文档库 最新最全的文档下载
当前位置:文档库 › 指数函数的运算性质

指数函数的运算性质

指数函数的运算性质
指数函数的运算性质

指数函数的运算性质

教学目标:能用分数指数幂的运算法则解决一些数学问题.

教学重难点:重点 掌握分数指数幂的运算法则.

知识复习:

上一节课,学习了分数指数幂的概念,即

给定a 对于任意给定的,(,,(,)1),m n m n Z m n ∈=存在唯一的0,b >使得,n m b a =把b 叫作a 的m n

次幂,记作 (0).m n b a a =>

正分数指数幂的根式形式,即

(0,,),m

n a a m n Z +=>∈

其中n 叫作根指数,m 叫幂指数.

负分数指数幂的意义,即

1

(0,,,m

n m

n a a m n Z a -+==>∈且1).n >

0的正分数幂等于零,0的非负分数幂无意义.

无理指数幂(可以用有理数的不足近似数和过剩近似数进行逼近)

一、正整数指数幂的运算法则

(1)同底数幂相乘 ;m n m n a a a

+=同底数幂相除 (0).m m n m n n a a a a a a --==≠ (2)幂的乘方 ();m n mn a a =

(3)积的乘方 ().m m m ab a b =商的乘方1()(0).n n n n a ab a b b b --??==≠ ???

其中,.m n N ∈

把它推广到分数指数幂也成立,

二、分数指数幂的运算法则

90对于,0,,a b m n >取任意数,有

(1);m n m n a a a

+= (2)();m n mn

a a =

(3)().m m m ab a b =

三、例题

例1.

.

例2. 化简

(1)3);x 1(2)()(4).a a a x y y -

例3. 已知103,10 4.αβ==求()()()(2)510

,10,10,10.β

αβαβα+-- 四、探究问题与作业 1. 函数y ex =与x y e =的交点个数. 课后作业:习题1、2、3.

五、课后小节

指数函数的性质

指数运算、指数函数

§1.4指数运算、指数函数 【复习要点】 1.指数、对数的概念、运算法则; 2.指数函数的概念, 性质和图象. 【知识整理】 1.指数的概念;运算法则:n n n mn n m n m n m b a ab a a a a a ===?+)(,)(, )1,,,0(* >∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 2.指数函数的概念, 性质和图象如表: 其中利用函数的图象来比较大小是一般的方法。 4.会求函数y =a f (x)的单调区间。 5.含参数的指数函数问题,是函数中的难点,应初步熟悉简单的分类讨论。 【基础训练】 1]4 3的结果为 ( ) A.5 B.5 C.-5 D.-5 2.将322-化为分数指数幂的形式为 ( ) A .2 1 2- B .3 12- C .2 12 - - D .6 52-

3.下列等式一定成立的是 ( ) A .2 33 1 a a ?=a B .2 12 1a a ?- =0 C .(a 3)2=a 9 D .6 13121a a a =÷ 4.下列命题中,正确命题的个数为 ( ) ①n n a =a ②若a ∈R ,则(a 2-a +1)0=1 ③y x y x +=+3 433 4 ④623)5(5-=- A .0 B .1 C .2 D .3 5.化简11111321684 21212121212-----??????????+++++ ???????????????????,结果是 ( ) A .1 1 321122--? ?- ? ?? B .1 132 12--??- ??? C .1 3212-- D .1321122-??- ??? 6 .4 4 等 于 ( ) A .16a B .8a C .4a D .2 a 【例题选讲】 1.设3 2212 ,-==x x a y a y ,其中a >0,a ≠1,问x 为何值时有 (1)y 1=y 2 ? (2)y 1<y 2? 2.比较下列各组数的大小,并说明理由 (1)431.1,434.1,3 21.1 (2)4 316.0- ,2 35 .0- ,8 325.6 (3)5 32 )1(+a ,4 32 )1(+a 3.已知函数3234+?-=x x y 的值域为[7,43],试确定x 的取值范围. 4.设01a <<,解关于x 的不等式2 2 232 223 x x x x a a -++->

指数运算和指数函数

指数运算和指数函数 一、知识点 1.根式的性质 (1)当n 为奇数时,有a a n n = (2)当n 为偶数时,有???<-≥==) 0(,) 0(,a a a a a a n n (3)负数没有偶次方根 (4)零的任何正次方根都是零 2.幂的有关概念 (1)正整数指数幂:)(.............*∈??=N n a a a a a n n (2)零指数幂)0(10 ≠=a a (3)负整数指数幂 ).0(1 *∈≠= -N p a a a p p (4)正分数指数幂 )1,,,0(>*∈>=n N n m a a a n m n m 且 (5)负分数指数幂 n m n m a a 1= - )1,,,0(>*∈>n N n m a 且 (6)0的正分数指数幂等于0,0的负分数指数幂无意义 3.有理指数幂的运算性质 (1)),,0(,Q s r a a a a s r s r ∈>=?+ (2)),,0(,)(Q s r a a a rs s r ∈>= (3)),0,0(,)(Q r b a a a ab s r r ∈>>?= 4.指数函数定义:函数)10(≠>=a a a y x 且叫做指数函数。 5. 指数函数的图象和性质 x a y = 0 < a < 1 a > 1 图 象 性 质 定义域 R 值域 (0 , +∞) 定点 过定点(0,1),即x = 0时,y = 1 (1)a > 1,当x > 0时,y > 1;当x < 0时,0 < y < 1。 (2)0 < a < 1,当x > 0时,0 < y < 1;当x < 0时,y > 1。 单调性 在R 上是减函数 在R 上是增函数 对称性 x y a =和x y a -=关于y 轴对称

教程-训练-指数运算与指数函数

指数运算与指数函数 【知识概述】 一、根式的性质: 1.a a n n =)( 2.当n 为奇数时,a a n n = 3.当n 为偶数时,???<-≥==)0()0(||a a a a a a n 二、幂的有关概念: 正整数指数幂:()n a a a a n N *=?? ?∈n 个 零指数幂:)0(10 ≠=a a , 负指数幂:∈=-p a a p p (1 Q , 正分数指数幂:m a a a n m n m ,0(>=、∈n N * 且)1>n 三、有理指数幂的运算性质 1.r a a a a s r s r ,0(>=?+、∈s Q ), 2.r a a a s r s r ,0()(>=?、∈s Q ), 3.∈>>?=?r b a b a b a r r r ,0,0()( Q ) 四、指数函数 1.指数函数定义:函数)1,0(≠>=a a a y x 且称指数函数,函数的定义域为R ,值域为 ),0(+∞

2.函数图像: 3.性质:(1)图象都经过点(0,1) (2)1a >时,x y a =为增函数;10a >>时,x y a =为减函数 (3)x y a =为非奇非偶函数 【学前诊断】 1. [难度]易 计算:(1)( ) ) 12 10 2 3 170.0272179--????--+- ? ????? ; (2 (3 . 2. [难度]中 函数e e e e x x x x y --+=-的图象大致为( ). 3. [难度]中 若函数x x x f -+=3 3)(与x x x g --=3 3)(的定义域均为R ,则( ). A. )(x f 与)(x g 与均为偶函数 B.)(x f 为奇函数,)(x g 为偶函数 C. )(x f 与)(x g 与均为奇函数 D.)(x f 为偶函数,)(x g 为奇函数 D

高一数学讲义-指数运算与指数函数

指数运算和指数函数 要求层次重点难点幂的运算 C ①根式的概念 ②有理指数幂 ③实数指数幂 ④幂的运算 ①分数指数幂的概 念和运算性质 ②无理指数幂的理 解 ③实数指数幂的意 义 指数函数的概念 B 在理解实数指数幂 的意义的前提下理 解指数函数 在理解实数指数幂 的意义的前提下理 解指数函数 指数函数的图象和 性质 C ①对于底数1 a>与 01 a <<时指数函 数的不同性质 ②掌握指数函数的 图象和运算性质 ①对于底数1 a>与 01 a <<时指数函 数的不同性质 ②掌握指数函数的 图象和运算性质 ③掌握指数函数作 为初等函数与二次 函数、对数函数结 合的综合应用问题 板块一:指数,指数幂的运算 (一)知识内容 1.整数指数 ⑴正整数指数幂:n a a a a =???,是n个a连乘的缩写(N n + ∈),n a叫做a的n次幂,a叫做幂的底数,n叫做幂的指数,这样的幂叫做正整数指数幂. ⑵整数指数幂:规定:01(0) a a =≠, 1 (0,) n n a a n a - + =≠∈N. 高考要求 第4讲 指数运算与指数函数 知识精讲

2.分数指数 ⑴ n 次方根:如果存在实数x ,使得n x a =(R,1,N )a n n +∈>∈,那么x 叫做a 的n 次方根. ⑵ 求a 的n 次方根,叫做a 开n 次方,称做开方运算. ① 当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.这时, a 的n 表示. ② 当n 是偶数时,正数的n 次方根有两个,它们互为相反数.正数a 的正、负n 0)a >. ⑶正数a 的正n 次方根叫做a 的n 次算术根. 负数没有偶次方根.0的任何次方根都是0 0. n 叫做根指数,a 3.根式恒等式: n a =;当n a =;当n ||a a a ?=?-? 0a a <≥. 4.分数指数幂的运算法则 ⑴正分数指数幂可定义为:1(0)n a a > 0,,,)m m n m a a n m n +==>∈N 且 为既约分数 ⑵负分数指数幂可定义为:1(0,,,)m n m n m a a n m n a - += >∈N 且 为既约分数 5.整数指数幂推广到有理指数幂的运算性质: ⑴(0,,Q)r s r s a a a a r s +=>∈ ⑵()(0,,Q)r s rs a a a r s =>∈ ⑶()(0,0,Q)r r r ab a b a b r =>>∈ 6.n 次方根的定义及性质:n 为奇数时 a =,n 为偶数时 a =. 7. m n a = m n a - =(0a >,,*m n N ∈,且1n >) 零的正分数指数幂为0,0的负分数指数幂没有意义. 8.指数的运算性质:r s r s a a a +=,()r r r ab a b =(其中,0a b >,,r s ∈R ) 9.无理数指数幂 ⑴ 无理指数幂(0,a a αα>是无理数)是一个确定的实数. ⑵ 有理数指数幂的运算性质同样适用于无理数指数幂. 10.一般地,当0a >,α为任意实数值时,实数指数幂a α都有意义. 对任意实数α,β,上述有理指数幂的运算法则仍然成立.

指数函数及其性质教学设计

一、标题与单位 指向数学学科核心素养的课堂教学设计 ——指数函数及其性质 《数学5 必修A版》(人教版)第二章(2.1.2) 建宁一中肖秀勇 二、教学设计 (一)内容和内容解析 本节课的内容在知识体系上起到承上启下的作用。这是在学生已掌握了函数的一般性质和简单的指数运算的基础上进一步研究指数函数以及指数函数的图像与性质。在实际生活中应用也非常广泛。它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。这节课在授课的时候借助了空间认识事物的位置关系、形态变化与运动规律;利用图形描述、分析数学问题;建立形与数的联系;构建数学问题的直观模型,探索解决问题的思路。 我根据所教班级的实际情况,我把这部分内容分为两节课来讲。其一,探究图象及其性质;其二,指数函数及其性质的应用。这是第一节课,所以所讲的内容是“探究图象及其性质”。作为常见函数,它一方面可以进一步深化学生对函数的理解,使学生得到较系统的函数知识和研究函的方法,另一方面也为学习对数函数、幂函数以及等比数列的学打习下坚实的基础。 (二)目标和目标解析 1、知识目标:理解并掌握指数函数的定义,熟悉指数函数的图像特点及其性质。能画出指数函数的简图,会判断指数函数的单调性,并能根据指数函数的单调性判断同底幂的大小。 2、能力目标:一方面培养学生运用信息技术解决数学问题的能力;另一方面提高学生观察分析、类比归纳和问题探究的能力。 3、情感目标:通过主动探究,合作交流学习,使学生养成积极思考,勇于探索的思想,同时培养学生的团队合作精神。 在直观想象核心素养的形成过程中,学生能够进一步发展几何直观和空间想象能力,增强运用图形和空间想象思考问题的意识,提升数形结合的能力,感悟事物的本质,培养创新思维。在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。 (三)教学问题诊断分析

指数函数性质应用(一)

指数函数性质应用(一) 教学目标:1、掌握指数函数定义式的应用 2、会求定点,会求指数函数和其它函数综合的定义域,值域 难点,重点:性质的灵活运用 回顾指数函数的定义和性质 定义: 定义域: 值域: 过定点: 活动一:定义式的应用 例1、 若函数2(55)x y a a a =-+?为指数函数,求a 的值 例2、 若指数函数图像过点(2,4),求(2)f 练习:函数223()(1)x x f x a m a +-=+>的图像恒过定点(1,10),求m 活动二:过定点问题 复习平移变换(0)a > ()y f x = ()y f x a =+ ()y f x = ()y f x a =- ()y f x = ()y f x a =+ ()y f x = ()y f x a =- 例3、 函数1x y a +=过定点 思考:函数1x y a +=的图像由x y a =的图像经过怎么样的平移得到的? 例4、 函数12x y a -=+(0,1)a a >≠过定点 思考:函数12x y a -=+(0,1)a a >≠图像由x y a =图像经过怎么样的平移得到的?

例5、 函数3x y m =+的图像不经过第二象限,求m 的取值范围? 思考:如果13x y m +=+呢? 活动三:定义域、值域问题 例6、求下列函数的定义域、值域 (1)y y =153-x (3)y =2x +1 ⑷ 112x x y -+= 例7、设[0,2]x ∈求4425x x y =-?+的值域 例8、求下列函数的值域 ①31 31x x y -=+ ②3131x x y +=-

指数运算与指数函数(学案)

指数运算与指数函数 高考要求 知识梳理 知识点一:有理数指数幂 1. n 次方根概念与表示 一般地,如果n x =a ,那么x 叫做a 的n 次方根,其中n >1,且*N n . n

2.根式概念 式子a n 叫做根式,这里n 叫做根指数,a 叫做被开方数. 3.根式的性质 ① n a =. ② ||,a n a n ?=??,为奇数为偶数; 4.分数指数幂 正分数指数幂:a m n =√a m n (a >0,m,n ∈N ?,n >1) 负分数指数幂:a ? m n = 1 a m n = √a m n a >0,m,n ∈N ?,n >1) 0的正分数指数幂等于0;0的负分数指数幂没有意义 5.实数指数幂的运算性质 a r a s =a r+s (a >0,s ∈Q ) (a r )s =a rs (a >0,s ∈Q ) (a b )r =a r b r (a >0,s ∈Q ) 知识点二:指数函数的图像和性质 1.指数函数概念: 形如0(>=a a y x 且1≠a )函数叫指数函数,其中x 是自变量,函数定义域为R . 2.指数函数图象与性质 R

知识点三:指数函数性质的运用(比较大小) 指数函数在第一象限按逆时针方向底数依次增大 考点解析 典型习题一:指数幂(根式)的化简与计算 例1、已知当27=x ,64=y 时,化简并计算 例2、已知 01x <<,且1 3x x -+=,求112 2 x x - -的值. 典型习题二:指数函数的图像问题 例1、已知函数2 ()x f x m -=(0m >,且1m ≠)恒过定点(,)a b ,则在直角坐标系中函数 ||1 ()()x b g x a +=的图象为( ) )6 5 )(41(561 312112 13 2-----y x y x y x

指数运算法则

指数运算法则 指数函数的一般形式为y=a^x(a>0且不=1) ,函数图形下凹,a大于1,则指数函数单调递增;a小于1大于0,则为单 调递减的函数。指数函数既不是奇函数也不是偶函数。要想使 得x能够取整个实数集合为定义域,则只有使得a的不同大小 影响函数图形的情况。 一、法则 在函数y=a^x中可以看到: (1)指数函数的定义域为所有实数的集合,这里的前提 是a大于0且不等于1,对于a不大于0的情况,则必然使得 函数的定义域不存在连续的区间,因此我们不予考虑,同时a 等于0一般也不考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4) a大于1,则指数函数单调递增;a小于1大于0, 则单调递减。 (5)可以看到一个显然的规律,就是当a从0趋向于无 穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y 轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y 轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平 直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。 (7)函数总是通过定点(0,1) (8)指数函数无界。 (9)指数函数既不是奇函数也不是偶函数。

(10)当两个指数函数中的a互为倒数时,此函数图像是 偶函数。例1:下列函数在R上是增函数还是减函数?说明理由. ⑴y=4^x 因为4>1,所以y=4^x在R上是增函数;⑵ y=(1/4)^x 因为0<1/4<1,所以y=(1/4)^x在R上是减函数1对 数的概念如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那 么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对 数的底数,N叫做真数. 由定义知:①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特 别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化式子名称abN指 数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)loga(M/N)=logaM-logaN. (3)logaM n=nlogaM (n∈R). 二、记忆口决 有理数的指数幂,运算法则要记住。 指数加减底不变,同底数幂相乘除。 指数相乘底不变,幂的乘方要清楚。 积商乘方原指数,换底乘方再乘除。 非零数的零次幂,常值为 1不糊涂。 负整数的指数幂,指数转正求倒数。 看到分数指数幂,想到底数必非负。 乘方指数是分子,根指数要当分母。 看到分数指数幂,想到底数必非负。

高一数学指数运算及指数函数试题(有答案)

高一数学指数运算及指数函数试题 一.选择题 1.若xlog 23=1,则3x+9x的值为(B) A.3B.6C.2D.解:由题意x=, 所以3x==2, 所以9x=4,所以3x+9x=6 故选B 2.若非零实数a、b、c满足,则的值等于(B)A.1B.2C.3D.4 解答:解:∵, ∴设=m, a=log5m,b=log2m,c=2lgm, ∴= =2lgm(log m5+log m2) =2lgm?log m10 =2. 故选B. 3.已知,则a等于() A.B.C. 2 D. 4 解:因为所以 解得a=4 故选D 4.若a>1,b>1,p=,则a p等于() A.1B.b C.l og b a D.a log b a

解:由对数的换底公式可以得出p==log a(log b a), 因此,a p等于log b a. 故选C. 5.已知lg2=a,10b=3,则log125可表示为(C) A.B.C.D. 解:∵lg2=a,10b=3, ∴lg3=b, ∴log125= = =. 故选C. 6.若lgx﹣lgy=2a,则=(C) A.3a B.C.a D. 解:∵lgx﹣lgy=2a, ∴lg﹣lg=lg﹣lg=(lg﹣lg) =lg=(lgx﹣lgy)=?2a=a; 故答案为C. 7.已知函数,若实数a,b满足f(a)+f(b﹣2)=0,则a+b= A.﹣2 B.﹣1 C.0D.2 解:f(x)+f(﹣x)=ln(x+)+ln(﹣x+=0 ∵f(a)+f(b﹣2)=0 ∴a+(b﹣2)=0 ∴a+b=2 故选D.

8.=() A.1B.C.﹣2 D. 解:原式=+2×lg2+lg5=+lg2+lg5=+1=, 故选B. 9.设,则=() A.1B.2C.3D.4解:∵, ∴= =()+()+()= =3 故选C 10.,则实数a的取值区间应为(C) A.(1,2)B.(2,3)C.(3,4)D.(4,5)解:=log34+log37=log328 ∵3=log327<log328<log381=4 ∴实数a的取值区间应为(3,4) 故选C. 11.若lgx﹣lgy=a,则=(A)

北师大版数学高一必修1练习 指数函数及其性质的应用

[A 基础达标] 1.当x ∈[-1,1]时,f (x )=3x -2的值域是( ) A.??? ?-53,1 B .[-1,1] C.????1,53 D .[0,1] 解析:选A.f (x )在R 上是增函数,由f (-1)=-53 ,f (1)=1得当x ∈[-1,1]时,f (x )=3x -2的值域是??? ?-53,1. 2.设f (x )=????12|x |,x ∈R ,那么f (x )是( ) A .奇函数且在(0,+∞)上是增函数 B .偶函数且在(0,+∞)上是增函数 C .奇函数且在(0,+∞)上是减函数 D .偶函数且在(0,+∞)上是减函数 解析:选D.f (x )的定义域为R ,f (-x )=f (x ),所以f (x )为偶函数,排除A 、C ;当x >0时,y =????12x 为减函数,排除B.故选D. 3.函数y =6x 与y =-6-x 的图像( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称 D .关于直线y =x 对称 解析:选C.y =f (x )与y =-f (-x )的图像关于原点对称. 4.函数y =????12x 2-2在下列哪个区间上是减少的( ) A .(-∞,0] B .[0,+∞) C .(-∞,2] D .[2,+∞) 解析:选B.设u =x 2-2,u 在(-∞,0]是减函数,在[0,+∞)上是增加的,y =????12u 是 减函数, 所以y =????12x 2 -2在[0,+∞)上是减少的.

5.下列图像中,二次函数y =ax 2+bx 与指数函数y = ????b a x 的图像只可能是( ) 解析:选A.由指数函数图像可以看出0

指数运算和指数函数

指数运算与指数函数 一、知识点 1、根式得性质 (1)当n为奇数时,有(2)当n为偶数时,有 (3)负数没有偶次方根 (4)零得任何正次方根都就就是零2、幂得有关概念 (1)正整数指数幂: (2)零指数幂 (3)负整数指数幂 (4)正分数指数幂 (5)负分数指数幂 (6)0得正分数指数幂等于0,0得负分数指数幂无意义 3、有理指数幂得运算性质 (1) (2) (3) 4、指数函数定义:函数叫做指数函数。 0 <a < 1 a > 1 图象 性质定义域R 值域(0 , +∞) 定点 过定点(0,1),即x= 0时,y = 1 (1)a> 1,当x>0时,y>1;当x< 0时,0 <y<1。 (2)0 <a< 1,当x> 0时,0 1。 单调性在R上就就是减函数在R上就就是增函数 对称性与关于y轴对称 (1) ①②③④ 则:0<b

②当两个式子均为正值得情况下,可用作商法,判断,或即可、 四、典型例题 类型一、指数函数得概念 例1、函数就就是指数函数,求得值、 【答案】2 【解析】由就就是指数函数, 可得解得,所以、 举一反三: 【变式1】指出下列函数哪些就就是指数函数? (1);(2);(3);(4); (5);(6)、 【答案】(1)(5)(6) 【解析】(1)(5)(6)为指数函数、其中(6)=,符合指数函数得定义,而(2)中底数不就就是常数,而4不就就是变数;(3)就就是-1与指数函数得乘积;(4)中底数,所以不就就是指数函数、 类型二、函数得定义域、值域 例2、求下列函数得定义域、值域、 (1);(2)y=4x-2x+1;(3);(4)(a为大于1得常数) 【答案】(1)R,(0,1);(2)R [); (3) ;(4)[1,a)∪(a,+∞) 【解析】(1)函数得定义域为R (∵对一切xR,3x≠-1)、 ∵,又∵3x>0, 1+3x>1, ∴ , ∴ , ∴ , ∴值域为(0,1)、 (2)定义域为R,,∵2x>0,∴即x=-1时,y取最小值,同时y可以取一切大于得实数,∴值域为[)、 (3)要使函数有意义可得到不等式,即,又函数就就是增函数,所以,即,即,值域就就是、 (4)∵∴定义域为(-∞,-1)∪[1,+∞), 又∵ ,∴,∴值域为[1,a)∪(a,+∞)、 【总结升华】求值域时有时要用到函数单调性;第(3)小题中值域切记不要漏掉y>0得条件,第(4)小题中不能遗漏、 举一反三: 【变式1】求下列函数得定义域: (1) (2) (3) (4) 【答案】(1)R;(2);(3);(4)a>1时,;01时,;0

指数运算及指数函数的性质

任课教 师 学科授课时间:年月学生姓 名 年级授辅导章节: 辅导内 容 考试大 纲 重点 难点 课堂检测听课及知识掌握情况反馈: 教学需:加快□;保持□;放慢□;增加内容□ 课后巩固作业__________ 巩固复习____________________ ; 预习布置_________________ 课后学 生 分析总结你学会了那些知识和方法: 你对那些知识和方法还有疑问: 签字教务主任签字:学习管理师:

1、熟练掌握指数运算, 2、熟记指数函数性质. 一、指数幂与指数运算 根式 正数的分数指数幂: = = = 有理数指数幂的运算性质: 例 1、(1) ;(2)

(3) .(4) 例2、(1)(2013·南昌高一检测) 若10m=2,10n=3,则1 = . (2)化简 = (3)若(1-2x 有意义,则x的取值范围是 (4)当 有意义时,化简 - 的结果是 (5)已知a,b是方程x2-6x+4=0的两根,且a>b>0,求 的值 .

二、指数函数与指数函数的性质 形如 定义域为R 例1、下列函数中,哪些是指数函数? (1)y=10x;(2)y=10x+1;(3)y=-4x;(4)y=xx;(5)y=xα(α是常数). 例2、指数函数y= b·ax在[b,2]上的最大值与最小值的和为6,则a= 指数函数的图像与性质: 1.函数y= 的定义域是_ ______. 2.函数 的定 义域为;函数 的值域为 3.函数y=ax-2 013+2 013(a>0,且a≠1)的图象恒过定点 4.函数y=a2x+b+1( a>0,且a≠1)的图象恒过定点(1,2),则b=_______.

指数函数的性质及应用

对应学生用书P 110 基础达标 一、选择题 1.若函数y =(1-2a )x 是实数集R 上的增函数,则实数a 的取值范围为( ) A .(1 2,+∞) B .(-∞,0) C .(-∞,1 2 ) D .(-12,1 2 ) 解析:由题意知,此函数为指数函数,且为实数集R 上的增函数,所以底数1-2a >1,解得a <0. 答案:B 2.(2010·温州十校联考)函数y =2x +1 的图象是( ) 解析:函数y =2x 的图象是经过定点(0,1)、在x 轴上方且单调递增的曲线,依据函数图象的画法可得函数y =2x +1 的图象单调递增且过点(0,2),故选A. 答案:A 3.函数y =(12)1- x 的单调递增区间为( ) A .(-∞,+∞) B .(0,+∞) C .(1,+∞) D .(0,1) 解析:定义域为R . 设u =1-x ,y =(1 2 )u . ∵u =1-x 在R 上为减函数, 且y =(1 2)u 在(-∞,+∞)为减函数, ∴y =(12)1- x 在(-∞,+∞)是增函数,∴选A. 答案:A

4.设y 1=40.9,y 2=80.48,y 3=(12)- 1.5,则( ) A .y 3>y 1>y 2 B .y 2>y 1>y 3 C .y 1>y 2>y 3 D .y 1>y 3>y 2 解析:y 1=40.9=21.8,y 2=80.48=21.44,y 3=(12)- 1.5=21.5.因为函数y =2x 在R 上是增函数, 且1.8>1.5>1.44,所以y 1>y 3>y 2. 答案:D 5.已知函数f (x )=a x 在(0,2)内的值域是(a 2,1),则函数y =f (x )的图象是( ) 解析:∵f (x )=a x 在(0,2)内的值域是(a 2,1), ∴f (x )在(0,2)内单调递减, ∴01,-10,函数y =(a 2-8)x 的值恒大于1,则实数a 的取值范围是______________. 解析:因为x >0时,y =(a 2-8)x 的值大于1恒成立,则a 2-8>1,即a 2>9,解得a >3或a <-3.

高一数学指数函数知识点及练习题含答案

指 数函数 2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次 当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数 时,0a ≥. n a =;当n a =;当n (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0.② 正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指 数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ 2.1.2指数函数及其性质

2.1指数函数练习 1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .31243)3(-=- C .4 3433)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)(+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0 ,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.函数2 2)2 1(++-=x x y 得单调递增区间是 ( )

指数运算和指数函数

第五讲 指数运算和指数函数 一、知识点 1.根式的性质 (1)当n 为奇数时,有a a n n = (2)当n 为偶数时,有? ? ?<-≥==)0(,) 0(,a a a a a a n n (3)负数没有偶次方根 (4)零的任何正次方根都是零 2.幂的有关概念 (1)正整数指数幂:)(.............*∈??=N n a a a a a n n (2)零指数幂)0(10≠=a a (3)负整数指数幂 ).0(1*∈≠= -N p a a a p p (4)正分数指数幂 )1,,,0(>*∈>= n N n m a a a n m n m 且 (5)负分数指数幂 n m n m a a 1 = -)1,,,0(>*∈>n N n m a 且 (6)0的正分数指数幂等于0,0的负分数指数幂无意义 3.有理指数幂的运算性质 (1)),,0(,Q s r a a a a s r s r ∈>=?+ (2)),,0(,)(Q s r a a a rs s r ∈>= (3)),0,0(,)(Q r b a a a ab s r r ∈>>?= 4.指数函数定义:函数)10(≠>=a a a y x 且叫做指数函数。

1.函数21 )2()5(- -+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0 ,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 4.函数2 2 ) 21 (++-=x x y 得单调递增区间是 ( ) A .]2 1 ,1[- B .]1,(--∞ C .),2[+∞ D .]2,2 1 [ 5.已知2 )(x x e e x f --= ,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数 C .奇函数,在R 上为减函数 D .偶函数,在R 上为减函数 二、填空题 6.已知函数f (x )的定义域是(1,2),则函数)2(x f 的定义域是 . 7.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 . 8.已知-1-+=a a a y x x 在区间[-1,1]上的最大值是14,求a 的值. 11.(12分)(1)已知m x f x +-= 1 32)(是奇函数,求常数m 的值; (2)画出函数|13|-=x y 的图象,并利用图象回答:k 为何值时,方程|3X-1|=k 无 解?有一解?有两解? 12.已知函数f(x)= 1 1+-x x a a (a>0且a ≠1). (1)求f(x)的定义域和值域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性.

指数函数及其性质教学设计

指数函数及其性质教案 一、教学目标: 1.通过观察、分析,归纳探究指数函数的概念,并能判断给出的具体函数是否是指数函数. 2. 会画指数函数的图象,从借助计算机画出的多个指数函数的图象中,能观察归纳出指数函数的的有关性质。至少能说出四条。 3.能根据图象或指数函数的性质判断两个具体的同底数的指数幂值的大小,以及具体的不同底数而同指数的两个指数幂值的大小. 4. 在学习的过程中,体会探究指数函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等. 二、教学重点、难点: 教学重点:指数函数的概念、图象和性质。 < 教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。 三、教学过程: (一)创设情景: 问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗学生回答:y与x之间的关系式,可以表示为y=2x 。 问题2:一根1米长的绳子,第1次剪去绳长的一半,第2次再剪去剩余绳子的一半,剪了x 次后,绳子的剩余长度y与x有怎样的关系学生回答:y与x之间的关系式,可以表示为y=1 x。 () 2 (二)导入新课: 引导学生观察,两个函数中,底数是常数,指数是自变量。

设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数 y=2x、y= 1 () 2 x分别以01的数为底,加深对定义的感性认识,为顺利引出指数函数 定义作铺垫。 · 1.指数函数的定义 一般地,函数叫做指数函数,其中x是自变量,函数的定义域是R。 的含义: 设计意图:为按两种情况得出指数函数性质作铺垫。若学生回答不合适,引导学生用区间表示:(0,1)∪(1,+∞) 问题:指数函数定义中,为什么规定“”如果不这样规定会出现什么情况 设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。 对于底数的分类,可将问题分解为: (1)若a<0会有什么问题(如,则在实数范围内相应的函数值不存在) ! (2)若a=0会有什么问题(对于,都无意义) (3)若a=1又会怎么样(1x无论x取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定a>0且. 在这里要注意生生之间、师生之间的对话。 设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。 教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。 1:判断下列函数哪些是指数函数

指数函数的运算性质

指数函数的运算性质 教学目标:能用分数指数幂的运算法则解决一些数学问题. 教学重难点:重点 掌握分数指数幂的运算法则. 知识复习: 上一节课,学习了分数指数幂的概念,即 给定a 对于任意给定的,(,,(,)1),m n m n Z m n ∈=存在唯一的0,b >使得,n m b a =把b 叫作a 的m n 次幂,记作 (0).m n b a a => 正分数指数幂的根式形式,即 (0,,),m n a a m n Z +=>∈ 其中n 叫作根指数,m 叫幂指数. 负分数指数幂的意义,即 1 (0,,,m n m n a a m n Z a -+==>∈且1).n > 0的正分数幂等于零,0的非负分数幂无意义. 无理指数幂(可以用有理数的不足近似数和过剩近似数进行逼近) 一、正整数指数幂的运算法则 (1)同底数幂相乘 ;m n m n a a a +=同底数幂相除 (0).m m n m n n a a a a a a --==≠ (2)幂的乘方 ();m n mn a a = (3)积的乘方 ().m m m a b a b =商的乘方1()(0).n n n n a ab a b b b --??==≠ ???

其中,.m n N ∈ 把它推广到分数指数幂也成立, 二、分数指数幂的运算法则 90对于,0,,a b m n >取任意数,有 (1);m n m n a a a += (2)();m n mn a a = (3)().m m m a b a b = 三、例题 例1. 用指数形式表示并化简. 例2. 化简 (1)3);x 1(2)()(4).a a a x y y - 例3. 已知103,10 4.αβ==求() ()()(2)510 ,10,10,10.βαβαβα+-- 四、探究问题与作业 1. 函数y ex =与x y e =的交点个数. 课后作业:习题1、2、3. 五、课后小节 指数函数的性质 六、板书设计