文档库 最新最全的文档下载
当前位置:文档库 › 基于循环相关联合对角化的雷达信号到达角估计方法研究

基于循环相关联合对角化的雷达信号到达角估计方法研究

基于循环相关联合对角化的雷达信号到达角估计方法研究
基于循环相关联合对角化的雷达信号到达角估计方法研究

现代雷达信号处理技术及发展趋势..

现代雷达信号处理技术及发展趋势 摘要:自二战以来,雷达就广泛应用于地对空、空中搜索、空中拦截、敌我识别等领域,后又发展了脉冲多普勒信号处理、结合计算机的自动火控系统、多目标探测与跟踪等新的雷达体制。随着科技的不断进步,雷达技术也在不断发展,现代雷达已经具备了多种功能,如反隐身、反干扰、反辐射、反低空突防等能力,尤其是在复杂的工作环境中提取目标信息的能力不断得到加强。例如,利用雷达系统中的信号处理技术对接收数据进行处理不仅可以实现高精度的目标定位与跟踪, 还能够在目标识别和目标成像、电子对抗、制导等功能方面进行拓展, 实现综合业务的一体化。 一、雷达的起源及应用 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,意思为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。雷达是利用电磁波探测目标的电子设备。雷达发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。雷达最为一种重要的电磁传感器,在国防和国民经济中应用广泛,最大特点是全天时、全天候工作。雷达由天线、发射机、接收机、信号处理机、终端显示等部分组成。 雷达的出现,是由于二战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。雷达的探测手段已经由从前的只有雷达一种探测器发展到了红外光、紫外光、激光以及其他光学探测手段融合协作。

雷达信号处理和数据处理

脉冲压缩雷达的仿真脉冲压缩雷达与匹配滤波的MATLAB仿真 姓名:-------- 学号:---------- 2014-10-28 西安电子科技大学

一、 雷达工作原理 雷达,是英文Radar 的音译,源于radio detection and ranging 的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 但是因为普通脉冲在雷达作用距离与距离分辨率上存在自我矛盾,为了解决这个矛盾,我们采用脉冲压缩技术,即使用线性调频信号。 二、 线性调频(LFM )信号 脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation )信号,接收时采用匹配滤波器(Matched Filter )压缩脉冲。 LFM 信号的数学表达式: (2.1) 其中c f 为载波频率,()t rect T 为矩形信号: (2.2)

合成孔径雷达概述(SAR)

合成孔径雷达概述 1合成孔径雷达简介 (2) 1.1 合成孔径雷达的概念 (2) 1.2 合成孔径雷达的分类 (3) 1.3 合成孔径雷达(SAR)的特点 (4) 2合成孔径雷达的发展历史 (5) 2.1 国外合成孔径雷达的发展历程及现状 (5) 2.1.1 合成孔径雷达发展历程表 (6) 2.1.2 世界各国的SAR系统 (9) 2.2 我国的发展概况 (11) 2.2.1 我国SAR研究历程表 (11) 2.2.2 国内各单位的研究现状 (12) 2.2.2.1 电子科技大学 (12) 2.2.2.2 中科院电子所 (12) 2.2.2.3 国防科技大学 (13) 2.2.2.4 西安电子科技大学 (13) 3 合成孔径雷达的应用 (13) 4 合成孔径雷达的发展趋势 (14) 4.1 多参数SAR系统 (15) 4.2 聚束SAR (15) 4.3极化干涉SAR(POLINSAR) (16) 4.4合成孔径激光雷达(Synthetic Aperture Ladar) (16) 4.5 小型化成为星载合成孔径雷达发展的主要趋势 (17) 4.6 性能技术指标不断提高 (17) 4.7 多功能、多模式是未来星载SAR的主要特征 (18) 4.8 雷达与可见光卫星的多星组网是主要的使用模式 (18) 4.9 分布SAR成为一种很有发展潜力的星载合成孔径雷达 (18) 4.10 星载合成孔径雷达的干扰与反干扰成为电子战的重要内容 (19) 4.11 军用和民用卫星的界线越来越不明显 (19) 5 与SAR相关技术的研究动态 (20) 5.1 国内外SAR图像相干斑抑制的研究现状 (20) 5.2 合成孔径雷达干扰技术的现状和发展 (20) 5.3 SAR图像目标检测与识别 (22) 5.4 恒虚警技术的研究现状与发展动向 (25) 5.5 SAR图像变化检测方法 (27) 5.6 干涉合成孔径雷达 (31) 5.7 机载合成孔径雷达技术发展动态 (33) 5.8 SAR图像地理编码技术的发展状况 (35) 5.9 星载SAR天线方向图在轨测试的发展状况 (37) 5.10 逆合成孔径雷达的发展动态 (38) 5.11 干涉合成孔径雷达的发展简史与应用 (38)

雷达信号处理基本流程

基本雷达信号处理流程 一、脉冲压缩 窄带(或某些中等带宽)的匹配滤波: 相关处理,用FFT数字化执行,即快速卷积处理,可以在基带实现(脉冲压缩)快速卷积,频域的匹配滤波 脉宽越小,带宽越宽,距离分辨率越高; 脉宽越大,带宽越窄,雷达能量越小,探测距离越近; D=BT(时宽带宽积); 脉压流程: 频域:回波谱和参考函数共轭相乘 时域:相关 即输入信号的FFT乘上参考信号FFT的共轭再逆FFT; Sc=ifft(fft(Sb).*conj(fft(S))); Task1 f0=10e9;%载频tp=10e-6;%脉冲宽度B=10e6;%信号带宽fs=100e6;%采样率 R0=3000;%目标初始距离N=4096;c=3e8;tau=2*R0/c;beita=B/tp;t=(0:N-1)/fs; Sb=rectpuls(t-tp/2-tau,tp).*exp(j*pi*beita*(t-tp/2-tau).^2).*exp(-2j* pi*f0*tau);%回波信号 x 107

S=rectpuls(t-tp/2,tp).*exp(i*pi*beita*(t-tp/2).^2);%发射信号(参考信号) x 10 -5 x 10 -5 x 10 7 So=ifft(fft(Sb).*conj(fft(S)));%脉压 figure(7); plot(t*c/2,db(abs(So)/max(So)))%归一化dB grid on -400 -350-300-250-200-150-100-500

二、去斜处理(宽带的匹配滤波) 去斜处理“有源相关”,通常用来处理极大带宽的LFM波形(如果直接采样的话因为频带很宽所以在高频的时候需要的采样率就很大,采样点数就很多,所以要经过去斜处理) Stretch方法是针对线性调频信号而提出的,其方法是将输入信号与参考信号(经适当延迟的本振信号,延迟量通常由窄带信号测距结果估计出)混频,则每一个散射点就对应一个混频后的单频分量,对混频输出的信号进行DFT处理,即可获得目标的距离像,对参考信号的要求是应具有与输入信号相同的调频斜率。 去斜处理流程: 输入信号输出信号 参考信号 混频过程为回波信号在时域与参考信号的共轭相乘 混频后得到一个瞬时频率和目标距离成正比的单频信号,对其进行频谱分析即可得到目标的距离像; 去斜处理一般情况下可降低信号带宽; %%%%%%%%%%%%%%%%%%%%%%%% 去斜处理仿真程序 %%%%%%%%%%%%%%%%%%%%%%%%% clc;clear all;close all; B=10e6;%带宽10MHz tp=10e-6;%脉宽10us k=B/tp;%LFM系数 fs=50e6; R0=3e3;R1=2000;R2=3500;R=5000; c=3e8; f0=60e6; N=round(2*R/c*fs); fft_N=2^nextpow2(N); t=linspace(0,2*R/c,N);

一种雷达信号处理模块的设计和实现

一种雷达信号处理模块的设计和实现 一种雷达信号处理模块的设计和实现 现代雷达特别是机载雷达数字信号处理机的特点是输入数据多,工作模式复杂,信息处理量大。因此,在一个实时信号处理系统中,雷达信号处理系统要同时进行高速数据分配、处理和大量的数据交换.而传统的雷达信号处理系统的设计思想是基于任务,设计者针对应用背景确定算法流程,确定相应的系统结构,再将结构划分为模块进行电路设计。这种方法存在一定的局限性。 首先,硬件平台的确定会使算法的升级受到制约,由此带来运算量加大、数据存储量增加甚至控制流程变化等问题。此外,雷达信号处理系统的任务往往不是单一的,目前很多原来由模拟电路完成的功能转由数字器件来处理。系统在不同工作阶段的处理任务不同,需要兼顾多种功能。这些问题都对通用性提出了进一步要求[2].随着大规模集成电路技术、高速串行处理及各种先进算法的飞速发展,利用高速DSP和FPGA相结合的系统结构是解决上述问题的有效途径。 1雷达信号处理机方案设计 1.1雷达信号处理的目的 现代机载雷达信号处理的任务繁重,主要功能是在空空方式下将AD 数据录取后进行数字脉压处理、数据格式转换和重排、加权降低频谱副瓣电平,然后进行匹配滤波或相参积累(FFT或DFT)、根据重复频率的方式进行一维或二维CFAR处理、跟踪时测角等运算后提取出点迹目标送给

数据处理机。空地方式下还要进行地图(如RBM和SAR)等相关图像成像处理,最后坐标转换成显示数据送给显控处理机。 上述任务需要基于百万门级可编程逻辑器件FPGA与高性能DSP芯片作为信号处理模块,以充分满足系统的实时性要求,同时为了缩短机载雷达系统的研制周期和减少开发经费,设计的基本指导思想是通用化的信号处理模块,可以根据不同要求,通过软件自由修改参数,方便用户使用。 1.2系统模块化设计方案 的功能模块,除了信号处理所必需的脉冲压缩模块、为MTD模块作准备的数据重排模块、FIR滤波器组模块、求模模块、恒虚警处理模块和显示数据存储模块外,还包括雷达同步信号和内部处理同步产生模块、自检数据产生模块以及不同测试点测试数据采样存储模块。这些模块更加丰富了系统的功能,使得雷达系统的研制者能够更方便地测试和观察信号处理各功能模块的工作情况。 主要功能模块的具体功能描述如下: (1)正交采样是信号处理的第一步,担负着为后续处理提供高质量数据的任务,中频接收机输出的信号先通过A/D转换器进行采样,然后进行正交解调,以获得中频信号的基带信号(也称为中频信号的复包络)的I、Q两路正交信号,采样的速率和精度是需要考虑的首要问题,采样系统引起的失真应当被限定在后续信号处理任务所要求的误差范围内。 (2)脉冲压缩模块是在发射峰值功率受限的情况下,使用匹配滤波器将接收到的宽脉冲信号变成窄脉冲且保持能量不变,以获得更高的距离

国外合成孔径雷达侦察卫星发展现状与趋势分析

国外合成孔径雷达侦察卫星发展现状 与趋势分析 Email:beautyhappy521@https://www.wendangku.net/doc/c518131972.html, 0 引言 未来战场状况瞬息万变,实时掌握正确的情报信息是取得战争主动权的重要因素,对敌照相侦察是进行情报收集的有效手段。然而利用各种天然环境与人为工事、配合黑夜与恶劣气候条件、隐蔽及掩护部队(武器)行踪可使得传统光学影像无能为力,这也给雷达影像以发展契机。 合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种全天候、全天时的现代高分辨率微波成像雷达。它是二十世纪高新科技的产物,是利用合成孔径原理、脉冲压缩技术和信号处理方法,以真实的小孔径天线获得距离向和方位向高分辨率遥感成像的雷达系统,在成像雷达中占有绝对重要的地位。近年来由于超大规模数字集成电路的发展、高速数字芯片的出现以及先进的数字信号处理算法的发展,使SAR具备全天候、全天时工作和实时处理信号的能力,并已经成为现代战争军事情报侦察的重要工具[1]。了解与研究国外SAR侦察卫星的发展现状及趋势,无论是对我国开发新的SAR卫星系统还是研究反SAR侦察技术都具有重要的现实意义。 1国外SAR侦察卫星的发展现状 1.1 美国的Lacrosse卫星 “长曲棍球”(Lacrosse)卫星是美国的军用雷达成像侦察卫星。它不仅适于跟踪舰船和装甲车辆的活动,监视机动或弹道导弹的动向,还能发现伪装的武器和识别假目标,甚至能穿透干燥的地表,发现藏在地下数米深处的设施。美国已经发射了Lacrosse-1(1988年12月)、Lacrosse-2(1991年3月)、Lacrosse-3(1997年10月)、Lacrosse-4(2000年8月)、Lacrosse-5(2005年4月),其中Lacrosse-1已经退役,并正在研制Lacrosse-6,分辨率从最初的1 m提高到0.3 m。“长曲棍球”卫星已成为美国卫星侦察情报的主要来源,美国军方计划再订购6台“长曲棍球”卫星上的SAR,每台SAR的价格约5亿美元[2]。 1.2 美国的Discover II卫星

雷达信号处理基本流程

基本雷达信号处理流程 一、脉冲压缩 窄带(或某些中等带宽)的匹配滤波: 相关处理,用FFT 数字化执行,即快速卷积处理,可以在基带实现(脉冲压缩) 快速卷积,频域的匹配滤波 脉宽越小,带宽越宽,距离分辨率越高 ; 脉宽越大,带宽越窄,雷达能量越小,探测距离越近; D=BT (时宽带宽积); 脉压流程: 频域:回波谱和参考函数共轭相乘 时域:相关 即输入信号的FFT 乘上参考信号FFT 的共轭再逆FFT ; Sc=ifft(fft(Sb).*conj(fft(S))); FFT 输入信号 共轭相乘逆FFT 参考信号的FFT 匹配滤波器 输出 Task1 f0=10e9;%载频tp=10e-6;%脉冲宽度B=10e6;%信号带宽fs=100e6;%采样率 R0=3000;%目标初始距离N=4096;c=3e8;tau=2*R0/c;beita=B/tp;t=(0:N-1)/fs; Sb=rectpuls(t-tp/2-tau,tp).*exp(j*pi*beita*(t-tp/2-tau).^2).*exp(-2j*pi*f0*tau);%回波信号 1000 2000 3000 4000 5000 6000 7000 -1-0.8-0.6-0.4-0.200.20.40.60.81 1000 2000 3000 4000 5000 6000 7000 -1-0.8-0.6-0.4-0.200.20.40.60.81 012345678910 x 10 7 20 40 60 80 100 120

S=rectpuls(t-tp/2,tp).*exp(i*pi*beita*(t-tp/2).^2);%发射信号(参考信号) 0.5 1 1.5 2 2.5 3 3.5 4 4.5x 10 -5 -1-0.8-0.6-0.4-0.200.20.40.60.81 0.5 1 1.5 2 2.5 3 3.5 4 4.5x 10 -5 -1-0.8-0.6-0.4-0.200.20.40.60.81 012345678910x 10 7 20 40 60 80 100 120 So=ifft(fft(Sb).*conj(fft(S)));%脉压 figure(7); plot(t*c/2,db(abs(So)/max(So)))%归一化dB grid on 01000200030004000500060007000 -400 -350-300-250-200-150-100-500

合成孔径雷达

合成孔径雷达(SAR) 合成孔径雷达产生的过程 为了形成一幅真实的图像增加两个关键参数:分辨率、识别能力。 合成孔径打开了无限分辨能力的道路 相干成像特性:以幅度和相位的形式收集信号的能力 相干成像的特性可以用来进行孔径合成 民用卫星接收系统SEASA T、SIR-A、SIR-B 美国军用卫星(LACROSSE) 欧洲民用卫星(ERS系列) 合成孔径雷达(SAR)是利用雷达与目标的相对运动将较小的真实天线孔径用数据处理的方法合成一个较大孔径的等效天线孔径的雷达。 特点:全天候、全天时、远距离、和高分辨率成像并且可以在不同频段不同极化下得到目标的高分辨率图像 SAR高分辨率成像的距离高分辨率和方位高分辨率 距离分辨率取决于信号带宽 方位高分辨率取决于载机与固定目标相对运动时产生的具有线性调频性质的多普勒信号带宽 相干斑噪声 机载合成孔径雷达是合成孔径雷达的一种 极化:当一个平面将空间划分为各向同性和半无限的两个均匀介质,我们就可以定义一个电磁波的入射平面,用波矢量K来表征:该平面包含矢量K以及划分这两种介质的平面法线垂直极化(V):无线电波的振动方向是垂直方向与水平极化(H):无线电波的振动方向是水平方向 TE波:电场E与入射面垂直

TH波:电场E属于入射平面 合成孔径雷达的应用 军事上、地质和矿物资源勘探、地形测绘和制图学、海洋应用、水资源、农业和林业 合成孔径雷达在军事领域的应用:战略应用、战术应用、特种应用。 SAR系统的几个发展趋势:多波段、多极化、多视角、多模式、多平台、高分辨率成像、实时成像。 SAR图像相干斑抑制的研究现状 分类:成像时进行多视处理、成像后进行滤波 多视处理就是对同一目标生成多幅独立的像,然后进行平均。 这是最早提出的相干斑噪声去除的方法,这种技术以牺牲空间分辨率为代价来获取对斑点的抑制 成像后的滤波技术成为SAR图像相干噪声抑制技术发展的主流 均值滤波、中值滤波、维纳滤波用来滤去相干斑噪声,这种滤波方法能够在一定程度上减小相干斑噪声的方差 合成孔径雷达理论概述 合成孔径雷达是一种高分辨率成像雷达,高分辨率包含两个方面的含义:方位向的高分辨率和距离向高分辨率。它通过采用合成孔径原理提高雷达的方位分辨率,并依靠脉冲压缩技术提高距离分辨率 由于SAR雷达发射信号(距离向信号)和合成孔径信号(方位信号)均具有线性调频性质,SAR成像的实质就是通过匹配滤波器对距离向和方位向具有线性调频信号的信号进行二维脉冲压缩的过程,也就是依靠脉冲压缩技术提高距离分辨率,通过合成孔径原理提高雷达的方位分辨率的过程 SAR成像处理是先利用距离向匹配滤波器,进行距离脉压,实现距离向高分辨率后,再通过方位向德匹配滤波,最终得到原始目标的高分辨图像。

一种雷达通用信号处理系统的实现与应用

一种雷达通用信号处理系统的实现与应用 一种雷达通用信号处理系统的实现与应用 FPGA是一种现场可编程器件,设计灵活方便可以反复修改内部逻辑,适用于算法结构比较简单、处理速度较高的情况。DSP是一种基于指令集的处理器,适于大信息、复杂算法的信息处理场合。鉴于两种处理器件自身优势,FPGA+DSP信号处理架构,已成为信号处理系统的常用结构。但当前FPGA+DSP的信号处理平台或者是基于某些固定目的,实现某些固定功能,系统的移植性、通用性较差。或者仅仅简要介绍了平台的结构没有给出一些具体的实现。本文提出的基于FPGA+DSP通用信号处理平台具有两种处理器的优点,兼颐速度和灵活性,而且可以应用在不同雷达信号处理系统中,具有很强的通用性。本文举例说明该系统在连续波雷达和脉冲雷达中的典型应用。1系统资源概述1.1处理器介绍本系统FPGA选择Altera公司的EP2S60F1020。Stratix II FPGA采用TSMC的90nm 低k绝缘工艺技术。Stratix II FPGA支持高达1Gb·s-1的高速差分I/O信号,满足新兴接口包括LVDS,LNPECL和HyperTransport标准的高性能需求,支持各种单端I/O接口标准。EP2S60系列内部有48352个ALUT;具有2544192bit的RAM 块,其中M512RAM(512bit)329个,M4K RAM(4kbit)255个,M-RAM(512kbit)2个。具有嵌入式DSP块36个,等效18bit×18bit乘法器144个;具有加强型锁相环EPLL4个,

快速锁相环FPLL8个。这些锁相环具有高端功能包括时钟切换,PLL 重新配置,扩频时钟,频率综合,可编程相位偏移,可编程延迟偏移,外部反馈和可编程带宽等。本系统DSP选择ADI公司的ADSP TS201。它有高达600MHz的运行速度,1.6ns的指令周期;有24MB的片内DRAM;双运算模块,每个计算块包含1个ALU,一个乘法器,1个移位器,1个寄存器组和1个通信逻辑单元(CLU);双整数ALU,提供数据寻址和指针操作功能;集成I/O接口,包括14通道的DMA控制器,外部端口,4个链路口,SDRAM控制器,可编程标识引脚,2个定时器和定时器输出引脚等用于系统连接;IEEE1149.1兼容的JTAG端口用于在线仿真;通过共享总线可以无缝连接多达8个TigerSHARC DSP。1.2FPGA+DSP结构由于FPGA和DSP各自的自身优势,FPGA+DSP信号处理架构已成为信号处理系统的常用结构。一般情况下FPGA+DSP的拓扑结构会根据需要进行不同的连接,这就导致这种结构的专用性,缺乏灵活性。对于一个通用处理平台要考虑到各种不同的信号通路,因此大部分通用FPGA+DSP平台都采取各个处理器间均有通路的方式。这种拓扑结构灵活方便,可以满足各种不同的通路需求,这种结构的缺点就是硬件设计的复杂以及可能会有资源浪费。对于这种通用FPGA+DSP 结构,FPGA与各个DSP之间均有连接,不同之处便是DSP之间的拓扑结构。一般分两种,一是高速外部总线口耦合结构组成多DSP 系统,这种结构可以实现多DSP共享系统内的资源,系统内的个处理器可以共享RAM,SDRAM和主机等资源,还可共享其他处理器核

雷达信号处理的MATLAB仿真

11目录 1. 设计的基本骤 (1) 1.1 雷达信号的产生 (1) 1.2 噪声和杂波的产生 (1) 2. 信号处理系统的仿真 (1) 2.1 正交解调模块 (2) 2.2 脉冲压缩模块 ............................................... 2.3 回波积累模块 ............................................... 2.4 恒虚警处理(CFAR)模块 (4) 结论 (11)

1 设计的基本骤 雷达是通过发射电磁信号,再从接收信号中检测目标回波来探测目标的。再接收信号中,不但有目标回波,也会有噪声(天地噪声,接收机噪声);地面、海面和气象环境(如云雨)等散射产生的杂波信号;以及各种干扰信号(如工业干扰,广播电磁干扰和人为干扰)等。所以,雷达探测目标是在十分复杂的信号背景下进行的,雷达需要通过信号处理来检测目标,并提取目标的各种信息,如距离、角度、运动速度、目标形状和性质等。 图3-6 设计原理图 2 信号处理系统的仿真 雷达信号处理的目的是消除不需要的信号(如杂波)及干扰,提取或加强由目标所产生的回波信号。雷达信号处理的功能有很多,不同的雷达采用的功能也有所不同,本文是对某脉冲压缩雷达的信号处理部分进行仿真。一个典型的脉冲压缩雷达的信号处理部分主要由A/D 采样、正交解调、脉冲压缩、视频积累、恒虚警处理等功能组成。因此,脉冲压缩雷达信号处理的仿真模型.

2.1 正交解调模块 雷达中频信号在进行脉冲压缩之前,需要先转换成零中频的I 、Q 两路正交信号。中频信号可表示为: 0()()cos(2())IF f t A t f t t π?=+ (3.2) 式(3.2)中, f 0 为载波频率。 令: 00()()cos 2()sin 2IF f t I t f t Q t f t ππ=- (3.3) 则 00()()cos 2()sin 2IF f t I t f t Q t f t ππ=- (3.4) 在仿真中,所有信号都是用离散时间序列表示的,设采样周期为T ,则中频信号为 f IF (rT ) ,同样,复本振信号采样后的信号为 f local =exp(?j ω 0rT ) (3.5) 则数字化后的中频信号和复本振信号相乘解调后,通过低通滤波器后得到的基带信号f BB (r ) 为: 11 000{()cos()}(){()sin()}()N N BB IF IF n n f f r n r n T h n j f r n r n T h n ωω--==-----∑∑ (3.6) 式(3.6)中, h (n ) 是积累长度为N 的低通滤波器的脉冲响应。 根据实际的应用,仅仅采用以奈奎斯特采样率进行采样的话,得不到较好混频信号和滤波结果,采样频率f s 一般需要中心频率的4 倍以上才能获得较好的信号的实部和虚部。当采样频率为f s = 4 f 0时,ω0 T = π/2,则基带信号可以简化为 110(){()cos()}(){()sin()}()22N N BB IF IF n n f r f r n r n h n j f r n r n h n ππ --==-----∑∑ (3.7) 使用Matlab 仿真正交解调的步骤: (1) 产生理想线性调频信号y 。 (2) 产生I 、Q 两路本振信号。设f 0为本振信号的中心频率,f s 为采样频率,n 为线性 调频信号时间序列的长度,则I 路本振信号为cos(n2πf 0/f s ),同样,Q 路本振信 号sin(n2πf 0/f s )。当f s = 4 f 0 时,I 、Q 两路本信号分别为cos(πn/2)和sin( n π /2)。 (3) 线性调频信号y 和复本振信号相乘,得到I 、Q 两路信号。

合成孔径雷达在军事上的应用分析

本期特约 本文2009208213收到,田锦昌系中国航天科工集团三院三部高级工程师 合成孔径雷达在军事上的应用分析 田锦昌 摘 要 合成孔径雷达(S AR )研制关键技术已取得重大突破,由于S AR 优点突出,各军事强国已在争先研制、装备S AR 。以平台划分,详细分析了机载S AR 、星载S AR 、弹载S AR 在军事上的具体应用情况。 关键词 合成孔径雷达 军事应用 分析引 言 伊拉克战争中,美国利用6颗高分辨率成像侦察卫星,对伊拉克国土进行密切监视,几乎每一个小时就有一颗成像侦察卫星光顾伊拉克的领空。在这6颗成像侦察卫星中,有3颗合成孔径雷达卫星(又称雷达成像卫星),分别是长曲棍球22(La 2cr osse 22)、长曲棍球23(Lacr osse 23)和长曲棍球24(Lacr osse 24)。这3颗S AR 卫星分时、分区域对伊 拉克重点地区进行侦察,为美英联军提供伊拉克军事活动的三维图像。 长曲棍球系列卫星是世界上最早的军用雷达成像侦察卫星,它是美国21世纪初空间雷达成像侦察的主要工具,不仅特别适于跟踪舰船的活动,监视机动式弹道导弹的动向,而且还能发现经伪装的武器装备,甚至能发现藏在地下数米深处的设施。长曲棍球卫星具有多频段、多极化工作能力,空间分辨率优于1m 。 自从1951年美国Good Year 公司的Carl W iley 提出合成孔径概念以后,S AR 技术得到了迅速发展。这主要是合成孔径雷达能克服云、雾、雨、雪和夜暗条件的限制对地面目标成像,可以全天时、全天候、高分辨率、大幅面对地观测,能够在军事 侦察、军事测绘及诸多民用领域发挥重要作用,因 此,自20世纪末以来,S AR 技术的军事应用受到世界各国高度重视,并得到迅速发展。1 S AR 的性能 S AR 是利用雷达对地辐射的后向散射微波来 分辨不同物体的。不同的物体一般具有不同的导电系数,导致不同物体对微波的后向散射系数不同。因此,雷达接收不同物体反射的微波辐射强度不 同。S AR 将孔径合成技术、脉冲压缩技术和信号处理技术相结合,使用孔径较小的天线,在距离向和方位向获得较高的图像分辨率。 S AR 具有很高的距离向和方位向分辨率,方位向分辨率的信号处理技术是S AR 与传统雷达的根本区别之一。利用一个小孔径雷达,采用合成孔径技术,可以在空间合成一个等效的大雷达孔径,从而可以获得高方位向分辨率。S AR 在距离向采用了脉冲压缩技术,同样提高了距离向分辨率。目前,S AR 的空间分辨率可以达到1m 。 S AR 具有很好的目标分辨能力,辐射分辨力达 到2d B ,可以把集结在一块的坦克和运兵车区分 开。S AR 的动态范围很大,达到80dB ,可以区分同一地域中后向散射系数差别很大的物体,且保证成像清晰。 S AR 针对不同物体对微波的极化响应特性不同,采用多极化工作方式(HH,HV,VH,HH ),增强了S AR 的成像性能。此外,S AR 还采用多频段工作方式(L 频段,C 频段,X 频段),可以保证不同

雷达信号处理

雷达信号处理技术与系统设计 第一章绪论 1.1 论文的背景及其意义 近年来,随着电子器件技术与计算机技术的迅速发展,各种雷达信号处理技术的理论与应用研究成为一大热门领域。 雷达信号的动目标检测(MAD)是利用动目标、地杂波、箔条和气象干扰在频谱上的差别,抑制来自建筑物、山、树、海和雨之类的固定或低速杂波信号。区分运动目标和杂波的基础是它们在运动速度上的差别,运动速度不同会引起回波信号频率产生的多普勒频移不相等,这就可以从频率上区分不同速度目标的回波。固定杂波的中心频率位于零频,很容易设计滤波器将其消除。但对于运动杂波,由于其多普勒频移未知,不能像消除固定杂波那样很容易地设计滤波器,其抑制就变得困难了从本质上来讲,雷达信号的检测问题就是对某一坐标位置上目标信号“有”或“无”的判断问题。最初,这一任务由雷达操作员根据雷达屏幕上的目标回波信号进行人工判断来完成。后来,出现了自动检测技术,一开始为固定或半固定门限检测,这种体制下当干扰和杂波功率水平增加几分贝,虚警概率将急剧增加,以至于显示器画面饱和或数据处理过载,这时即使信噪比很大,也不能作出正确的判断。为克服这些问题进而发展了自适应恒虚警(Constant FalseAlarm Rate,CFAR)检测。CFAR 检测使得雷达在多变的背景信号中能够维持虚警概率的相对稳定,这种虚警概率的稳定性对于大多数的雷达,如搜索警戒雷达、跟踪雷达、火控雷达等。

第二章 雷达信号数字脉冲压缩技术 2.1 引言 雷达脉冲压缩器的设计实际上就是匹配滤波器的设计。根据脉冲压缩系统实 现时的器件不同,通常脉冲压缩的实现方法分为两类,一类是用模拟器件实现的 模拟方式,另一类是数字方式实现的,主要采用数字器件实现。 脉冲压缩处理时必须解决降低距离旁瓣的问题,否则强信号脉冲压缩的旁瓣 会掩盖或干扰附近的弱信号的反射回波。这种情况在实际工作中是不允许的。采 用加权的方法可以降低旁瓣,理论设计旁瓣可以达到小于-40dB 的量级。但用模拟技术实现时实际结果与理论值相差很大,而用数字技术实现时实际输出的距离旁瓣与理论值非常接近。数字脉压以其许多独特的优点正在或已经替代模拟器件进行脉冲压缩处理。 2.2 数字脉压实现方法 用数字技术实现脉冲压缩可采用时域方法或频域方法。至于采用哪种方法。 要根据具体情况而定,一般而言,对于大时宽带宽积信号,用频域脉压较好;对 于小时宽带宽积信号,用时域脉压较好。 2.2.1 时域卷积法实现数字脉压 时域脉冲压缩的过程是通过对接收信号)(t s 与匹配滤波器脉冲响应)(t h 求卷积的方法实现的。根据匹配滤波理论,)()(0*t t s t h -=,即匹配滤波器是输入信号的共轭镜像,并有响应的时移0t 。 用数字方法实现时,输入信号为)(n s ,起匹配滤波器为)(n h ,即匹配滤波器的输出为输入离散信号)(n s 与其匹配滤波器)(n h 的卷积

合成孔径雷达成像

合成孔径雷达第一次作业 姓名:xxx 学号:xxx 一题目: 1.LFM信号分析:(1)仿真LFM信号;(2)观察不同TBP的LFM信号的频谱。(3)观察不同过采样率下的DFT结果,注意频谱混叠情况。 2.脉冲压缩仿真:针对“基带LFM信号”:(1)实现无误差的脉冲压缩;(2)通过频域补0实现时域十倍以上的过采样率,得到光滑的时域波形,通过观察给出指标(IRW,PSLR);(3)阅读资料,按照公式实现3阶(-20dB),6阶(-40 dB)泰勒加权,观察加窗效果,分析指标(IRW,PSLR),并对比MATLAB TAYLORWIN 函数的一致性;(4)在3阶泰勒加权下实现15.30.45.60.90.135度QPE下的脉冲压缩,显示输出波形,观察记录QPE的影响。 3.一维距离向仿真:(1)输入参数:目标参数:RCS=1,分别位于10km,11km,11km+3m,11km+50m处。LFM信号参数:中心频率1.0GHz,脉冲宽度30us,带宽30MHz。 (2)输出:设计采样波门,仿真回波,完成脉冲压缩,检测各峰值位置,判断每个目标是否得以分辨,分析各出现在相应位置及幅度的原因。 二题目分析与解答: 1.问题分析:由基础知识知,决定LFM信号的主要参数有中心频率fc(此处仿真取fc=0),带宽B,脉冲宽度Tp, 调频斜率K,其中K=B/Tp。对LFM信号进行傅里叶变换时,不同的时宽带宽积(TBP)会对频谱有不同的影响。 主要程序段(源程序见附件): %参数设置 Tp=5e-6; B=10e6; K=B/Tp;Fs=2*B; Ts=1/Fs; N=Tp/Ts; TBP=Tp*B %波形产生 t=linspace(-Tp/2,Tp/2,N); St=exp(j*pi*K*t.^2); Phase=pi*K*t.^2; Fre=2*pi*K*t; f=linspace(-Fs/2,Fs/2,N); figure(2) plot(f*1e-6,fftshift(abs(fft(St))),'k'); xlabel('Frequency/MHz'); ylabel('Magnitude'); title('Frequence Response'); legend('TBP=50') fft_St=fftshift(abs(fft(St)));

最新 连续波雷达及信号处理技术初探-精品

连续波雷达及信号处理技术初探 摘要:连续波雷达,主要就是连续发生电磁波的雷达,可以根据不同发射信号的形式,将其划分成为非调制单频与调频两种类型。在连续波雷达系统实际应用的过程中,应当科学使用信号处理技术开展相关处理工作,在实际观测的过程中,解决收发开关中存在的问题,保证雷达信号接收与发射工作效果。关键词:连续波雷达;信号处理技术;应用措施在使用信号处理技术对连续波雷达进行控制的过程中,应当建立多元化的管理机制,明确各方面工作要求,创新信号处理工作形式,保证能够提升信号处理技术的应用水平,创建专门的管理机制。一、连续波雷达定义与特征分析对于连续波雷达而言,主要是针对电磁波进行连续的发射,根据发射信号形式将其划分成为非调制单频与调频两种类型。在1924年的时候,英国就开始通过连续波课调频测距相关分析,对电离层开展观测工作。且在第二次世界大战的过程中,已经使用连续波雷达开展飞机观测与地面观测工作。然而,在实际使用的过程中,经常会出现收发隔离的现象,难以保证工作效果,因此,使用收发开关对此类问题进行了解决。当前,在使用连续波雷达的过程中,已经能够通过同一天线开展信号接收与发射工作,产生良好的工作效果。在使用连续波雷达发射机设备的过程中,不需要高压的支持,也不会出现打火的现象,能够利用多元化的方式开展信号调制工作,有利于提升信号的发射效率,增强雷达处理效果,因此,在相同体积、重量的雷达设备中,连续波雷达受到广泛关注与重视,应用于世界的各个国家。同时,连续波雷达的体积很小,重量很轻,馈线的损耗最低,使用流程简单,与其他雷达相较可以得知,连续波雷达在接收机方面,所使用的宽带脉冲较窄,有利于抵抗杂波问题,提升电磁干扰的抵抗能力。在应用连续波雷达对距离与速度进行测量的过程中,其测量准确性较高,不会受到其他因素的干扰。对于连续波雷达而言,其特点主要表现为以下几点: (一)发射机的运行功率较低连续波雷达的发射机运行功率很低,有利于应用在侦查工作中。一般情况下,在使用侦查接收机的过程中,可以利用连续波雷达对其进行处理,提升工作效率,加快侦查速度,保证瞬时频率符合相关规定。同时,在使用连续波雷达的过程中,还要使用伪随机码调相方式对其进行处理,减少外界带来的干扰,做好反侦察工作,保证可以符合实际发展需求。(二)接收机的宽带很窄连续波雷达在实际运行的过程中,接收机的宽带很窄,在杂波环境中,能够实行检测工作,提升自身抗干扰能力。且在电磁干扰的环境中,可以提升自身的抗干扰性能,满足实际处理需求[1]。(三)对小目标进行检测连续波雷达设备的使用,可以提升发射机的功率,增加收发天线的收益,且可以减少噪音问题,在一定程度上,能够减少微波损耗问题,更好的对隐身目标进行检测,合理开展雷达探测等工作,提升相关信号的处理效果,满足实际发展需求。二、连续波雷达的相关工作园林分析连续波雷达的运行,需要明确实际工作原理,通常情况下,雷达发射线性三角调频的相关连续性信号,那么,雷达设备的载频就在f0的数值之上,在此过程中,可以将调频宽带设置成为A,将调频间隔设置成为C。在对信号频率与时间进行计算的过程中,应当明确相关原理,创新管理工作形式,对具有代表性的内容进行合理分析,保证可以提升自身分析工作效果。在信号处理工作中,应当重点关注发射信号与目标回波信号,通过合理的计算方式,创建多

雷达系统中的信号处理技术

雷达系统中的信号处理技术 摘要本文介绍了雷达系统及雷达系统信号处理的主要内容,着重介绍与分析了雷达系统信号处理的正交采样、脉冲压缩、MTD和恒虚警检测几种现代雷达技术,雷达系统通过脉冲压缩解决解决雷达作用距离和距离分辨力之间的矛盾,通过MTD来探测动目标,通过恒虚警(CFAR)来实现整个系统对目标的检测。 关键词雷达系统正交采样脉冲压缩MTD 恒虚警检测 1雷达系统概述 雷达是Radar(Radio Detection And Ranging)的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。雷达的任务就是测量目标的距离、方位和仰角,还包括目标的速度,以及从目标回波中获取更多有关目标的信息。典型的雷达系统如图1,它主要由雷达发射机、天线、雷达接收机、收发转换开关、信号处理机、数据处理机、终端显示等设备组成。 图1雷达系统框图

随着现代电子技术的不断发展,特别是数字信号处理技术、超大规模集成数字电路技术、计算机技术和通信技术的告诉发展,现代雷达信号处理技术正在向着算法更先进、更快速、处理容量更大和算法硬件化方向飞速发展,可以对目标回波与各种干扰、噪声的混叠信号进行有效的加工处理,最大程度低剔除无用信号,而且在一定的条件下,保证以最大发现概率发现目标和提取目标的有用信息。 雷达发射机产生符合要求的雷达波形,然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由雷达接收机接收,然后对雷达回波信号依次进行信号处理、数据处理,就可以获知目标的相关信息。 雷达信号处理的流程如下: 图 2 雷达信号处理流程 2雷达信号处理的主要内容 雷达信号处理是雷达系统的主要组成部分。信号处理消除不需要的杂波,通过所需要的目标信号,并提取目标信息。内容包括雷达信号处理的几个主要部分:正交采样、脉冲压缩、MTD和恒虚警检测。 正交采样是信号处理的第一步,担负着为后续处理提供高质量数据的任务。采样的速率和精度是需要考虑的首要问题,采样系统引起的失真应当被限定在后续信号处理任务所要求的误差范围内,直接中频数字正交采样是当代雷达的主要技术之一。脉冲压缩技术在现代雷达系统中得到了广泛的应用。脉冲压缩雷达既能保持窄脉冲雷达的高距离分辨力,又能获得脉冲雷达的高检测力,并且抗干扰能力强。现在,脉冲压缩雷达使用的波形正在从单一的线性调频发展到时间、频率、编码混合调制,在尽可能不增加整机复杂度的条件下实现雷达性能的提升。杂波抑制是雷达需要具备的重要功能之一。动目标指示与检测是通过回波多普勒频移的不同来区分动目标和固定目标,通过设计合理的滤波器(组),就可以把目标号和杂波分开。

合成孔径雷达(SAR)的点目标仿真(附件带代码程序)

合成孔径雷达(SAR)的点目标仿真(附件带代码程序) 合成孔径雷达(SAR)的点目标仿真 一. SAR原理简介 合成孔径雷达(Synthetic Aperture Radar ,简称SAR)是一种高分辨率成像雷达技术。它利用脉冲压缩技术获得高的距离向分辨率,利用合成孔径原理获得高的方位向分辨率,从而获得大面积高分辨率雷达图像。SAR回波信号经距离向脉冲压缩后,雷达的距离分辨率由雷达发射信号带宽决定:,式中表示雷达的距离分辨率,表示雷达发射信号带宽,表示光速。同样,SAR回波信号经方位向合成孔径后,雷达的方位分辨率由雷达方位向的多谱勒带宽决定:,式中表示雷达的方位分辨率,表示雷达方位向多谱勒带宽,表示方位向SAR平台速度。 二. SAR的成像模式和空间几何关系 根据SAR波束照射的方式,SAR的典型成像模式有Stripmap(条带式),Spotlight(聚束式)和Scan(扫描模式),如图2.1。条带式成像是最早研究的成像模式,也是低分辨率成像最简单最有效的方式;聚束式成像是在一次飞行中,通过不同的视角对同一区域成像,因而能获得较高的分辨率;扫描模式成像较少使用,它的信号处理最复杂。 图2.1:SAR典型的成像模式 这里分析SAR点目标回波时,只讨论正侧式Stripmap SAR,正侧式表示SAR波束中心和SAR平台运动方向垂直,如图2.2,选取直角坐标系XYZ为参考坐标系,XOY平面为地平面;SAR平台距地平面高h,沿X轴正向以速度V匀速飞行;P点为SAR平台的位置矢量,设其坐标为(x,y,z);T点为目标的位置矢量,设其坐标为;由几何关系,目标与SAR平台的斜距为: (2.1) 由图可知:;令,其中为平台速度,s为慢时间变量(slow time),假设,其中表示SAR平台的x 坐标为的时刻;再令,表示目标与SAR的垂直斜距,重写2.1式为: (2.2) 就表示任意时刻时,目标与雷达的斜距。一般情况下,,于是2.2式可近似写为: (2.3) 可见,斜距是的函数,不同的目标,也不一样,但当目标距SAR较远时,在观测带内,可近似认为不变,即。

相关文档