文档库 最新最全的文档下载
当前位置:文档库 › 数学实验作业-线性代数相关运算及数值方法计算定积分

数学实验作业-线性代数相关运算及数值方法计算定积分

数学实验作业-线性代数相关运算及数值方法计算定积分
数学实验作业-线性代数相关运算及数值方法计算定积分

数学实验第三次作业

名称:线性代数相关运算及数值方法计算定积分

目的:1.运用Matlab进行矩阵的基本运算;

2.运用Matlab解线性方程组;

3. 运用Matlab计算定积分。

任务:1.计算下列各行列式:(2)

100 110 011 001

a

b

c

d -

-

-

2.解下列矩阵方程:(2)

010

100

001

??

?

?

?

??

X

100

001

010

??

?

?

?

??

=

1-43

20-1

1-20

??

?

?

?

??

3.求解下列非齐次线性方程组(1)

2x+y-z+w=1 4x+2y-2z+w=2 2x+y-z-w=1

?

?

?

?

?

4.求定积分:21

22

-2

(x1)dx

+

?

1.

syms a b c d;

A=[a 1 0 0;-1 b 1 0;0 -1 c 1;0 0 -1 d] det(A)

结果:ans =

a*b*c*d+a*b+a*d+c*d+1

2.

A=[0 1 0;1 0 0;0 0 1];

B=[1 0 0;0 0 1;0 1 0];

C=[1 -4 3;2 0 -1;1 -2 0];

X=inv(A)*C*inv(B)

结果:X =

2 -1 0

1 3 -4

1 0 -2

3.

A=[2 1 -1 1;4 2 -2 1;2 1 -1 -1];

B=[1;2;1];

C=([A,B]);

rref(C)

结果:ans =

1.0000 0.5000 -0.5000 0 0.5000

0 0 0 1.0000 0 0 0 0 0 0 即:

x+0.5y-0.5z=0.5w=0???

解得:x y z w ?? ? ? ? ???=k 10.5000?? ? ? ? ???

+k 20100?? ? ? ? ???+00-10?? ? ? ? ??? 4.

syms x;

dx=0.1;

x=-2:dx:2;

y=sqrt(x.^2+1);

a=sum(y(1:length(x)-1)*dx);

b=trapz(x,y);

m=inline('sqrt(x.^2+1)','x');

c=quad(m,-2,2);

disp([blanks(3),'矩形法',blanks(3),'梯形法',blanks(3),'辛普生法']),[a,b,c]

结果:

矩形法 梯形法 辛普生法

ans =

5.9173 5.9173 5.9158

Matlab线性代数实验指导书

Matlab线性代数实验指导书 理学院线性代数课程组 二零零七年十月

目录 一、基础知识 (1) 1.1、常见数学函数 (1) 1.2、系统在线帮助 (1) 1.3、常量与变量 (2) 1.4、数组(矩阵)的点运算 (3) 1.5、矩阵的运算 (3) 二、编程 (4) 2.1、无条件循环 (4) 2.2、条件循环 (5) 2.3、分支结构 (5) 2.4、建立M文件 (6) 2.5、建立函数文件 (6) 三、矩阵及其运算 (7) 3.1、矩阵的创建 (7) 3.2、符号矩阵的运算 (11) 四、秩与线性相关性 (14) 4.1、矩阵和向量组的秩以及向量组的线性相关性 (14) 4.2、向量组的最大无关组 (14) 五、线性方程的组的求解 (16) 5.1、求线性方程组的唯一解或特解(第一类问题) (16) 5.2、求线性齐次方程组的通解 (18) 5.3、求非齐次线性方程组的通解 (19) 六、特征值与二次型 (22) 6.1、方阵的特征值特征向量 (22) 6.2、正交矩阵及二次型 (23)

一、基础知识 1.1常见数学函数 函数数学计算功能函数数学计算功能 abs(x) 实数的绝对值或复数的幅值floor(x) 对x朝-∞方向取整acos(x) 反余弦arcsinx gcd(m,n) 求正整数m和n的最大公约数acosh(x) 反双曲余弦arccoshx imag(x) 求复数x的虚部angle(x) 在四象限内求复数x的相角lcm(m,n)求正整数m和n的最小公倍 自然对数(以e为底数) asin(x) 反正弦arcsinx log(x) 常用对数(以 10 为底数) asinh(x) 反双曲正弦arcsinhx log10(x) atan(x) 反正切arctanx real(x) 求复数 x 的实部atan2(x,y) 在四象限内求反正切rem(m,n) 求正整数m和n的m/n之余数atanh(x) 反双曲正切arctanhx round(x) 对x四舍五入到最接近的整数 符号函数:求出 x 的符号ceil(x) 对x朝+∞方向取整 sign(x) conj(x) 求复数x的共轭复数 sin(x) 正弦sinx 反双曲正弦sinhx cos(x) 余弦cosx sinh(x) cosh(x) 双曲余弦coshx sqrt(x) 求实数x的平方根exp(x) 指数函数e x tan(x) 正切tanx fix(x) 对 x 朝原点方向取整 tanh(x) 双曲正切tanhx 如:输入 x=[-4.85 -2.3 -0.2 1.3 4.56 6.75],则: ceil(x)= -4 -2 0 2 5 7 fix(x) = -4 -2 0 1 4 6 floor(x) =-5 -3 -1 1 4 6 round(x) = -5 -2 0 1 5 7 1.2 系统的在线帮助 1.2.1 help 命令: 1.当不知系统有何帮助内容时,可直接输入 help以寻求帮助: >> help(回车) 2.当想了解某一主题的内容时,如输入: >> help syntax (了解Matlab的语法规定) 3.当想了解某一具体的函数或命令的帮助信息时,如输入: >> help sqrt (了解函数sqrt的相关信息) 1.2.2 lookfor 命令 现需要完成某一具体操作,不知有何命令或函数可以完成,如输入: >> lookfor line (查找与直线、线性问题有关的函数) 1.3 常量与变量

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计 算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法

线性代数实验题04-交通网络的流量分析

数学实验报告 学号: , 姓名: , 得分: 实验内容:实验题:交通网络流量分析问题(线性方程组应用) 城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。 问题:某城市有下图所示的交通图,每条道路都是单行线,需要调查每条道路每小时的车流量。图中的数字表示该条路段的车流数。如果每个交叉路口进入和离开的车数相等,整个图中进入和离开的车数相等。 求(1)建立确定每条道路流量的线性方程组; (2)分析哪些流量数据是多余的; (3)为了唯一确定未知流量,需要增添哪几条道路的流量统计。 解: (1)由题意得:x1+ x7=400 x1+ x9= x2+300 x2+100=300+ x11 x3+ x7=350+ x8 x4+ x10= x9+ x3 x11+500= x4+ x12 x8+ x5=310 x6+400= x10+ x5 x12+150= x6+290

整理得: x 1+ x 7=400 x 1- x 2+ x 9=300 x 2+ x 11=200 x 3+ x 7- x 8=350 -x 3+x 4+ x 10- x 9=0 -x 4+x 11- x 12=-500 x 5 +x 8=310 - x 5+x 6- x 10=-400 -x 6+ x 12= 140 将方程组写成矩阵向量形式为AX = b 1 0 0 0 0 0 1 0 0 0 0 0 400 x 1 1 -1 0 0 0 0 0 0 1 0 0 0 300 x 2 0 1 0 0 0 0 0 0 0 0 1 0 200 x 3 A= 0 0 1 0 0 0 1 -1 0 0 0 0 b= 350 X= x 4 0 0 -1 1 0 0 0 0 -1 1 0 0 0 x 5 0 0 0 -1 0 0 0 0 0 0 1 -1 -500 x 6 0 0 0 0 1 0 0 1 0 0 0 0 310 x 7 0 0 0 0 -1 1 0 0 0 -1 0 0 -400 x 8 0 0 0 0 0 -1 0 0 0 0 0 1 140 x 9 x 10 x 11 x 12 在MATLAB 环境中,首先输入方程组的系数矩阵A 和方程组右端向量b A=[1,0,0,0,0,0,1,0,0,0,0,0;1,-1,0,0,0,0,0,0,1,0,0,0;0,1,0,0,0,0,0,0,0,0,1,0;0,0,1,0,0,0,1,-1,0,0,0,0;0,0,-1,1,0,0,0,0,-1,1,0,0;0,0,0,-1,0,0,0,0,0,0,1,-1;0,0,0,0,1,0,0,1,0,0,0,0;0,0,0,0,-1,1,0,0,0,-1,0,0;0,0,0,0,-1,0,0,0,0,0,1] b = [400;300;200;350;0;500;310;-400;140] 解得 x 1=- x 9+500 x 2=200 x 3=- x 9+ x 10- x 12

线性代数实践课作业

华北水利水电学院 行列式的计算方法 课程名称:线性代数 专业班级:电子信息工程 2012154班 成员组成: 联系方式: 2013年10月27日

摘要: 行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本`最常用的工具.本质上,行列式描述的是在n维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.尤其在讨论方程组的解,矩阵的秩,向量组的线性相关性,方阵的特征向量等问题时发挥着至关重要的作用,所以掌握行列式的计算方法显得尤其重要。 关键词: 行列式,范德蒙行列式,矩阵,特征值,拉普拉斯定理,克拉默法则。 The calculation method of determinant Abstract: Determinant is an important research object of linear algebra, is one of the most basic of linear algebra ` the most commonly used tools. In essence, the determinant is described in n dimensional space, a parallel polyhedron volume which is formed by the linear transformation, it is widely used in solving linear equations, the matrix, the calculation of calculus, etc. Especially in the discussion of solving systems of nonlinear equations, matrix rank, vector linear correlation, the problem such as characteristic vector of play a crucial role, so to master the calculation method of determinant is especially important Key words: Determinant vandermonde determinant, matrix, eigenvalue, the Laplace's theorem, kramer rule.

MATLAB实验三-定积分的近似计算

实验三定积分的近似计算 一、问题背景与实验目的 利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分. 本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法.对于定积分的近似数值计算,Matlab有专门函数可用. 二、相关函数(命令)及简介 1.sum(a):求数组a的和. 2.format long:长格式,即屏幕显示15位有效数字. (注:由于本实验要比较近似解法和精确求解间的误差,需要更高的精度).3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数值则转化为相应的实型数值. 4.quad():抛物线法求数值积分. 格式: quad(fun,a,b) ,注意此处的fun是函数,并且为数值形式的,所以使用*、/、^等运算时要在其前加上小数点,即 .*、./、.^等.例:Q = quad('1./(x.^3-2*x-5)',0,2); 5.trapz():梯形法求数值积分. 格式:trapz(x,y) 其中x为带有步长的积分区间;y为数值形式的运算(相当于上面介绍的函数fun) 例:计算 0sin()d x x π ? x=0:pi/100:pi;y=sin(x); trapz(x,y) 6.dblquad():抛物线法求二重数值积分. 格式:dblquad(fun,xmin,xmax,ymin,ymax),fun可以用inline定义,也可以通过某个函数文件的句柄传递. 例1:Q1 = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi) 顺便计算下面的Q2,通过计算,比较Q1 与Q2结果(或加上手工验算),找出积分变量x、y的上下限的函数代入方法. Q2 = dblquad(inline('y*sin(x)'), 0, pi, pi, 2*pi)例2:Q3 = dblquad(@integrnd, pi, 2*pi, 0, pi) 这时必须存在一个函数文件integrnd.m:

线性代数实验一

数学实验(线性代数)题目 一. 用MATLAB 计算行列式 1.求矩阵10211 22323310 12 1A ????-? ?=??????的行列式的值.2。计算行列式100 110011001 a b c d --- 二.用MATLAB 计算矩阵 1.求矩阵??????????=133212321A 与矩阵???? ??????=132352423B 的和与差及53A B -. 2.求矩阵123212331A ????=??????与324253231B ????=??????的乘积.3.求矩阵112011210A -?? ??=-?? ????的逆矩阵. 4.求矩阵123421213A ????=??????和212121321B ?? ??=?? ???? 相除。 三.用MATLAB 解线性方程组 1. 求解方程组1231231 23240200 x x x x x x x x x --+=?? ++=??+-=?。 2。解方程组AX b =,其中A =212214321??????????,b =317?? ???????? .。 3.Matlab 实验题 某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗0.25元乙企业的产品和0.25元丙企业的产品. 乙企业每生产1元的产品要消耗0.65元甲企业的产品, 0.05元自产的产品和0.05元丙企业的产品. 丙企业每生产1元的产品要消耗0.5元甲企业的产品和0.1元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元. (1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值. (2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?

数值分析实验指导 - 7 积分

数值分析实验指导 潘志斌 2014年3月

实验七 数值积分 数值实验综述:通过数值积分实验掌握数值积分的实现,理解各种数值积分公式的特性,并能用数值积分求解积分方程和微分方程。 基础实验 7.1 Newton-cotes 型求积公式 实验目的:学会Newton-cotes 型求积公式,并应用该算法于实际问题. 实验内容:求定积分 ? π cos xdx e x 实验要求:选择等分份数n ,用复化Simpson 求积公式求上述定积分的误差不超过810-的近似值,用MATLAB 中的内部函数int 求此定积分的准确值,与利用复化Simpson 求积公式计算的近似值进行比较。 7.2 Romberg 算法 实验目的:学会数值求积的Romberg 算法,并应用该算法于实际问题. 实验内容:求定积分 ? 1 5 .0dx x 实验要求: (1)要求程序不断加密对积分区间的等分,自动地控制Romberg 算法中的加速收敛过程,直到定积分近似值的误差不超过610-为止,输出求得的定积分近似值。 (2)可用MATLAB 中的内部函数int 求得此定积分的准确值与Romberg 算法计算的近似值进行比较。 7.3 Gauss 型求积公式 实验目的:学会Gauss 型求积公式,并应用该算法于实际问题. 实验内容:求定积分 ? -+4 42 1x dx 实验要求: (1)把Gauss 点的表格存入计算机,以Gauss-Legendre 求积公式作为本实验的例子,要求程序可以根据不同的阶数n ,自动地用n 阶Gauss-Legendre 求积

公式计算上述定积分的近似值.体会Gauss型求积公式是具有尽可能高的代数精度的数值求积公式。 (2)可用MATLAB中的内部函数int求得此定积分的准确值与Gauss型求积公式求得的值进行比较。

《线性代数》作业

《线性代数》作业 第一章 1、求排列(2n)(2n-1)…(n+1)1 2…(n -1)n 的逆序数。 解:后面是正常顺序,逆序出现在前n 个数与后n 个数之间,2n 的逆序数是2n-1,2n-1的逆序数是2n-2,……,n+1的逆序数是n ,所以整个排列的逆序数是(2n-1)+(2n-2)+……+n =n(3n-1)/2 2、求排列246......(2n)135……(2n-1)的逆序数。 解析:后一项比前一项的算逆序一次,246......(2n)无逆序,所以从1开始,有246......(2n)共N 个,3开始有46......(2n)有N-1个,.......,.2n-1有一个,所以,加一起得,逆序数为1+2+......+N=N (N+1)/2 N=n+(n-1)+......+2+1=n(n+1)/2 3、试判断655642312314a a a a a a ,662551144332a a a a a a -,662552144332a a a a a a -是否都是六阶行列式中的项。 解a 14a 23a 31a 42a 56a 65 下标的逆序数为 t (431265)=0+1+2+2+0+1=6 所以655642312314a a a a a a 是六阶行列式中的项。 662551144332a a a a a a -下标的逆序数为 t (452316)=8所以662551144332a a a a a a -不是六阶行列式中的项。 662552144332a a a a a a -下标的逆序数为t(452316)=8所以662552144332a a a a a a -不是六阶行列式中的项。 4、已知4阶行列式D 中的第3列上的元素分别是3,-4,4,2,第1列上元素的余子式依次为8,2,-10,X ,求X 。 解:X=20 5、设15234312a a a a a j i 是5阶行列式的一项,若该项的符号为负,则 i= 5 ,j= 4 。 6、要使3972i15j4成为偶排列,则 i= 6 ,j= 8 。 7、设D 为一个三阶行列式,并且D=4,现对D 进行下列变换:先交换第1和第2行,然后用2乘以行列式的每个元素,再用-3乘以第2列加到第3列,则行列式最后结果为 32 。 8、设对五阶行列式(其值为m )依次进行下面变换,求其结果:交换一行与第五行,再转置,用2乘所有元素,现用-3乘以第二列加到第四列,最后用4除第二行各元素。 解析:交换一行与第五行 行列式的值变号 转置 行列式的值不变 用2乘所有元素 行列式的值乘以2^5 现用-3乘以第二列加到第四列 行列式的值不变 最后用4除以第二行各元素(应该是用4“除”第二行各元素吧?) 行列式的值乘以1/4

实验2:线性代数实验答案

撰写人姓名:撰写时间:审查人姓名: 实验全过程记录实验 名称线性代数实验 时间2学时 地点数学实验室 姓名学号 同实验者学号 一、实验目的 1、熟练掌握矩阵的基本运算; 2、熟练掌握一般线性方程组的求解; 3、掌握最小二乘法的MATLAB实现,矩阵特征值、特征向量的求解以及化二次型为标准型。 二、实验内容: 1、利用MATLAB实现矩阵的基本运算; 2、利用MATLAB求解一般线性方程组,利用最小二乘法求解超定方程组; 3、利用MATLAB化二次型为标准型。 三、实验用仪器设备及材料 软件需求: 操作系统:Windows XP或更新的版本; 实用数学软件:MATLAB 7.0或更新的版本。 硬件需求: Pentium IV 450以上的CPU处理器、512MB以上的内存、5000MB的自由硬盘空间、 CD-ROM驱动器、打印机、打印纸等。 四、实验原理: 线性代数理论 五、实验步骤: 1、计算下列行列式: ⑴ 4124 1202 10520 0117 ; >> A=[4 1 2 4;1 2 0 2;10 5 2 0;0 1 1 7]; >> det(A) ans =

⑵ 100 110 011 001 a b c d - - - 。 >> syms a b c d; >> A=[a 1 0 0;-1 b 1 0;0 -1 c 1;0 0 -1 d]; >> det(A) ans = a*b*c*d+a*b+a*d+c*d+1 2、设 212 122 221 A ?? ?? =?? ?? ?? ,求1098 ()65 A A A A ?=-+。 >> A=[2 1 2;1 2 2;2 2 1]; >> A^10-6*A^9+5*A^8 ans = 2 2 -4 2 2 -4 -4 -4 8 3、求下列矩阵的逆矩阵: ⑴ 121 342 541 - ?? ?? - ?? ?? - ?? ; >> A=[2 1 2;1 2 2;2 2 1]; >> A^10-6*A^9+5*A^8 ans = 2 2 -4 2 2 -4 -4 -4 8 >> A=[1 2 -1;3 4 -2;5 -4 1]; >> inv(A) ans =

线性代数实验作业

线性代数实验作业 14B09125 李强 实验一:交通网络流量分析问题 城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。 问题:某城市有下图所示的交通图,每条道路都是单行线,需要调查每条道路每小时的车流量。图中的数字表示该条路段的车流数。如果每个交叉路口进入和离开的车数相等,整 求(1)利用上面的观测数据,建立关于各个路口交通流量的线性方程组,并用MATLAB 软件求解; (2)分析在建立的方程组中,哪些方程是多余的,进而判断哪些流量数据是多余的; (3)为了唯一确定未知交通流量,还需要增加哪几条道路的流量统计。 程序:A=zeros(9,12); A(1,1)=1;A(1,7)=1;A(2,1)=1;A(2,2)=-1;A(2,9)=1; A(3,2)=1;A(3,11)=-1;A(4,3)=1;A(4,7)=1;A(4,8)=-1; A(5,3)=-1;A(5,4)=1;A(5,9)=-1;A(5,10)=1; A(6,4)=-1;A(6,11)=1;A(6,12)=-1;A(7,5)=1;A(7,8)=1; A(8,5)=-1;A(8,6)=1;A(8,10)=-1;A(9,6)=-1;A(9,12)=1; A=sym(A) b=[400,300,200,350,0,-500,310,-400,140]'; B=[A,b]; C0=rref(B) d=1:13; d(6)=12;d(12)=6;d(7)=9;d(9)=7;d(8)=10;d(10)=8; B1=B(:,d); C1=rref(B1);

C=C1(:,d) r_B=rank(B) for i=1:9 B_=B;B_(i,:)=[]; r2=rank(B_); A_=B_(:,1:end-1); r1=rank(A_); r(i)=(r1==r2 & r1==8); end r A = [ 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] [ 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0] [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0] [ 0, 0, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0] [ 0, 0, -1, 1, 0, 0, 0, 0, -1, 1, 0, 0] [ 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, -1] [ 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] [ 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0] [ 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1] C0 = [ 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1,0,500] [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1,0,200] [ 0, 0, 1, 0, 0, 0, 0, 0, 1, -1, -1, 1,500] [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 500] [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, -1, 260] [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, -140] [ 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 1, 0, -100] [ 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0,1, 50] [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] C = [ 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 400] [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 200] [ 0, 0, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 350] [ 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 360] [ 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 310] [ 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 140] [ 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, -1, 0, 100] [ 0, 0, 0, 0, 0, -1, 0, -1, 0, 1, 0, 0, 90] [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] r_B = 8 fori = 1 2 3 4 5 6 7 8 9

实验2:线性代数实验

撰写人姓名:周建文撰写时间:2011.10.29 审查人姓名: 实验全过程记录 实验 名称线性代数实验 时间2学时 地点 数学实验 室 姓名周建文学号1005010622 测控10-6班组 同实验者学号班组 一、实验目的 1、熟练掌握矩阵的基本运算; 2、熟练掌握一般线性方程组的求解; 3、掌握最小二乘法的MA TLAB实现,矩阵特征值、特征向量的求解以及化二次型为标准型。 二、实验内容: 1、利用MATLAB实现矩阵的基本运算; 2、利用MATLAB求解一般线性方程组,利用最小二乘法求解超定方程组; 3、利用MATLAB化二次型为标准型。 三、实验用仪器设备及材料 软件需求: 操作系统:Windows XP或更新的版本; 实用数学软件:MATLAB 7.0或更新的版本。 硬件需求: Pentium IV 450以上的CPU处理器、512MB以上的内存、5000MB的自由硬盘空间、 CD-ROM驱动器、打印机、打印纸等。 四、实验原理: 线性代数理论 五、实验步骤: 1、计算下列行列式: ⑴ 4124 1202 10520 0117 ;⑵ 100 110 011 001 a b c d - - - 。 >> A=[4 1 2 4;1 2 0 2;10 5 2 0;0 1 1 7]; >> det(A)

ans = >> syms a b c d; >> A=[a 1 0 0;-1 b 1 0;0 -1 c 1;0 0 -1 d]; >> det(A) ans = a*b*c*d+a*b+a*d+c*d+1 2、设 212 122 221 A ?? ?? = ?? ?? ?? ,求1098 ()65 A A A A ?=-+。 >> A=[2 1 2;1 2 2;2 2 1]; >> A^10-6*A^9+5*A^8 ans = 2 2 -4 2 2 -4 -4 -4 8 3、求下列矩阵的逆矩阵:⑴ 121 342 541 - ?? ?? - ?? ?? - ?? ;⑵ 10 01 00 λ λ λ ?? ?? ?? ?? ?? 。 >> A=[2 1 2;1 2 2;2 2 1]; >> A^10-6*A^9+5*A^8 ans = 2 2 -4 2 2 -4 -4 -4 8 >> A=[1 2 -1;3 4 -2;5 -4 1]; >> inv(A) ans = -2.0000 1.0000 -0.0000

数值线性代数实验

数值线性代数实验 题目:数值线性代数 专业:信息与计算科学班级:班姓名: 山东科技大学 2013年 1 月16日

实验报告说明 学院:信息学院专业:信息班级10-2 姓名: 一、主要参考资料: (1)《Matlab数值计算-案例分析》北京航空出版(2)《Matlab数值分析》机械工业出版 二、课程设计应解决的主要问题: (1)平方根 (2)QR方法 (3)最小二乘法 三、应用软件: (1)Matlab7.0 (2)数学公式编辑器 四、发出日期:课程设计完成日期: 指导教师签字:系主任签字:

指导教师对课程设计的评语 指导教师签字: 年月日

一、问题描述 先用你所熟悉的计算机语言将平方根和改进的平方根法编成写通用的子程序,然后用你编写的程序求解对称正定方程组b x =A ,其中 (1)b 随机的选取,系数矩阵位100阶矩阵 ?? ? ??? ???? ????????????1011101110111011101110 (2)系数矩阵为40阶Hilbert 矩阵,即系数矩阵A 的第i 行第j 列元素为 11-+=j i a ij ,向量b 的第i 个分量为∑=-+=n j i j i b 11 1 。 二、分析与程序 1. 平方根法函数程序如下: function [x,b]=pingfanggenfa(A,b) n=size(A); n=n(1); x=A^-1*b; disp('Matlab 自带解即为x'); for k=1:n A(k,k)=sqrt(A(k,k)); A(k+1:n,k)=A(k+1:n,k)/A(k,k); for j=k+1:n; A(j:n,j)=A(j:n,j)-A(j:n,k)*A(j,k); end end for j=1:n-1 b(j)=b(j)/A(j,j);

基础实验二 定积分数值计算

基础实验二 定积分数值计算 一、实验目的 学习定积分的数值计算方法,理解定积分的定义,掌握牛顿-莱布尼兹公式。 二、实验材料 2.1定积分的数值计算 计算定积分?b a dx x f )(的近似值,可将积分区间n 等分而得矩形公式 n a b n a b i a f dx x f n i b a ---+≈∑?=]) 1([)(1 或 n a b n a b i a f dx x f n i b a --+≈∑?=][)(1 也可用梯形公式近似计算 n a b b f a f n a b i a f dx x f n i b a -++-+≈∑?-=]2)()()([)(11 如果要准确些,可用辛普森公式 n a b b f a f a b i a f n a b i a f dx x f n i n i b a 6)]()()2)21((4)(2[)(111-++--++-+≈∑∑?=-= 对于?1 0sin xdx ,矩形公式、梯形公式、辛普森公式的Mathematica 程序为 a=0;b=1;k=10; f[x_]:=Sin[x]; d=N[Integrate[f[x],{x,a,b}],k];(计算精确值) s1[m_]:=N[Sum[f[a+i*(b-a)/m]*(b-a)/m,{i,0,m-1}],k];(取小区间左端点的矩形公式) s2[m_]:=N[Sum[f[a+(i+1/2)*(b-a)/m]*(b-a)/m,{i,0,m-1}],k]; (取小区间中点的矩形公式) s3[m_]:=N[Sum[f[a+i*(b-a)/m]*(b-a)/m,{i,1,m}],k]; (取小区间右端点的矩形公式) s4[m_]:=N[Sum[(f[a+i*(b-a)/m]+f[a+(i+1)*(b-a)/m])/2*(b-a)/m,{i,0,m-1}],k]; (梯形公式) s5[m_]:=N[(b-a)/m/6*((f[a]+f[b])+2*Sum[f[a+i*(b-a)/m],{i,1,m-1}]

线性代数课后作业及参考问题详解

《线性代数》作业及参考答案一.单项选择题 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…

matlab线性代数实验

线性代数MATLAB 实验指导书 MATLAB 是Matrix Laboratory 的缩写,是一个集数值计算、图形处理、符号运算、文字处理、数学建模、实时控制、动态仿真和信号处理等功能为一体的数学应用软件,而且该系统的基本数据结构是矩阵,又具有数量巨大的内部函数和多个工具箱,使得该系统迅速普及到各个领域,尤其在大学校园里,许多学生借助它来学习大学数学和计算方法等课程,并用它做数值计算和图形处理等工作。我们在这里介绍它的基本功能,并用它做与线性代数相关的数学实验。 在正确完成安装MATLAB 软件之后,直接双击系统桌面上的MATLAB 图标,启动MATLAB ,进入MATLAB 默认的用户主界面,界面有三个主要的窗口:命令窗口(Commend Window ), 当前目录窗口(Current Directory ),工作间管理窗口(Workspace )。 命令窗口是和Matlab 编译器连接的主要窗口,“>>”为运算提示符,表示Matlab 处于准备状态,当在提示符后输入一段正确的运算式时,只需按Enter 键,命令窗口中就会直接显示运算结果。 实验1 矩阵的运算,行列式 实验名称:矩阵的运算,行列式 实验目的:学习在matlab 中矩阵的输入方法以及矩阵的相关运算,行列式。 实验原理:介绍相关的实验命令和原理 (1)一般矩阵的输入 (2)特殊矩阵的生成 (3)矩阵的代数运算 (4)矩阵的特征参数运算 (5)数字行列式和符号行列式的计算 实验命令 1 矩阵的输入 Matlab 是以矩阵为基本变量单元的,因此矩阵的输入非常方便。输入时,矩阵的元素用方括号括起来,行内元素用逗号分隔或空格分隔,各行之间用分号分隔或直接回车。 例1 输入矩阵 ???? ? ??--=654301211A ,可以在命令窗口中输入 >>A=[1 1 2;-1 0 3;4 -5 6] A = 1 1 2 -1 0 3 4 - 5 6 2 特殊矩阵的生成 某些特殊矩阵可以直接调用相应的函数得到,例如: zeros(m,n) 生成一个m 行n 列的零矩阵

线性代数作业第四章(2)

第四章 向量组的线性相关性(二) 1. 判断下列向量集合在向量加法和数乘运算下是否为向量空间,若是向量空 间,试求其维数,并给出一个基. 1) }0,0,,,,),,,,({322154321543211=+=+∈==x x x x x x x x x x x x x x V ,且R α 2) }1,,,),,,({2121212=-∈==x x x x x x x x V n n ,且R α 3) },,){3213322113R ∈++==k k k k k k V αααα,其中)0,1,1(1=α,)1,0,1(2=α, )1,1,2(3=α

2. 已知三维向量空间3R 的一组基)0,1,1(1-=α,)1,0,1(2=α,)1,1,1(3-=α.试用 施密特正交化方法由321,,ααα构造3R 的一组标准正交基. 3. 已知4维向量空间4R 的两个基 (I) ???????====) 0,0,1,2()0,0,2,3()3,2,0,0()4,3,0,0(4321αααα, (II) ?????? ?====) 0,1,2,1()2,1,1,2()2,2,1,0() 1,0,1,2(432 1ββββ 1) 求由基(I)到基(II)的过渡矩阵; 2) 求)4,3,2,1(=α在基(I)下的坐标; 3) 判断是否存在在两组基下坐标相同的非零向量.

4. 已知向量空间3R 的两个基为(I)321,,ααα和(II) 321,,βββ.设3R ∈α在基(I) 与基(II)下的坐标分别为()T 321,,x x x =x ,()T 321,,y y y =y ,且满足 3211x x x y ++=,212x x y +=,13x y =. 1) 求由基(I)变为基(II)的过渡矩阵; 2) 求31ββα+=在基(I)下的坐标.

《线性代数与概率统计》作业题答案

《线性代数与概率 统 计 》 第一部分 单项选择题 1.计算112212 12 x x x x ++=++?(A ) A .12x x - B .12x x + C .21x x - D .212x x - 2.行列式1 1 1 111111 D =-=--(B ) A .3 B .4 C .5 D .6 3 . 设 矩 阵 231123111,112011011A B -???? ????==???? ????-???? ,求AB =(B ) A .-1 B .0 C .1 D .2 率统计》 率统计》作业题 4.齐次线性方程组123123123 000x x x x x x x x x λλ++=?? ++=??++=?有 非零解,则λ=?(C ) A .-1 B .0 C .1 D .2 5.设???? ??=50906791A ,?????? ? ? ?=6735 63 00B ,求AB =?(D ) A .1041106084?? ??? B .1041116280?? ??? C .1041116084?? ??? D .1041116284?? ??? 6.设A 为m 阶方阵,B 为n 阶方阵,

且A a =,B b =,0 0A C B ?? = ??? ,则C =?(D ) A .(1)m ab - B .(1)n ab - C .(1) n m ab +- D .(1)nm ab - 7.设???? ? ? ?=34 3122 321 A ,求1 -A =?(D ) A .1 3 23 53 22111?? ? ?- - ? ?-? ? B .132********-?? ? ?- ? ?-?? C .13 2353 22111-?? ? ?- ? ?-?? D .13 23 53 22111-?? ? ?- - ? ?-? ? 8.设,A B 均为n 阶可逆矩阵,则下 列结论中不正确的是(B ) A .111[()]()()T T T A B A B ---= B .111()A B A B ---+=+ C .11()()k k A A --=(k 为正整数) D .1 1()(0)n kA k A k ---=≠ (k 为 正整数) 9.设矩阵m n A ?的秩为r ,则下述结论正确的是(D ) A .A 中有一个r+1阶子式不等于零 B .A 中任意一个r 阶子式不等 于零 C .A 中任意一个r-1阶子式不等于零 D .A 中有一个r 阶子式不等于零 10.初等变换下求下列矩阵的秩, 32 1321 317051A --?? ?=- ? ?-? ? 的秩为?(C ) A .0 B .1 C .2 D .3

相关文档
相关文档 最新文档