 y x - =-即4410x y -+=,选B.考点:幂函数、曲线的切线. 2.函数()x e x f x cos =的图像在点()()0,0f 处的切线的倾斜角为( ) A 、 4π B 、0 C 、4 3π D 、1 【答案】A 【解析】试题分析:由)sin (cos )('x x e x f x -=,则在点()()0,0f 处的切线的斜率1)0('==f k , 1.利用导数求切线的斜率; 2.直线斜率与倾斜角的关系 3.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.2 e B.2 2e C.2 4e D.22 e 【答案】D 【解析】试题分析:∵点2 (2)e ,在曲线上,∴切线的斜率'22 2 x x x k y e e --===, ∴切线的方程为2 2 (2)y e e x -=-,即2 2 0e x y e --=,与两坐标轴的交点坐标为2 (0,)e -,(1,0), ∴22 1122 e S e =??=.考点:1.利用导数求切线方程;2.三角形面积公式. 4.函数2 ()f x x =在点(2,(2))f 处的切线方程为( ) A .44y x =- B .44y x =+ C .42y x =+ D .4y = 【答案】A 【解析】 试题分析:由x x f 2)(='得切线的斜率为4)2(='f ,又4)2(=f ,所以切线方程为)2(44-=-x y ,即44-=x y .也可以直接验证得到。考点:导数求法及几何意义 5.曲线e x y =在点A 处的切线与直线30x y -+=平行,则点A 的坐标为( ) (A )() 11,e -- (B )()0,1 (C )()1,e (D )()0,2

向量减法运算及其几何意义教学设计.doc

向量减法运算及其几何意义教学设计 教学课题简介 学科数学教学题目向量减法运算及其几何意义教材普通高中课程标准实验教科书(必修4) 一、教学目标 1、知识与技能知道相反向量的定义;理解记住向量减法法则及其几何意义;能够用向量减法法 则及其几何意义求两向量的差. 2、过程与方法通过回顾向量运算与实数运算之间的联系分析归纳相反向量的的定义和向量的减 法运算;通过联系向量加法的作图方法观察并归纳向量减法的作图方法和要点, 体会向量减法的几何意义. 3、情感态度与 价值观通过阐述向量减法与数量减法的联系,培养学生类比的数学思想方法;由向量减法向加法的转化,让学生懂得从已知到未知这一转化思想;由作图了解向量减法的几何意义,培养学生作图能力,并从中体会数形结合的数学思想. 二、教学重点和难点 1.重点:向量减法法则及其几何意义. 2.难点:向量减法法则及其作图方法;向量减法几何意义的应用. 三、教学方法:互动探究式授课 通过引导让学生自主探究,合作交流,体验学习过程中涉及的转化和数形结合的数学思想,类比、观察、分析、归纳等数学方法. 四、教学使用工具 多媒体教学 五、课堂教学过程设计 (一)内容引入 类比数量加法的意义,我们联系实际了解了向量加法,并学习了向量加法法则和作图方法,那么你能否同样与数量减法相比较得到向量减法法则和其几何意义呢?这就是本节课将要探讨和学 习的主要内容. (二)、师生交流温故知新 1 回顾、类比、得新知——相反向量 问题1你是否还记得刚进初中时学习有理数减法时的减法法则?你能否由此联系思考向量减法的减法法则呢? 我们知道,在数量中,减去一个数等于加上这个数的相反数,如果向量减法可以相应的也转化为向量的的加法,那么向量减法对于我们而言就不再是问题了!向量的减法法则,类比一下,可以

导数的几何意义及运算

导数的几何意义及运算复习 一、 导数的几何意义: )(0x f ?=x y ??=x x x x x f x f 0 000)()()(-?+-?+=x f x f x x ?-?+)()(00=K 当Δx----0时, )(0x f ? =K 趋近于一常数 二、 导数的求导公式及运算 典型例题: 例1、当h 无限趋近于0时,h h 4)4(22-+无限趋近于 ;h h 44-+无限趋近于 . 练习:若 )(0x f ?=3,当Δx 无限趋近于0时,x x f x f x x ??--?+)3()(00= . 例2.已知函数y=f(x)的图像在点(1,f(1))处的切线方程是x-2y+1=0,则'(1)2(1)f f += 训练1:已知函数y=f(x)的图像在点(0,f(0))处的切线方程是2x-y+2=0,则'(0)(0)f f += 2.曲线 '2(1) 1().(0)2x f x f x e f e x =-+在点(1,f(1))处的切线方程为 题型二:求切线方程 例3、已知曲线y=3 4313+x , (1)、求曲线在点P (2,4)处的切线方程; (2)、求斜率为4的曲线的切线方程; (3)、求过点P (2,4)的切线方程;

练习1:已知曲线3 y x = (1) 求曲线在点P (1,1)处的切线方程; (2) 求与直线3x-y=0平行的直线方程; (3) 求过点P(1,1)处的直线方程; 练习2:已知kx+1=㏑x 有实数解,求k 的取值范围 题型三:告诉切线方程求参数的值 例4:函数y=12+x a 图像与直线y=x 相切,则a= . 练习: 曲线y= 13++ax x 的一条切线方程为y=2x+1则实数a= 题型四:两个曲线的公切线 例5.若存有过点(1,0)的直线与曲线3y x =和21594 y ax x =+-都相切,则实数a= 例6已知曲线C 1:y=x 2与C 2:y=-)2(2-x ,直线l 与C 1,C 2都相切,求直线l 的方程.

3.1.1空间向量及其运算

3. 1.1空间向量及其运算(一) 教学目标: ㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律; ㈡能力目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. ㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物. 教学重点:空间向量的加减与数乘运算及运算律. 教学难点:应用向量解决立体几何问题. 教学方法:讨论式. 教学过程: Ⅰ.复习引入 [师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢? [生]既有大小又有方向的量叫向量.向量的表示方法有: ①用有向线段表示; ②用字母a、b等表示; ③用有向线段的起点与终点字母:AB. [师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量. [师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算: ⒈向量的加法: ⒉向量的减法: ⒊实数与向量的积: 实数λ与向量a的积 是一个向量,记作λa,其长度 和方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa 与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. [师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb [师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本

导数的运算及几何意义

个性化教学辅导教案 1、某校从参加高三年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如图的频率分布直方图,请你根据频率分布直方图中的信息,估计出本次考试数学成绩的平均数为________. 2、已知△ABC 的顶点B 、C 在椭圆x 23 +y 2 =1上,顶点A 是椭圆的一个焦点,且 椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) A .2 3 B .6 C .4 3 D .12 3、如图已知圆的半径为,其内接的内角分别为和,现向圆内随机撒一粒豆子,则豆子落在内的概率为( ) A. B. C. D. 10ABC ?,A B 6045ABC ?3316π+334π+433π+1633 π +

1、导数的概念: 用定义法求函数f (x )=x 2-2x -1在x =1处的导数. 2.导数的几何意义: 曲线221y x =+在P (-1,3)处的切线方程是______________ 3.导数的运算: 求下列函数的导数: (1)y =e x ·ln x ; (2)y =x ????x 2+1x +1x 3 (3)y =sin 2????2x +π 3 (4)y =ln(2x +5) 1.学生对导数的概念不理解,没有学会利用定义求函数的导数; 2.本节课的知识点对于学生而言开始引入导数内容,难度中等,需要在对导数的定义理解的基础上,通过老师的总结引导,能够进行函数的导数运算,同时掌握导数的几何意义; 3.学生在学习导数时对公式的记忆不够熟练,对函数求导的练习量不够,学生学习比较积极,但是缺乏将知识融汇在一起的能力,总结归纳能力还需提高。

向量的减法及其几何意义

2.2.2 向量的减法运算及其几何意义 一、学习目标: 1. 通过实例,掌握向量减法的运算,并理解其几何意义; 2. 能运用向量减法的几何意义解决一些问题. 二、重难点 : 1. 重点:向量减法的三角形法则及其应用; 2. 难点:对向量的减法定义的理解. 三、知识回顾: 1、向量加法的法则: 。 2、向量加法的运算定律: 。 四、探究新知: 1.用“相反向量”定义向量的减法 (1)“相反向量”的定义: 。 (2) 规定:零向量的相反向量仍是 . --=a a ( ). 任一向量与它的相反向量的和是 +- =0a a () 如果a 、b 互为相反向量,则=-,=-,+0a b b a a b = (3)向量减法的定义: . 即: 求两个向量差的运算叫做向量的减法. (4).用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b x a +=,则x 叫做a 与b 的差,记作 。 2.向量的减法的三角形法则: 特点:共起点,连终点,方向指向被减向量. 五、典例分析:

例1、已知向量a 、b 、c 、d ,求作向量a b -、c d -. 练习:已知向量,求作向量。 例2.化简:(AB →-CD →)-(AC →-BD → ). ,a b a b -

练习:化简:(1)AB →-CB →-DC →+DE →+F A → ; 例3、平行四边形ABCD 中,=a ,=b ,用a 、b 表示向量、. 变式一:当a ,b 满足什么条件时,+a b 与a b -垂直? 变式二:当a ,b 满足什么条件时,|+a b | = |a b -|? 变式三:+a b 与a b -可能是相等向量吗?

《空间向量的数乘运算》教学设计

教学设计 3.1.2空间向量的数乘运算 整体设计 教材分析 本节课是在学习了空间向量的相关概念和空间向量加减法法则的基础上学习的,是空间向量加减法法则的进一步应用和补充.本节课在介绍实数与向量乘积的意义的基础上引入空间向量共线定理,类比平面向量基本定理得到空间向量共面定理,为后面将要学习的空间向量基本定理打下基础,具有承上启下的重要作用. 因为空间向量的数乘运算以及空间向量共线定理与平面向量数乘运算以及共线定理完全一样,空间向量共面定理其实就是平面向量基本定理的逆定理,所以在教学中仍应采用类比、比较的教学方法,通过问题驱动、启发式、自主探究式的教学方法引导学生自主地完成本节课的学习. 课时分配 1课时 教学目标 知识与技能 1.掌握空间向量的数乘运算及其运算律. 2.理解共线向量定理和向量共面定理. 过程与方法 1.运用类比方法,经历向量的数乘运算和向量共线定理由平面向空间推广的过程; 2.引导学生借助空间几何体理解空间向量数乘运算及其运算律的意义. 情感、态度与价值观 1.培养学生的类比思想、转化思想,培养探究、研讨、综合自学应用能力; 2.培养学生的空间想象能力,能借助图形理解空间向量数乘运算及其运算律的意义; 3.培养学生空间向量的应用意识. 重点难点 教学重点: 1.空间向量的数乘运算及其运算律、几何意义;

2.空间向量的加减运算在空间几何体中的应用; 3.空间向量共线定理和共面定理. 教学难点: 1.空间想象能力的培养,思想方法的理解和应用; 2.空间向量的数乘运算及其几何的应用和理解; 3.空间向量共线定理和共面定理的理解. 教学过程 引入新课 提出问题:请同学们回忆“平面向量的数乘运算”的意义是什么,有什么性质,满足什么运算律. 活动设计:首先同学之间相互交流,教师适时介入,并一一板书出来. 活动结果:(板书) 1.实数λ和向量a的乘积λa是一个向量. 2.||λa=||λ||a. 3.λa的方向 ①当λ>0时,λa的方向和a方向相同; ②当λ<0时,λa的方向和a方向相反. 4.数乘运算的运算律: ①λ(μ a)=(λμ)a; ②λ(a+b)=λa+λb. 设计意图:这既复习了“平面向量的数乘运算”的意义、性质和运算律,又为类比得出“空间向量的数乘运算”的意义、性质和运算律作好了准备,而且在下面得出“空间向量的数乘运算”的意义、性质和运算律时,只需将“平面向量的数乘运算”中的“平面”换成“空间”即可.何乐而不为呢! 探究新知 提出问题1:上节课我们已经学习了空间向量的加减法运算,请同学们类比“平面向量的数乘运算”的意义、性质和运算律,猜想(给出)“空间向量的数乘运算”的意义、性质和运算律.即实数λ和向量a的乘积(λa)的意义是什么?有什么性质?满足什么运算律? 活动设计:教师从2a,-2a的意义中发现并类比平面中数乘的意义对学生进行引导,学生自己画出2a,-2a并总结λa的意义和运算律,然后自由发言,教师进行补充.师生发

导数的概念及几何意义运算

一、选择题 1.若f ′(x 0)=2,则 f (x 0-k )-f (x 0)2k 等于( ) A .-1 B .-2 C .1 D.12 答案:A 3. 曲线f (x )=x 3+x -2在P 0点处的切线平行于直线y =4x -1, 则P 0点的坐标为( ) A .(1,0) B .(2,8) C .(1,0)或(-1,-4) D .(2,8)或(-1,-4) 解析:设P 0点的坐标为(x 0,y 0),由f (x )=x 3+x -2得:f ′(x )=3x 2+1, 令f ′(x 0)=4,即3x 2 o +1=4得x 0=1或x 0=-1,∴P 0点的坐标为(1,0)或(-1,-4). 答案:C 4.设函数f (x )是R 上以5为周期的可导偶函数,则曲线y =f (x )在x =5处的切线 的斜率为( ) A .-15 B .0 C.15 D .5 解析:由已知f ′(x )是R 上以5为周期的奇函数,则f ′(5)=f ′(0)=0. 答案:B 5. 设f (x )在x 0处可导,则 f (x 0+t )-f (x 0-t )t 的值等于________. 答案:2f ′(x 0) 6. 过原点作曲线y =e x 的切线,则切点的坐标为________,切线的斜率为________. 解析:设切点坐标为(x 0,y 0),由y =e x 知y ′=e x ,则y ′|x =x 0=e x 0, ∴y 0x 0=e x 0,即e x 0x 0 =e x 0,则x 0=1,因此切点坐标为(1,e).斜率为e. 答案:(1,e) e 7. 曲线y =x 3在点(a ,a 3)(a ≠0)处的切线与x 轴,直线x =a 所围成的三角形面积为16 , 则a =________. 解析:由y =x 3知y ′=3x 2,则y ′|x =a =3a 2.因此切线方程为y -a 3=3a 2(x -a ) 即y =3a 2x -2a 3,令y =0得:x =2a 3,令x =a 得y =a 3根据已知条件12|a -2a 3|·|a 3|=16 , 解得:a =±1. 答案:±1 1. 函数f (x )=(x +2a )(x -a )2的导数为( )

《向量加法运算及其几何意义》教学设计

《向量加法运算及其几何意义》教学设计 一、教材分析 《普高中课程标准数学教科书数学(必修(4))》(人教(版))。第二章2.2平面向量的线性运算的第一节“向量加法运算及其几何意义”(89--94页)。《向量》这一章是前一轮教材中新增的内容。高考考纲有明确说明,同时新课标也提出向量是数学的重要概念之一,在高考中的考查主要集中在两个方面:①向量的基本概念和基本运算;②向量作为工具的应用。另外,在今后学习复数的三角形式与向量形式时,还要用到向量的有关知识及思想方法,向量也是将来学习高等数学以及力学、电学等学科的重要工具。教材的第2.1节通过物理实例引入了向量的概念,介绍了向量的模、相等的向量、负向量、零向量以及平行向量等基本概念。而本节课是继向量基本概念的第一节课。向量的加法是向量的第一运算,是最基本、最重要的运算,是学习向量其他运算的基础。它在本单元的教学中起着承前启后的作用,同时它在实际生活、生产中有广泛的应用。正如第二章的引言中所说:如果没有运算,向量只是一个“路标”,因为有了运算,向量的力量无限。 二、学生学习情况分析 学生在高一学习物理中的位移和力等知识时,已初步了解了矢量的合成,而物理学中的矢量相当于数学中的向量,这为学生学习向量知识提供了实际背景。 三、设计理念 教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。在教学过程中,从教材和学生的实际出发,按照学生认知活动的规律,精练、系统、生动地讲授知识,发展学生的智能,陶冶学生的道德情操;要充分发挥学生在学习中的主体作用,运用各种教学手段,调动学生学习的主动性和积极性,启发学生开展积极的思维活动,通过比较、分析、抽象、概括,得出结论;进一步理解、掌握和运用知识,从而使学生的智力、能力和其他心理品质得到发展。 四、教学目标

(完整版)2.2.2向量的减法运算及其几何意义教案

2.2.2向量的减法运算及其几何意义 教学目标: 1. 了解相反向量的概念; 2. 掌握向量的减法,会作两个向量的减向量,并理解其几何意义; 3. 通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物间可以相互转 化的辩证思想. 教学重点:向量减法的概念和向量减法的作图法. 教学难点:减法运算时方向的确定. 教学思路: 一、 复习:向量加法的法则:三角形法则与平行四边形法则,向量加法的运算定律: 例:在四边形中,=++AD BA CB . 解: =+=++ 二、 提出课题:向量的减法 1. 用“相反向量”定义向量的减法 (1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a (2) 规定:零向量的相反向量仍是零向量.-(-a) = a. 任一向量与它的相反向量的和是零向量.a + (-a) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 (3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差. 即:a - b = a + (-b) 求两个向量差的运算叫做向量的减法. 2. 用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b + x = a ,则x 叫做a 与b 的差,记作a - b 3. 求作差向量:已知向量a 、b ,求作向量a - b ∵(a -b) + b = a + (-b) + b = a + 0 = a 作法:在平面内取一点O , 作= a , = b 则= a - b 即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量. 注意:1?表示a - b. 强调:差向量“箭头”指向被减数 2?用“相反向量”定义法作差向量,a - b = a + (-b) O A a B’ b -b b B a + (- b ) a b O a b B a b a -b

高中数学选修2-1 同步练习 专题3.1.1空间向量及其加减运算、空间向量的数乘运算(原卷版)

第三章 空间向量与立体几何 3.1.1 空间向量及其加减运算 3.1.2 空间向量的数乘运算 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在平行六面体ABCD ﹣A 1B 1C 1D 1中,1AB AD AA ++= A .1AC B .1CA C .1BC D .1CB 2.已知空间任意一点O 和不共线的三点A ,B ,C ,若2CP CA CB =+,则下列结论正确的是 A .22OP OA OB OC =+- B .23OP OA OB OC =--+ C .23OP OA OB OC =+- D .22OP OA OB OC =+- 3.若OA ,OB ,OC 是空间不共面的三个向量,则与向量OA OB +和OA OB -不共面的向量是 A .BA B .OA C .OB D .OC 4.如图,已知AB =c ,AC =b ,若点D 满足2BD DC =,则AD = A .21 33+b c B .5 233-c b C . 2133 -b c D .123 3 + b c 5.如图,已知空间四边形ABCD 的对角线为AC ,BD ,设G 是CD 的中点,则1 ()2 AB BD BC + +=

A .BC B .CG C . 1 2 BC D .AG 6.如图,在底面为平行四边形的四棱柱中,是 与 的交点,若 ,则 下列向量中与 相等的向量是 A .11 22 -++a b c B . 11 22++a b c C . 11 22 -+a b c D .11 22 - -+a b c 7.在平行六面体1111ABCD A B C D -中,向量, , 是 A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 8.对于空间任意一点O 和不共线的三点A ,B ,C ,且有(),OP xOA yOB x C z zO y ∈=++R ,,则 1x y z ++=是P ,A ,B ,C 四点共面的 A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件 二、填空题:请将答案填在题中横线上. 9.给出下列命题: ①零向量没有方向; ②若两个空间向量相等,则它们的起点相同、终点也相同; ③若空间向量a ,b 满足=|a ||b |,则=a b ;

2020高考数学二轮复习题型汇编《第1讲导数概念运算和几何意义》(教师版)

第1讲 导数概念运算和几何意义 [基础回顾] 1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0 lim x ?→ f (x 0+Δx )-f (x 0)Δx =0lim x ?→ Δy Δx 为函数y = f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0lim x ?→Δy Δx =0 lim x ?→f (x 0+Δx )-f (x 0)Δx 。 (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). 2.函数y =f (x )的导函数 如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 称为函数y =f (x )在开区间内的导函数. 3.导数公式表 4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)????f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x ) [g (x )]2(g (x )≠0). 5.复合函数的导数

复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′. [完美题型展现] 题型一 导数的运算 【玩转角度1】 根据求导法则求函数的导数 例1 分别求下列函数的导数: (1)y =e x ln x ; (2)y =cos x e x ; (3)f (x )=ln 1+2x . 【解析】(1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x x =e x ?? ??ln x +1x . (2)因为 y ′=????cos x e x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos x e x . (3)因为y =ln 1+2x =1 2 ln ()1+2x , 所以y ′=12·11+2x ·(1+2x )′=1 1+2x . 【玩转角度2】 抽象函数的导数计算 例2 (2020·天津河西区调研)已知函数f (x )的导函数是f ′(x ),且满足f (x )=2xf ′(1)+ln 1 x ,则f (1) =( ) A.-e B.2 C.-2 D.e 【解析】 由已知得f ′(x )=2f ′(1)-1 x ,令x =1得f ′(1)=2f ′(1)-1,解得f ′(1)=1,则f (1)=2f ′(1) =2. [题型特训] 1.求下列函数的导数. (1)y =cos x -sin x ;

相关文档
相关文档 最新文档